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Abstract. Calcium signaling is vital for the contraction of the heart.
Physiologically realistic simulation of this subcellular process requires
nanometer resolutions and a complicated mathematical model of dif-
ferential equations. Since the subcellular space is composed of several
irregularly-shaped and intricately-connected physiological domains with
distinct properties, one particular challenge is to correctly compute the
diffusion-induced calcium fluxes between the physiological domains. The
common approach is to pre-calculate the effective diffusion coefficients
between all pairs of neighboring computational voxels, and store them
in large arrays. Such a strategy avoids complicated if-tests when looping
through the computational mesh, but suffers from substantial memory
overhead. In this paper, we adopt a memory-efficient strategy that uses
a small lookup table of diffusion coefficients. The memory footprint and
traffic are both drastically reduced, while also avoiding the if-tests. How-
ever, the new strategy induces more instructions on the processor level.
To offset this potential performance pitfall, we use AVX-512 intrinsics to
effectively vectorize the code. Performance measurements on a Knights
Landing processor and a quad-socket Skylake server show a clear perfor-
mance advantage of the manually vectorized implementation that uses
lookup tables, over the counterpart using coefficient arrays.

Keywords: Subcellular calcium dynamics · Piecewise constant coeffi-
cients · AVX-512 · Xeon Phi Knights Landing · Xeon Skylake.

1 Introduction

The heart needs to be electrically stimulated so that it can contract during every
heartbeat. The calcium ion is particularly important for the muscle contraction,
and subcellular calcium signaling involves fine-scale physiological details. On the
surface of sarcoplasmic reticulum (SR), i.e., each cell’s internal calcium storage,
there are calcium-sensitive channels called ryanodine receptors (RyRs). They
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open up when being attached by calcium ions. The typical distance between the
cell membrane and the SR surface is 10-20 nm, and this narrow gap is referred
to as the cleft space. There are normally between 10 and 100 RyRs inside such
a cleft, and together they form a calcium release unit (CRU).
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Fig. 1. A 2D schematic of the actual 3D
subcellular space when divided into five
physiological domains.

Computer simulations are important
for studying subcellular calcium signal-
ing, where the subcellular space is com-
posed of several physiological domains
(see Fig. 1). These domains, each with
distinct properties, are irregularly shaped
and elaborately connected. A resulting
challenge is to efficiently compute the
diffusion-induced, inter-domain calcium
fluxes with physiological realism. The
main focus of this paper is on utilizing
the 512-bit vector length on the Xeon
Phi Knights Landing (KNL) and Xeon
Skylake processor architectures. In the
context of simulating calcium signaling,
we will show that manual vectorization
needs to be combined with some algorith-
mic rethinking to fully release the hard-
ware performance potential.

2 Computing Diffusion-Induced Calcium Fluxes

The whole 3D spatial domain is covered by a uniform mesh of box-shaped com-
putational voxels. Approximated concentrations of the various calcium species
are sought at the center of each voxel (i, j, k). The irregular 3D interior geome-
tries are imbedded into the mesh, such that each voxel belongs uniquely to one of
the physiological domains. If us(x, y, z, t) denotes the concentration of a specific
calcium species, then the diffusion-induced increment of us over a time step ∆t
is calculated by a second-order finite volume/difference method as
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To ensure accuracy, the diffusion coefficient needs to be evaluated at the
boundary between two neighboring voxels. For example, σs(xi+ 1

2
, yj , zk) denotes

the effective diffusion coefficient between voxels (i, j, k) and (i+1, j, k). If the two
voxels are inside the same physiological domain d, then σs(xi+ 1

2
, yj , zk) naturally
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attains the constant diffusion value for species us in domain d, denoted by σds .
Care is needed when voxel (i, j, k) is inside domain d whereas voxel (i + 1, j, k)
is inside another domain e. In such a case, the two voxels are on the border
between two physiological domains. To faithfully represent the physiology, we
adopt the following formula for evaluating the effective diffusion coefficient:

σs(xi+ 1
2
, yj , zk) =


σds if voxels (i, j, k) & (i+ 1, j, k) both in domain d;

σd
s+σe

s
2

if voxel (i, j, k) in domain d, voxel (i+ 1, j, k) in e,
and the two domains allow flux in-between;

0 if voxels (i, j, k) & (i+ 1, j, k) in two domains
that do not allow flux in-between.

(2)

3 Implementation

The diffusion-related computation, of the form (1), is the most time-consuming
part of a 3D subcellular simulation. Since the effective diffusion coefficient be-
tween a pair of neighboring voxels may invoke a complex formula of the form
(2), care must be taken to ensure the computational efficiency.

