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dginesta@mat.upv.es

Abstract. The stationary neutron transport equation describes the neu-
tron population and thus, the generated heat, inside a nuclear reactor core.
Obtaining the solution of this equation requires to solve a generalized
eigenvalue problem efficiently. The majority of the eigenvalue solvers use
the factorization of the system matrices to construct preconditioners,
such as the ILU decomposition or the ICC decomposition, to speed up
the convergence of the methods. The storage of the involved matrices
and incomplete factorization demands high quantities of computational
memory although a the sparse format is used. This makes the computa-
tional memory the limiting factor for this kind of calculations in some
personal computers. In this work, we propose a matrix-free precondi-
tioned eigenvalue solver that does not need to have the matrices allocated
in memory explicitly. This method is based on the block inverse-free
preconditioned Arnoldi method (BIFPAM) with the innovation that uses
a preconditioner that is applied from matrix-vector operations. As well
as reducing enormously the computational memory, this methodology
removes the time to assembly the sparse matrices involved in the system.
A two-dimensional and three-dimensional benchmarks are used to study
the performance of the methodology proposed.

Keywords: Neutron diffusion, Eigenvalue problem, Lambda modes, Ma-
trix Free, Block method.

1 Introduction

The simulation of the reactor kinetics is a fundamental objective to ensure safe
operation of nuclear reactors. The steady-state neutron transport equation [10] is
the equation that describes the neutron flux and then, the generated heat power
in every region of the reactor in steady-state.

Different equations have been successfully used to approximate the neutron
transport equation. Usually, all eliminate the energy dependence of the equations
by means of a multi-group approximation. The dependence on the direction
of the neutrons depends on the selected method. In this work, the multigroup
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neutron diffusion equation is chosen. This equation is analogous to the Fick’s
law for the diffusion of species and the Fourier equations in heat transfer. This
equation states, for each energy group g = 1, . . . , G, as

−∇ · (Dg∇φg) +Σtg φg(r) =

G∑
g′=1
g′ 6=g

Σs, g′→g φ
′
g(r) +

1

λ

G∑
g′=1

χgνgΣfg′ φg′ (1)

where φg denotes the neutron flux of the energy group g. The coefficients, Dg,
Σtg, Σfg′ , χg and Σs, g′→g depend of the energy group g and group g′.

The spatial discretization scheme chosen for the diffusion equations is a contin-
uous Galerkin finite element method to obtain an algebraic generalized eigenvalue
problem, where the largest eigenvalue λ, also known as k-effective (keff), shows
the criticality of the reactor and its corresponding eigenvector the distribution of
the flux in the reactor core. Moreover, it is interesting computing several modes
to develop modal methods that allows integrating the time-dependent equation.

Most eigenvalue problems, that arise from the different approximations to
deterministic neutron transport equations, have been classically solved with the
power iteration method. However, recently the Krylov-Schur method [12], the
Generalized Davidson [5] or the block inverse-free preconditioner Arnoldi method
(BIFPAM) [2], are becoming increasingly popular for this type of computations.
These methods permit to solve the eigenvalue problem faster than the power
iteration when the spectral distribution of the eigenvalues is very clustered. The
bottleneck of all these methods is the preconditioner used. The eigenvalue solvers
can use the factorization of the system matrices to construct preconditioners,
such as the ILU decomposition or the ICC decomposition, to speed up the
convergence of the methods. However, this type of factorizations demands a high
level of computational memory to assemble the matrices and the preconditioners.
Henceforth, preconditioners based on matrix-vector product are needed. In this
work, we use the BIFPAM with a matrix-free preconditioner based on the block
Gauss-Seidel method and the Chebyshev polynomial that does not need to
have the matrices constructed explicitly eliminating setup costs for the matrix
assembly and reducing storage requirements. Other matrix-free approaches have
been studied in [3,4,7].

2 Algebraic eigenvalue problem

The problem (1) is spatially discretized by means of a high-order continuous
Galerkin Finite Element Method (FEM), implemented with the help of library
deal.II [1]. The discretization transforms the differential problem into an alge-
braic generalized eigenvalue problem of the form

Ax = λBx. (2)

More details about the finite element spatial discretization are explained in [12].
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As we are solving an energy multigroup diffusion equations problem, we can
take advantage of the block structure of the matrices A and B, where each block
is symmetric and positive definite. Most of the blocks in the lower part of matrix
A and far from the diagonal in B are zero. For example, the matrices of the
C5G7 benchmark studied in Section ?? have the following block structure,

