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Abstract. The data-driven models are able to study the model struc-
ture in cases when a priori information is not sufficient to build other
types of models. The possible way to obtain physical interpretation is
the data-driven differential equation discovery techniques. The existing
methods of PDE (partial derivative equations) discovery are bound with
the sparse regression. However, sparse regression is restricting the result-
ing model form, since the terms for PDE are defined before regression.
The evolutionary approach, described in the article, has a symbolic re-
gression as the background instead and thus has fewer restrictions on the
PDE form. The evolutionary method of PDE discovery (EPDE) is tested
on several canonical PDEs. The question of robustness is examined on a
noised data example.

Keywords: data-driven model · PDE discovery · evolutionary algo-
rithms · symbolic regression.

1 Introduction

Data-driven algorithms are usually considered as the source of models when the
connection between the data samples is not known a priori. There are various
data-driven models. As an example, deep neural networks models, regression,
combined evolutionary-based models [5] and other models and their combina-
tions. However, most of the existing models are unsuitable for interpretation.
Therefore, for cases, when the researcher is interested in the process of the
model’s decision making, other methods should be applied.

Data-driven algorithms are a solution for cases of systems, that we lack knowl-
edge about. Nevertheless, in most cases raw observational data are available.
The data-driven algorithms bring the ability to build the model for dynamical
systems from time-series of data, received from in-field or laboratory observa-
tions. The development of the data-driven methodology of partial differential
equations (PDE) derivation, combined with recent advances in technologies of
measurements and probing, brings new opportunities for studying of metocean
dynamic systems.

Sparse regression is considered to be the main tool for selection of the leading
terms of the differential equations [7]. The applied regularization is based on the
addition of the L1 norm of the calculated weights to the least-square expression.
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One of the most popular methods used in PDE discovery is the least absolute
shrinkage and selection operator (LASSO). The main feature of LASSO is the
ability to mutate the loss function. Zero weights are chosen for terms, that poorly
fit the input data, and, therefore, identify the structure of the PDE.

Previously, the problem of the discovery of the differential equation struc-
ture has been developed in a number of papers. From derivation of systems
of equations, defining physical laws, by means of symbolic regression [3, 9] to
study dynamic systems, that are represented by a system of partial differential
equations [2, 8]. Also, in the last years, the deep learning methods are becoming
popular [1, 6].

The methods of PDE derivation, used in previous papers, usually utilize
regression over the set of the pre-determined terms, that are usually comprised
of different polynomial combinations of derivatives and functions. This limitation
provides only the discovery of equations, that have a corresponding structure.
The method, presented in this paper is referred below as EPDE. It is based on a
combination of sparse regression and an evolutionary algorithm. The proposed
way of calculation of terms weights values includes the application of linear
regression over the non-normalized data for selected terms.

The paper is organized as follows, Section 2 describes the problem of data-
driven PDE discovery in details. Also, in Section 2 dataset for experiments is
described. Section 3 describes the data-driven PDE discovery algorithm based
on evolutionary optimization. Section 4 is dedicated to the analysis of algorithm
precision, stability, and robustness. Section 5 concludes the paper.

2 Problem statement and data acquisition

The developed EPDE algorithm is aimed at the derivation of the dynamic sys-
tems governing equation by time series, containing information about the studied
variable (temperature, velocity, etc.). At first, the approach must be applied for
test cases, including artificially created data, acquired from numerically solved
equations to check the algorithm convergence. For further tests, a noise of se-
lected magnitude can be added to data to investigate the reaction of the algo-
rithm to it.

In this work, the algorithm was tested on the wave equation, Burgers and
Korteweg-de Vries equations. They were solved numerically with the application
of a finite-difference scheme to approximate time and spatial derivatives. For
instance, the Crank-Nicolson method was utilized to solve the Burgers equation.

From the acquired field of equation solution, its time and spatial derivatives
are calculated in order to be utilized further in regression. These derivatives
are calculated by the finite-difference method, or from polynomial interpolation
function depending on the presence of noise in the data.

After derivatives are obtained, it is possible to create vectors of spatial data
for a specific time point. In the same time normalization of each of these time
frames should be held. It can be done with the highest variable value for that
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time point, or by time frame’s L2-norm. Finally, data vectors are created by
compositions of all time frames for the studied period.

Finally, the feature vectors F (j) are formed by structures, such as the product
shown in Eq. 1:

F (j) =

 (u′(t1, x0) ∗ ut(t1, x0))N

...
(u′(tm, xn) ∗ ut(tm, xn))N

 = Ux ∗ Ut (1)

On a balance, the data preparation step consists of representing data and it’s
spatial and time derivatives in vectors. After these steps, features are collected
in forms, similar to Eq. 1, in order to perform the optimization procedure.

