
Reducing Symbol Search Overhead on
Stream-based Lossless Data Compression

Shinichi Yamagiwa1, Ryuta Morita2, and Koichi Marumo2

1 Faculty of Engineering, Information and Systems
2 Department of Computer Science

University of Tsukuba
1-1-1 Tennodai, Tsukuba, Ibaraki, JAPAN

yamagiwa@cs.tsukuba.ac.jp, {morita, marumo}@padc.cs.tsukuba.ac.jp

Abstract. Lossless data compression is emerged to utilize in the Big-
Data applications in the recent days. The conventional algorithms mainly
generate a symbol lookup table to replace a frequent data pattern in the
inputted data to a symbol, and then compresses the information. This
kind of the dictionary-based compression mechanism potentially has an
overhead problem regarding the number of symbol matchings in the ta-
ble. This paper focuses on a novel method to reduce the number of
searches in the table using a bank separation technique. This paper re-
ports design and implementation of the bank select method on the LCT-
DLT, and shows the performance evaluations to validate the effects of
the method.

Keywords: Lossless Data Compression · Stream-based Data Compres-
sion · Dictionary-based Compression · Interconnection.

1 Introduction

Increasing the demands for handling BigData applications, it becomes one of
the important techniques to processing a huge size data in computer systems.
Because it is impossible to reduce the fast generation rate of the BigData itself,
one of the ideal solutions is to minimize the data by applying the lossless data
compression algorithm.

Lossless data compression algorithm has been studied for these three decades
regarding mainly the dictionary-based compression. The LZW [3] is one of the
well-known algorithms. Those algorithms exploit the frequent data patterns and
create a dictionary that contains replacement rules to smaller data. Using the
rules, the compressor generates a compressed data sequence. Decompressor de-
codes the sequence using the dictionary. However, it has fatal disadvantage due
to the processing style. When we consider to apply the algorithm to a data
stream such as continuous sensor data, we need to prepare a data buffer for the
dictionary. The size of the dictionary is not deterministic and decompression is
blocked until the dictionary is prepared fully after the compression processes
entire input data. Moreover, the data stream must be terminated in chunks to

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_59

https://dx.doi.org/10.1007/978-3-030-22750-0_59


2 S. Yamagiwa et al.

generate the dictionary. Finally, it can not continuously compress and decom-
press in pipeline manner. Thus, the conventional dictionary-based algorithms
are not suitable for realtime compression for the continuous data stream.

We have developed a new compression algorithm called LCA-DLT [2]. It is
able to compress data stream without buffering and blocking inputted data to
the compressor and the decompressor. The compression algorithm applies an
idea that any data stream can be expressed by a binary tree, and compresses a
data pair to a compressed symbol. Cascading modules of the two-to-one compres-
sion, it compresses long data patterns. Using a dynamic histogram management
for the symbol lookup table under the limited number of entries in the table, it
can compress data stream in a pipeline manner and hides information to repro-
duce its symbol lookup table in compressed data. In decompressor side, when it
receives any compressed data, it reproduces a histogram of the symbol lookup
table and decompresses the data to originals. This mechanism does not need any
buffer for creating entire symbol lookup table due to the hided reproducible infor-
mation for the histogram. Moreover, it can compress a continuous data without
scattering original data stream. This mechanism is suitable for hardware imple-
mentation due to availability of parallel pattern matching in the symbol lookup
table. However, when we consider software implementation, it needs to search
compressing or decompressing symbol pairs from the symbol lookup table se-
quentially. When the number of patterns in the table is N , it never avoids the
overhead of the search operations from O(N). When the number of cascaded
modules increases, it linearly increases. Thus, using LCA-DLT algorithm, this
paper will try to reduce the searching overhead in the dictionary-based lossless
compression mechanism.

2 Stream-based lossless data compression algorithm:
LCA-DLT

The table of LCA-DLT has any number N of entries and the i-th entry Ei

includes a pair of the original symbols (s0i, s1i), a compressed symbol Si, and
frequent counter counti. The compressor side uses the following rules: 1) reading
two symbols (s0, s1) from the input data stream and if the symbols match to
s0i and s1i in a table entry Ei, after counting up the counti, it outputs Si as
the compressed data, 2) if the symbols do not match to any entry in the table,
it outputs (s0, s1) and register an entry (s0k, s1k, Sk, countk = 1) where Sk is
the index number of the entry, and 3) if all entries in the table are used, all
counti where 0 ≤ i < N are decremented until any count(s) become zero and
the corresponding entries are deleted from the table.