3.1 The Coefficient-Array Approach

A commonly used approach is to pre-calculate all the effective diffusion coef-
ficients once and for all. This requires three logically 3D arrays to be pre-
pared: alpha x, alpha y and alpha z. For example, alpha x contains values
of ∆t

h2 · σs(xi+ 1
2
, yj , zk), whereas the arrays alpha y and alpha z correspond to

the y and z-directions. The diffusion computation can be implemented as below.

const int x_offset = ny*nz; const int y_offset = nz;
int xi, yi, zi, pos; double u_value;

for (xi=1; xi<nx -1; xi++) {
for (yi=1; yi<ny -1; yi++) {

#pragma ivdep
for (zi=1; zi<nz -1; zi++) {

pos = xi*x_offset + yi*y_offset + zi;
u_value = u[pos];
// x- direction contribution
du[pos] += alpha_x[pos]*(u[pos+x_offset]-u_value)

+alpha_x[pos -x_offset ]*(u[pos -x_offset]-u_value);
// y- direction contribution
du[pos] += alpha_y[pos]*(u[pos+y_offset]-u_value)

+alpha_y[pos -y_offset ]*(u[pos -y_offset]-u_value);
// z- direction contribution
du[pos] += alpha_z[pos]*(u[pos+1]- u_value)

+alpha_z[pos -1]*(u[pos -1]- u_value);
}

}
}

Listing 1. The coefficient-array approach to implementing the diffusion computation.

The coefficient-array implementation is fully justified if the effective diffusion
coefficients indeed vary everywhere in space. For the example of five physiological
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domains, however, there are only 5×5 = 25 combinations of the effective diffusion
constant between any pair of neighboring voxels. An enormous memory footprint
overhead is thus associated with the three arrays alpha x, alpha y and alpha z,
needed per calcium species. Moreover, a considerable amount of memory traffic
arises from (repeatedly) reading these coefficient arrays.

3.2 The Lookup-Table Approach

A memory-friendly approach is thus to pre-calculate for each calcium species a
small lookup table (e.g. named coef table) of length num domains*num domains.
It stores the different combinations of the effective coefficient constant. A log-
ically 3D array of char values, named dm ids, is assumed to store the phys-
iological domain type info for all the computational voxels. Listing 2 shows
this“lookup-table” approach to implementing the diffusion computation.

const int x_offset = ny*nz; const int y_offset = nz;
int xi, yi, zi, pos; double u_value , *coef;
char di_m , di_p;

for (xi=1; xi<nx -1; xi++) {
for (yi=1; yi<ny -1; yi++) {

#pragma ivdep
for (zi=1; zi<nz -1; zi++) {

pos = xi*x_offset + yi*y_offset + zi;
u_value = u[pos];
// Focusing on the corresponding row in the lookup table
coef = coef_table + (dm_ids[pos]* num_domains);
// x- direction contribution
di_m = dm_ids[pos -x_offset ]; di_p = dm_ids[pos+x_offset ];
du[pos] += coef[di_p ]*(u[pos+x_offset]-u_value)

+coef[di_m ]*(u[pos -x_offset]-u_value);
// y- direction contribution
di_m = dm_ids[pos -y_offset ]; di_p = dm_ids[pos+y_offset ];
du[pos] += coef[di_p ]*(u[pos+y_offset]-u_value)

+coef[di_m ]*(u[pos -y_offset]-u_value);
// z- direction contribution
di_m = dm_ids[pos -1]; di_p = dm_ids[pos +1];
du[pos] += coef[di_p ]*(u[pos+1]- u_value)

+coef[di_m ]*(u[pos -1]- u_value);
}

}
}

Listing 2. The lookup-table approach to implementing the diffusion computation.

Code vectorization is needed on processers with SIMD capability to get good
performance. On the Xeon Phi Knights Landing and Xeon Skylake architectures,
manual vectorization through AVX-512 intrinsics can be essential. Due to space
limits, we cannot show the detailed code using AVX-512 intrinsics. It suffices
to say that the mask variants of AVX-512 intrinsics allow a much more elegant
manual vectorization than the previous generations of AVX intrinsics.

4 Performance Measurement and Comparison

Two hardware testbeds have been used. The first testbed is one node on the
Oakforest-PACS system [8], i.e., a 68-core Xeon Phi KNL processor of model
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7250 that has in total 272 hardware threads. The other testbed is a 4-socket
server with Xeon Skylake Gold 16-core CPUs of model 6142, i.e., in total 64 CPU
cores and 128 hardware threads. (Due to a suboptimal configuration, however,
only four of the six memory channels are occupied per CPU.) The cores of both
systems are capable of two 512-bit wide FMA operations per clock cycle. The
C compilers used on the two systems are ICC v18 on the KNL node and GCC
v8.2 on the Skylake server.

Table 1 lists the time measurements obtained on the two hardware testbeds.
Specifically, we have employed two real-world simulations of subcellular calcium
signaling, one using a small-scale global mesh of 168×168×168 voxels, the other
using a medium-scale 672×672×168 mesh. The geometries are based on images
obtained from confocal microscopy of rat ventricular myocytes, see [6] for details.
In total four implementations (parallelized with OpenMP) have been tested. Two
of them correspond to the “plain” coefficient-array and lookup-table approaches,
i.e., Listings 1 and 2. These are denoted as CA auto and LUT auto because partial
vectorization is automatically enabled by the compilers. In comparison, CA man

and LUT man denote the implementations that explicitly use AVX-512 intrinsics.

Table 1. Time measurements of four implementations for the diffusion computation.