3 Algorithm description

The proposed algorithm includes two parts: the evolutionary algorithm that
generates a small group of terms that are called individuals and sparse regression
that allows choosing significant terms in the set of individuals.

To find values of the weights α, that is representing the systems PDE, it is
possible to define the loss function (Eq. 2) in the following way, using the defined
set of features and target vectors, created in the previous section:

min
α

(
p∑
k=0

‖Fkα− Ftarget,k‖22 + λ‖α‖1

)
(2)

Where p is the number of features selected for the regression algorithm and λ
represents a regularization parameter. This application of the regularized regres-
sion is not able to discover the true values of the weights due to the fact, that
it uses normalized vectors of target and features. However, it is able to select
leading ones with their sign. Due to the addition of L1-norm, the loss functions
must be minimized, using optimization algorithms, that are able to work with
non-differentiable functions, such as the subgradient method.

After the structure is found, the coefficients are defined with non-normalized
data, i.e. features are constructed from their initial form and regression is used to
find the final values coefficients. Usually, in regression all possible combinations
[8] of the feature vectors Eq. 1 are chosen for minimization problem Eq. 2. Thus,
the optimization problem complexity grows exponentially as the maximal order
of the derivative increases. With the evolutionary algorithm, described below,
one can use multiple reduced optimization problems instead of full regression on
a complete terms library.

The second element of the EPDE method is the evolutionary algorithm. By
its iterations, the evolutionary algorithm should be able to select and preserve
the most appropriate elements of the resulting equation. Therefore, the sparse
regression is done on every iteration of the evolutionary algorithm for every
candidate in the population with a random selection of target among the set of
terms.
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To initiate the method, it is required to create a population of individuals,
represented by chromosomes, where each gene represents a combination of func-
tions and their derivatives. An evolutionary algorithm is able to vary the chro-
mosomes in two ways: crossover, that represents the exchange of corresponding
genes between two individuals, and mutation, which involves random alteration
of chromosomes genes. In the examined case, the mutation is held by the con-
version of one term to the other randomly generated one.

Due to the specification of the task, every individual represents a specific case
of the equation, having its own features matrix and the target vector. Vectors
F(i), that compose the columns of the feature matrix S (Eq. 3), are created as a
product of a randomly selected number of feature factors Eq. 1:

S =

 | | |
F (1) F (2) F (3) ...
| | |

 (3)

It should be emphasized, that the number of feature vectors in Eq. 3 is the
parameter of the evolutionary algorithm. The second remark is that, in contrast
to the existing algorithms [7, 8, 4], the target feature is chosen randomly, whereas
in the sparse-regression only cases time-derivative is used.

While mutation is usually applied to all individuals of the population, crossover
occurs only between the most eligible of them. To select candidates for crossover,
the fitness function should be introduced. For the task of partial differential equa-
tion derivation, it can be introduced by a norm of the difference between the
target term and the expression with other ones i.e. regression error, calculated
for all of the training data:

ffitness =
1

‖F · α− Ftarget‖2
(4)

A manner of the populations participation in crossover should be defined
before the initiation of an algorithm. The crossover procedure is schematically
shown in Fig. 1.

Fig. 1. An example of implemented crossover between two chromosomes, where each
of them represent PDE
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After the sparse regression application, one more regression step is required.
It is initialized over the set of terms, selected by non-zero weights in the previous
step. In this step, non-normalized fields of variables are used as a feature and
target vectors. This approach is uncommon in general machine learning due to
its limitations on variables of different scale, where the algorithm is not able to
properly generalize data and discover a contribution of each feature. However,
in this particular case, the structure of the an equation, represented by weights
of features, is already known, and these variables must be evaluated according
to their scale.

The described algorithm allows one to reduce regression space. Addition-
ally, it allows to theoretically find ordinary differential equation instead of the
PDE since target feature is not restricted by the highest time-derivative. This is
required for potential one-dimensional static problems ODE discovery.

4 Validation

To analyze the algorithm performance, it is necessary to make sure, that it has
the following qualities: stability, approximation, and convergence. These qualities
are dependent on each other, and to prove them, it is enough to check, if any two
of them are fulfilled. Due to the reasons of convenience, in the research, stability,
and convergence of the algorithm are studied. Convergence of the PDE deriving
algorithm manifests in the improvement of the quality of the algorithm with the
reduction of a step of the grid, from that is adopts data. Stability can be proved
by addition of the noise to the input PDE solution and test, how this corruption
affects the structure of the resulting equation.

