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Abstract. We derive numerical series representations for option prices
on interest rate index for affine jump-diffusion models in a stochastic
jump intensity framework with an adaptation of the Fourier-cosine series
expansions method, focusing on the European vanilla derivatives. We
give the price for nine different Ornstein-Uhlenbeck models enhanced
with different jump size distributions. The option prices are accurately
and efficiently approximated by solving the corresponding set ordinary
differential equations and parsimoniously truncating the Fourier series.
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1 Introduction

The main interest rate option traded in B3 is the IDI (interfinancial deposit
index) Option, which is of European type and cash settled at maturity. The IDI is
an index that accumulates from an initial value according to the daily calculated
effective market rate DI. Analytical solutions for pricing IDI options can be
found for the short rate given by the Vasicek model [14] and the CIR model
[3]. [1] and [12] developed the closed-form with the known Hull-White model
[11]. [4] implemented the HJM model to price IDI options. The problem was
numerically solved via a finite difference method in [13] and via an alternative
generic method in [2]. Another result was developed by [10], where the model is
sensitive to changes in monetary policy. A discussion about this type of path-
dependent option is found in two books ([6] and [7]).

The COS method is a Fourier inversion method introduced by [9]. It is a
procedure to calculate probability density functions and expectations via cosine
series. It originally relies on the explicit formula for the characteristic function
of the state variable. This paper accomplishes an original contribution for the
financial literature via devising a way to apply the COS method to affine jump-
diffusion (AJD) models which do not pursue analytical solutions for the Ric-
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cati equations. More specifically, we develop option prices for AJD models with
stochastic jump intensities, which can capture different market stress scenarios.

The paper is organized as follows: in Section 2 we review the Fourier-cosine
expansion method to recover density functions and calculate the price of financial
derivatives. In Section 3 we present the pricing problem and show the ordinary
differential equations which give the solution of the AJD characteristic functions
of the interest rate processes. In Section 4 we develop the coefficients related to
the payoff functions. In Section 5 we present the probability distributions of the
models and the convergence of the prices.

2 Fourier Series Method

An interesting, fast and accurate pricing method based on Fourier series expan-
sions was recently proposed by [9] for options on stocks, with good potential to
be shaped for other derivatives. Let f : [−π, π] −→ R be an integrable function.
A change of variable ξ = π x−ab−a is considered in order to have an even function.
Then, the Fourier-cosine series expansion of f in the interval [a, b] is

f(x) =
a0
2

+

∞∑
j=1

ajcos

(
jπ
x− a
b− a

)
, (1)

where

aj =
2

b− a

∫ b

a

f

(
π
x− a
b− a

)
cos

(
jπ
x− a
b− a

)
dx, j ≥ 0. (2)

Let us assume that f ∈ L1(R) and that we explicitly know the Fourier
transform of f . The approximation in the interval [a, b] of the coefficients of the
Fourier-cosine expansion of f is

aj =
2

b− a

∫ b

a

f(ξ)<
(
eijπ

ξ−a
b−a

)
dξ ≈ 2

b− a
<
(
e−ijπ

a
b−a f̂

(
jπ

b− a

))
, Aj . (3)

The approximation of f is given by the following Fourier-cosine series:

f(x) ≈ A0

2
+

n∑
j=1

Ajcos

(
jπ
x− a
b− a

)
, x ∈ [a, b], (4)

for an appropriated chosen n.
Let XT be a random variable with probability density function fXT with

known characteristic function f̂(ω) =
∫
R e

ixωf(x)dx ≈
∫ b
a
eixωf(x)dx. The price

of a European call option C(t, T ) with payoff function g and strike K is

C(t, T ) ≈ A0

2

∫ b

a

g(XT )dx+

n∑
j=1

Aj

∫ b

a

g(XT )cos

(
jπ
x− a
b− a

)
dx. (5)
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Hence, the series approximation of the option price is given by

C(t, T ) = E[g(XT )|Xt] ≈
A0B0

2
+

n∑
j=1

AjBj , (6)

where the Aj coefficients are given by (3) and

Bj =

∫ b

a

g(XT )cos

(
jπ
x− a
b− a

)
dx, for j = 0, 1, ..., n. (7)

The choices of the integration limits (a, b) for the approximation were pro-
posed in [9]. The scenario we are dealing with is that where no closed-form exists
for the characteristic function. Then, the limits are achieved by numerically dif-
ferentiate the cumulant function of the model.

3 IDI options with affine jump-diffusion models

We assume an interest rate market with underlying probability space (Ω,F,P)
equipped with a filtration F = (Ft)t∈[0,T ] where P is the risk neutral measure.

Let rt be the spot continuously compounding interest rate given by

drt = µ(rt, t)dt+ σ(rt, t)dBt + JdN(λt), (8)

where µ(rt, t) is the mean, σ(rt, t) is the volatility and Bt the standard Wiener
process. N is a pure jump process with positive intensity λ = λ0 + λ1rt and
jump amplitudes J , which are i.i.d. and independent of Bt.

According to the B3 protocols, the DI rate is the average of the interbank
rate of a one-day-period, calculated daily and expressed as the effective rate per
annum. So, the ID index accumulates discretely, according to

yt = y0

t∏
k=1

(1 +DIk)
1

252 , (9)

where k denotes the end of day and DIk assigns the corresponding DI rate. More
details about the DI index is found in [7].