Global computational mesh: 168 × 168 × 168, time steps: 16000

Code version CA auto LUT auto CA man LUT man

Testbed KNL Skylake KNL Skylake KNL Skylake KNL Skylake

Serial performance 2006.7 963.0 3368.6 846.1 1675.7 861.2 1301.7 463.8
2 OpenMP threads 1146.2 459.4 1767.7 415.6 1003.6 415.3 714.7 210.2
4 OpenMP threads 580.2 187.0 891.7 178.8 510.3 176.2 360.3 89.9
8 OpenMP threads 295.7 101.9 450.4 94.0 258.9 95.6 185.8 48.7
16 OpenMP threads 155.4 58.4 230.0 53.1 136.1 55.7 97.4 28.3
32 OpenMP threads 89.6 43.2 113.0 30.8 79.2 43.2 50.5 21.4
64 OpenMP threads 66.5 40.9 60.1 21.4 62.8 40.9 30.4 18.9
128 OpenMP threads 50.2 45.9 46.2 23.0 54.8 46.8 27.0 22.9
256 OpenMP threads 52.4 N/A 44.0 N/A 54.4 N/A 27.6 N/A

Global computational mesh: 672 × 672 × 168, time steps: 1000

Code version CA auto LUT auto CA man LUT man

Testbed KNL Skylake KNL Skylake KNL Skylake KNL Skylake

Serial performance 1905.5 885.7 3381.9 851.1 1606.2 779.2 1284.6 472.7
2 OpenMP threads 1096.9 455.5 1757.9 438.4 989.7 405.6 695.8 252.2
4 OpenMP threads 551.6 236.0 880.8 222.7 498.8 212.2 347.7 130.7
8 OpenMP threads 277.9 134.7 442.2 118.6 252.8 118.4 175.8 68.2
16 OpenMP threads 141.7 69.4 221.3 62.0 128.5 64.7 89.0 36.9
32 OpenMP threads 80.6 47.8 106.9 33.2 72.9 47.8 43.7 26.1
64 OpenMP threads 60.3 58.2 54.4 36.6 57.9 56.6 23.7 30.5
128 OpenMP threads 43.8 67.2 39.3 49.1 49.8 64.3 21.8 42.9
256 OpenMP threads 49.4 N/A 35.7 N/A 46.5 N/A 22.4 N/A
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In almost all cases manual vectorization (CA man or LUT man) gives better
performance than compiler auto-vectorization (CA auto or LUT auto). On the
KNL node, the CA auto version performs better than the LUT auto version using
up to 32 OpenMP threads. This seems to suggest that ICC does a better job
with auto vectorization for CA auto. On the Skylake server LUT auto always
outperforms CA auto. This is likely due to the much smaller memory footprint
of LUT auto. Comparing the KNL node with the Skylake server, it is clear that
a single Skylake core is much more powerful than a single KNL core. However,
the performance advantage of the Skylake server decreases with an increasing
number of OpenMP threads used. Figure 2 plots all the time usages related to
the medium-scale simulation (672 × 672 × 168 voxels).
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Fig. 2. Comparing the time usage of the four implementations on diffusion computation
for the medium-scale simulation (672 × 672 × 168 voxels).

5 Related Work and Concluding Remarks

There exist many mathematical models of calcium signaling, see [4] for a re-
view. The model adopted by the present paper differs from most of the existing
work in that the individual RyRs are accurately resolved with realistic positions
and geometries. Moreover, the shape and location of the various physiological
domains are reproduced from medical imaging data. This represents a major im-
provement of the modeling strategy used in [1], where the different domains are
simplified to co-exist “on top of each other” throughout the subcellular space.
The computational capability of the KNL architecture has been studied in previ-
ous publications, such as [2,7,5], using both real-world simulators and well-known
benchmarks. However, we are not aware of a detailed study of applying the new
AVX-512 intrinsics on the KNL architecture. Regarding the Xeon Skylake server
architecture, the existing work such as [3] does not seem to have specifically stud-
ied the applicability and performance of AVX-512 intrinsics either.

The work presented in this paper is only a first step towards physiologically
realistic simulations of subcellular calcium signaling. Such simulations will even-
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tually require using a large number of KNL nodes or high-end Skylake server
nodes. We have shown that manual code vectorization through AVX-512 in-
trinsics is necessary for ensuring good single-node performance. Lookup tables
are known to be notoriously difficult to vectorize for a performance advantage.
However, with AVX-512 we have seen a clear benefit of the manually vectorized
lookup-table implementation, compared with a plain code intended for compiler
auto-vectorization.

We want to stress that the strategy of using a lookup table is not restricted
to simulations of subcellular calcium signaling. It is applicable to any diffusion-
similar calculation where the diffusion coefficient is patch-wise constant. As long
as the number of different “patch” types is small, all the different combinations of
inter-patch diffusion coefficients can be pre-calculated in a small lookup table.
The AVX-512 intrinsics, with the mask variants, allow a much more elegant
vectorization of this optimization strategy than the previous AVX intrinsics,
while giving an additional performance boost due to SIMD.
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cil of Norway (grant No. 251186/F20) and a JHPCN grant (No. JHPCN-jh180024)
from Japan.
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