The algorithm has proved to be capable of discovering partial differential
equations structure and calculating the values of weights for the selected terms
for all of the studied equations.

The selected part of the solution matrix has influence over the results of re-
gressions and, therefore, defines the equations structure. The results were tested
on the parts of the matrix from 1.0 to 0.1 of its size. On the lesser sizes of the
selected matrix part, especially for cases, when the selected part contains an only
small part of the solution non-zero values, the algorithm can have difficulties,
deriving wrong structures. The results of the matrix division are presented in
Table 1.

Table 1. Discovered structure of the equations for different input matrix section.

Data part Burger‘s correct Burger‘s wrong KdV correct KdV wrong

0.9 ∂u
∂t

, ∂2u
∂x2 , u ∂2u

∂x
- ∂u

∂t
, ∂3u

∂x3 , u ∂2u
∂x

-

0.7 ∂u
∂t

, ∂2u
∂x2 , u ∂2u

∂x
- ∂u

∂t
, ∂3u

∂x3 , u ∂2u
∂x

-

0.5 ∂2u
∂x2 , ∂u

∂t
∂2u
∂x2

∂u
∂t

∂u
∂t

, ∂3u
∂x3 , u ∂2u

∂x
-

0.4 ∂u
∂t

, ∂2u
∂x2 , u ∂2u

∂x
- ∂u

∂t
, ∂3u

∂x3 , u ∂2u
∂x

-

0.1 ∂2u
∂x2 , ∂u

∂t
∂2u
∂x2

∂u
∂t

- ∂2u
∂x2 , ∂2u

∂t2
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We note that for Table 1 different number of points was taken in order to
check the performance of the algorithm. For Burger’s equation, the 256x256 grid
was taken whereas for the Korteweg-de Vries equation - 1024x1024 points.

The previously mention effect remained in this scenario: the algorithm only
had issues in discovering the structure of the governing equation. For cases, when
it succeeded, the true values of the weights were calculated correctly, even on
minor parts of the equations solution matrix.

To check the evolutionary algorithm stability, the noise is added to the entire
solution’s field. It is added from a normally distributed random variable with
zero mean value and dispersion taken as the fraction of maximal value. As the
invariant noise measure, Eq.5 is used.

Qnoise =
‖w0 − w̃‖2
‖w0‖2

∗ 100 (5)

With w0 in Eq.5 the initial (clean) solution field is designated, w̃ is the field
with noise added, ‖ · ‖2 is the matrix’s Frobenius norm.

For comparison, we take the latest supplementary code for the article [7] from
GitHub repository. Same Burger‘s equation solution field and same noise proce-
dure implementation were taken. It should be noted, that we compare ”basic”
versions of the algorithms. For the sparse regression more sophisticated derivative
procedure and meta-parameter optimization for the regression algorithm could
be implemented, which, definitely, increases the quality of both algorithms.

Polynomial derivatives procedure was utilized, also for the sparse regression
improved ridge regression with α = 10−6 was taken.

For the Bruger‘s equation, after certain noise level limit Qnoise ≈ 0.11 the

classical algorithm loses the ability to discover the term ∂2u
∂x2 without an addi-

tional regression tuning. However, it is still able to catch the leading term. The
EPDE, however, is able to find the right structure up to the Qnoise ≈ 0.11.

As seen the evolutionary approach allows one to extend the noise level which
is allowed for all terms of the initial equation discovery. The term coefficients
discovery precision is increased, which leads to more stable equation discovery
and allows one to discover the equations in a more robust way.

5 Conclusions and discussion

In the paper evolutionary approach for PDE discovery is described. In contrast
to the existing algorithms based on the regression on a complete terms library
it has the following advantages:

– Regression is done on a reduced space, i.e. only a small amount of features
is taken for the regression;

– More flexible features choice allows to obtain wider space of possible differ-
ential operators;

– No restriction on the target function is allowing to obtain more sophisticated
forms of differential operators including ODEs;
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The possible disadvantages could be:

– Possible extended computation time due to the stochastic process of the
initial population initialization, population crossover and mutation;

– Additional procedures are required in order to maintain the robustness of
the algorithm, i.e. in order to obtain the same model for the data of the same
origin;

The proposed method can be considered as a base point for the data-driven
PDE discovery with an evolutionary approach. In the article, the main stages
of the methods are shown. Every stage could be improved, for example, a more
sophisticated grid function differentiation method could be taken to increase
precision and stability. Also, more advanced evolution methods could be used in
order to increase computation efficiency and stability.
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