If rt = ln(1 +DIt), the index can be represented by the following continuous

compounding expression yt = y0e
∫ t
0
rsds, where rt is given by (8). The price for

the option with strike K and maturity in t is given by

C0 = E
[
max

(
y0 −Ke−

∫ t
0
rsds, 0

) ∣∣∣F0

]
. (10)

From now on we benefit from the procedure found in [8] which focus in
obtaining characteristic functions of affine jump-diffusion (AJD) models. We
find a function of the solution of the AJD model from which a characteristic
function should be obtained.
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Theorem 1. The characteristic function of the integrated process xt =
∫ t
0
rsds

where rs is given by an AJD model of the form (8) is

f̂(xt, iu) = E [exp (iuxt) |r0] = exp(α(t) + β(t)r0), (11)

where

α′(s) = β(s)κ+ λ0

[
E
(
eβ(s)Ji

)
− 1
]
, (12)

β′(s) = β(s)θ +
1

2
β(s)2σ2 − iu+ λ1

[
E
(
eβ(s)Ji

)
− 1
]
, (13)

with boundary conditions α(0) = β(0) = 0.

Proof. See [8].

The variable λ0 multiplying the expectation in (12) gives the constant inten-
sity of the jumps and the variable λ1 multiplying the expectation in (13) gives
the slope when the intensity of the jumps is stochastic. Closed-form solutions
for
[
E
(
eβ(s)Ji

)
− 1
]

are found in [5] for exponential, normal and gamma jumps.
When dealing with stochastic intensity for the jumps, closed-form solutions

for the Riccati equations do not exist. Solving (12) and (13) numerically with
the Runge-Kutta algorithm gives the characteristic function we use in Aj coeffi-
cients of the series (6). Finite difference method is then used to differentiate the
cumulant-generating function in order to prescribe the integration limits.

In this paper, we deal with a variety of Ornstein-Uhlenbeck processes. The
Vasicek model without jumps, the Vasicek model with exponential positive and
negative jumps, the Vasicek model with stochastic positive and negative expo-
nential jumps, the Vasicek model with normal and stochastic normal jumps and
the Vasicek model with gamma and stochastic gamma jumps.

4 IDI Option pricing with the COS method

The characteristic function of the random variable
∫ t
0
rsds enters in the Aj coef-

ficients in equation (6). Whence, this suffices for calculating the Aj . So we only
have to calculate the corresponding Bj coefficients in order to price the IDI op-
tion. We consider from now on the vanilla call option case as shown in equation
(10). To the best of authors’ knowledge, this is the first paper to study this class
of models for path-dependent interest rate derivatives.

Theorem 2. The Bj coefficients for vanilla IDI call options are given by

B0 =

∫ b

− ln( y0k )
y0 − ke−xdx = y0

(
ln
(y0
k

)
+ b− 1

)
+ e−bk, (14)

and

Bj =

∫ b

− ln( y0k )

(
y0 − ke−x

)
cos

(
πj (x− a)

b− a

)
dx (15)

Proof. The vanilla IDI call option is given by (10). Integrating it according to
equation (7) gives Theorem 2.
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5 Numerical results

In the following panels we exhibit the probability density functions of the in-
tegrated process of each model under study and the corresponding convergence
analysis of the IDI call option prices. In figure 1 we show the Vasicek model with
exponential jumps. The model is enhanced with positive and negative jumps.
In figure 2 we show the Vasicek model with normal jumps. In figure 3 we show
the the Vasicek model with gamma jumps. All above models were enhanced
with constant and stochastic intensities. The base parameters for the figures
are: r0 = 0.1, κ = 0.25, θ = 0.1, σ = 0.04, λ0 = 1, λ1 = 10, η = 0.01, µ = 0,
Σ = 0.015, p = 1.5, , T = 5, y0 = 100000 and K = 165000.

We highlight that the numerical COS method converges with few terms in the
Fourier series, namely around fifteen terms. It takes a half of second to calculate
the price performing the Runge-Kutta method inside each term of the series and
achieving an error of the order of 10−3. The computer used for all experiments
has an Intel Core i5 CPU, 2.53GHz. The code was written in MATLAB 7.8.
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Fig. 1: ( Left) Probability density functions for Vasicek model with exponential jumps. (Right)
Convergence analysis for Vasicek model with exponential jumps.
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Fig. 2: ( Left) Probability density functions for Vasicek model with normal jumps. (Right)
Convergence analysis for Vasicek model with normal jumps.
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Fig. 3: ( Left) Probability density functions for Vasicek model with gamma jumps. (Right)
Convergence analysis for Vasicek model with gamma jumps.

6 Conclusion

We extended the range of application of the COS method to interest rate deriva-
tives contracts. We benefited from the procedure found in [8] to obtain charac-
teristic functions related to affine jump-diffusion (AJD) models. In this paper,
we are not restricted to explicit solutions of the characteristic function. We pro-
vided the probability densities for interest rate models with stochastic intensities
and the corresponding prices for a financial product found in the Brazilian mar-
ket, the IDI option. We devised a path-dependent function that corresponds to
the integral of the interest rate process, from which the numerical values for the
associated characteristic function was calculated via Runge-Kutta method. We
show that the prices converge fastly regarding the number of terms of the Fourier
series. To the best of our knowledge, this is the fastest method to numerically
calculate the price of a path-dependent interest rate option.
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