A11 · · · A17

A21 · · · A27

A31 · · · A37

A41 · · · A47

0 · · · 0
0 · · · 0
0 · · · 0





x1

x2

x3

x4

x5

x6

x7


= λ



B11 0 0 0 0 0 0
B21 B22 0 0 0 0 0
B31 B32 B33 0 0 0 0
B41 B42 B43 B44 B45 0 0
0 0 0 B54 B55 B56 0
0 0 0 0 B65 B66 B67

0 0 0 0 0 B76 B77





x1

x2

x3

x4

x5

x6

x7


. (3)

3 Matrix-free strategy

This strategy computes the matrix-vector products on the fly in a cell-based
interface. For instance, we can consider that a finite element Galerkin approxima-
tion that leads to the block matrix Ab,b takes a vector u as input and computes
the integrals of the operator multiplied by trial functions, and the output vector
is v. The operation can be expressed as a sum of K cell-based operations,

v = Ab,bu =

K∑
k=1

PT
k A

k
b,bPku

where Pk denotes the matrix that defines the location of cell-related degrees of
freedom in the global vector and Ak

b,b denotes the submatrix of Ab,b on cell k. This
sum is optimized through sum-factorization. Details about the implementation
are explained in [6]. The main difficult of this strategy is to obtain efficient
algebraic solvers that only use matrix-vector multiplications.

In this work, three matrix storage schemes are used. The first one, allocated
all the block matrices in a compressed sparse row CRS way. The second one
stores the diagonal block matrices of B in a sparse way to permit the computation
of an incomplete LU factorization of these blocks. The rest of the blocks are
implemented with the matrix-free operator (non-diagonal). Finally, all block
matrices are implemented with the matrix-free technique in the full matrix-free
scheme.

4 Eigenvalues solver

This section is devoted to present the preconditioned block algorithm based on
the Block inverse-free preconditioned Arnoldi method (BIFPAM) for finding the
q largest eigenvalues in magnitude and their corresponding eigenvectors of the
generalized eigenvalue problem (2).
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Given problem (2) and an initial block approximation

([λ0,1, λ0,1, . . . , λ0,q], [x0,1, x0,1, . . . , x0,q]),

one could obtain a new approximation [x1,1, x1,1, . . . , x1,q] from the union of the
p bases of the Krylov subspaces Km(A−λ0,iB, x0,i), 1 ≤ i ≤ q of order m, where

Km(A− λ0,iB, x0,i) := span{x0,i, (A− λ0,iB)x0,i, . . . , (A− λ0,iB)mx0,i}.

Then, the original generalized eigenvalue problem is projected onto these bases.
Arnoldi method is used to construct each basis Km. This process is repeated to
obtain the next iterations.

The convergence of this method improves with the application of a precondi-
tioner of the matrix Ck,i = A− λk,iB. One can use preconditioners that come
from the factorization of the matrices involved in the system, but it implies to
assemble these matrices. In this work, we use an approximation of the matrix B−1

as preconditioner that it is shown in other works that it is more efficient than
using a preconditioner of Ck,i or C1,1. This permits using a block preconditioner
(by using the block structure of the matrix B), without assembling any addi-
tional matrix, with the advantage that the blocks of this matrix are symmetric
and positive definite. This causes an improvement in the implementation of the
Algorithm. In particular, we choose the block Gauss-Seidel preconditioner [9] as
shown in Algorithm 1.

Algorithm 1 Block Gauss-Seidel preconditioner.

Input: Matrix B and vector x = [x1; . . . ;xBl].
Output: Vector y = [y1; . . . ; yBl], result of applying the preconditioner of B to x.

1: for b = 1 to nblocks do
2: t = xb
3: for c = 1 to b do
4: Compute t = t−Bb,cyc
5: end for
6: Solve Bb,bt = yb
7: end for

The previous algorithm only applies matrix-vector multiplications except in
line 6, where some linear systems related with the block diagonal matrices are
needed to be solved. In this work, the conjugate gradient (CG) is applied to
solve these linear systems preconditioned with a Chebyshev preconditioner [11],
provided by the library deal.II [1]. The degree of the Chebyshev polynomial
has been set to 3. These auxiliary systems of the preconditioner are solved with
a low maximum number of iterations (50).

5 Numerical Results

The performance of the proposed matrix-free method is tested with the C5G7
benchmark introduced by the Nuclear Energy Agency (NEA) [8] . In particular,
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we test the 2D configuration version and the 3D configuration version. It consists
of a nuclear reactor core with MOX and UO2 square fuel assemblies surrounded
by a moderator region.

First, we start with the 2D configuration benchmark. Figure 1 shows the
proposed mesh used to spatially discretize the square regions. The area in gray
color represents the neutron fuel region. The degree of the polynomial for the
finite element method has been set to 2. The computation using the mesh of
Figure 1 requires 28 900 finite element cells and 812 063 degrees of freedom. The
number of eigenvalues computed is 4.

Fig. 1: Mesh considered in the FEM for the fuel pin in the C5G7 benchmark.

We compare the performance of the matrix-free preconditioner with the incom-
plete LU preconditioner. This last strategy is called ‘CG-ILU’. This application
needs the assembly of the block matrices Bgg to make ILU factorizations. Then,
we propose to use the conjugate gradient method with the same number of
maximum iterations, but in this case, the Chebyshev preconditioner is applied to
solve linear systems. We denote this implementation as ‘CG-CHEB’. For this last
methodology, we compare three types of matrix-free implementations described
in Section 3.

Table 1 displays the computational memory required by the matrix and pre-
conditioner operators, the CPU time to set the matrices and the preconditioners
and finally, the total CPU time to reach a residual error in the generalized
eigenvalue problem less than 10−7 for each methodology. Table 1 shows that
the CSR strategy is outperformed by the rest of the methodologies in terms of
memory consumption. We can observe that the CG-ILU methodology solves the
problem in the fastest way but this implementation does not allow to reduce the
computational memory. If the ‘full matrix-free’ type is considered the compu-
tational memory is greatly reduced but the computational time is increased by
a factor of 6 respect to ‘CG-ILU’ and a factor of 2 respect to the ‘Non-Diag.’
implementation.

In the next, we consider the 3D version of the C5G7 benchmark problem.
This problem has the same radial configuration as the two dimensional version,
and then, the discretization is used in this direction has been the same than
the 2D version (Figure 1). The axial discretization is done by extruding the two
dimensional mesh by axial plane. The mesh used has 264 992 finite element cells
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Table 1: Computational results for the 2D-C5G7.

Methodology
Matrix-free Mat. Prec. Mat.+Prec. Total

Type Memory Memory CPU time CPU time

CG-ILU Non-Diag. 193 Mb 160 Mb 1s 184 s
CG-CHEB Non-Diag. 193 Mb - 0.8s 570 s
CG-CHEB Full Matrix-Free 20 Mb - 0.1s 1110 s
CG-CHEB CSR 2375 Mb - 4.6s 573 s

and 2 343 865 degrees of freedom. The configuration of the finite element method
to compute the solution for this case is the same than in the previous case. In
this case the number of eigenvalues requested is 1.

Now, we compare the matrix-free strategy presented in this work with the
other methodologies described. Table 2 displays the CPU memory and the
CPU time required by the matrix and preconditioner to set the matrices and the
preconditioners and the total CPU time to reach a residual error in the generalized
eigenvalue problem less than 10−7. The same pattern of results described above
can be observed in this Table. However, for the 3D case the reduction of the
memory is considerable. In this way, if the required memory for the problem is
low the authors recommends to use the ‘CG-ILU’ preconditioner. In this case, the
CSR strategy has not been computed due to its high memory demands. However,
for personal computers with low memory resources the full matrix-free strategy
with the ‘CG-CHEB’ preconditioner is a reasonable option to solve the problem.

Table 2: Computational results for the 3D-C5G7 with r = 1.

Methodology
Matrix-free Mat. Prec. Mat.+Prec. Total

Type Memory Memory CPU time CPU time

CG-ILU Non-Diag. 13415 Mb 10668 Mb 143s 608 s
CG-CHEB Non-Diag. 13415 Mb - 62s 3534 s
CG-CHEB Full Matrix-Free 2410 Mb - 4s 7224 s

6 Conclusions

The multigroup neutron diffusion equation has been selected to approximate the
neutron transport equation. A finite element method is used to discretize the
problem obtaining an algebraic generalized eigenvalue problem. In this work, we
propose a matrix-free preconditioned eigenvalue solver that does not need to have
the matrices allocated in memory explicitly. This method is based on the BIFPAM
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and uses as preconditioner the Chebyshev process. Moreover, different types of
matrix-free implementation for the problem are proposed. The performance of
these schemes are tested by using the C5G7 benchmark.

Numerical results concludes that the ILU preconditioner is more efficient
than the Chebyshev preconditioner in terms of CPU time, but needs to access to
assembled block diagonal matrix elements. However, the Chebyshev precondi-
tioner, although is less efficient, can be implemented without any block matrix
assembled and removes the time to assembly the sparse matrices involved in the
system. The reduction of the memory in the full matrix-free strategy is greater as
the size of the problem increases. It means, if the size of the problem is low, the
authors recommends to use the ‘CG-ILU’ preconditioner. On the other hand, for
the personal computers (with low memory resources) the full matrix-free strategy
with the ‘CG-CHEB’ preconditioner is a reasonable option to solve the problem.

Adknowledgements

This work has been partially supported by the Ministerio de Economı́a y Com-
petitividad under projects ENE2014-59442-P, MTM2014-58159-P and BES-2015-
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