In the decompressor side, assume that a compressed data S is transmitted
from the compressor, the subsequent steps are equivalent to the compressor’s,
but the symbol matching is performed based on Sk in an entry. If the compressed
symbol S matches to Sk in a table entry, it outputs (s0k, s1k). If not, it reads
another symbol S′ from the compressed data stream and outputs a pair of (S,
S′) and then the pair is registered in the table. When the table entry is full, the

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_59

https://dx.doi.org/10.1007/978-3-030-22750-0_59


Reducing Symbol Search Overhead on Stream-based Data Compression 3

same operation as the compressor side is performed. These operations provide a
reproducible dynamic histogram on a limited number of lookup table entries.

Here, let us focus on overhead of the symbol matching operation in the lookup
table when we implement LCA-DLT in software. LCA-DLT supports two-to-one
comparisons. It allows a fixed number of matching operations in the table entries.
However, the number of entry search operations in the symbol lookup table is
not predictable because it is inevitably performed by sequential search from the
top of the table. Unfortunately, it occupies a large part of the entire compression
and decompression operations.

When we consider to divide the symbol lookup table into multiple groups,
we can expect to reduce the number of search operations in the table. However,
it is not so simple in the case of the conventional dictionary-based compression
algorithms because the matching complexity of the search operations is expected
in the worst case as O(NM) where the N is the number of entries in the table
and the M is the length of matching symbols in an entry. Both of M and N
are very variable according to the inputted data. Besides, the number of symbol
matching is fix to two in LCA-DLT. Therefore, the complexity of the search
operation O(2N) where N is the number of the table entries and also is defined
as a fixed value. This means that we can expect to reduce the entire compression
and decompression processing times drastically if we divide the number of the
table entries by the number of groups (i.e. N/k where the k is the number of
groups). In this paper we will propose the technique to divide the symbol lookup
table into multiple groups and the technique will effectively reduce the number
of search operations. We will call the groups the banks of symbol lookup table,
and will propose the speedup technique using the LCA-DLT based on the bank
select method for the symbol lookup table.

3 Bank select method for stream-based lossless data
compression

Now, let us explain the bank select method using LCA-DLT. The technique is
quite simple. The symbol lookup table is divided into Nb banks. When a data
pair arrives, it is associated to one of the banks in the table. Then LCA-DLT
algorithm is applied to the bank. When the number of the table entries is N ,
the number of entries related to the compression is N/Nb. For example, when
the table has 256 entries and the number of banks is 16, LCA-DLT will manage
the dynamic histogram operation in a bank with 16 entries. Thus, in the case of
LCA-DLT, the complexity of the number of search operations becomes O(N/Nb).
The decompressor has the same organization in symbol lookup table.

Let us consider how a bank is selected. Here, we employ two simple selection
methods; order major and data major selection. One is the sequence index i of the
inputted data stream. In this case the hash function becomes an equation with
i, for a simple example, such as the round-robin selection nb = i mod Nb. This
hash function has the characteristics that there is no relationship to the inputted
data itself. Therefore, the bank indices are totally selected among the entire table

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_59

https://dx.doi.org/10.1007/978-3-030-22750-0_59


4 S. Yamagiwa et al.

B

DF AA BA AF

B 0 3

s0 s1 S count

Input:

Output: 1 6

D F 1 2

B C 2 4

a) When the pair of symbols 

matches to the entry.
b) An entry is added.

c) The invalidation occurs 

to replace the entry.

A D 4 2

C F 5 1

A A 6 1

Bank0

Bank1

Bank2

Bank3

# of search operations

with bank

w/o bank

2
2

B

DF AA BA AF

B 0 3

s0 s1 S count

Input:

Output: 1 6 BA

D F 1 3

B C 2 4

B A 3 1

A D 4 2

C F 5 1

A A 6 2

Bank0

Bank1

Bank2

Bank3

# of search operations

with bank

w/o bank

1
6

B

DF AA BA AF

B 0 3

s0 s1 S count

Input:

Output: 1 6 BA AF

D F 1 3

B C 2 4

B A 3 1

A D 4 2

A F 5 1

A A 6 2

Bank0

Bank1

Bank2

Bank3

# of search operations

with bank

w/o bank

2
7

1
6

Total

Total

6
21

Fig. 1. Compression example of LCA-DLT with the bank select method.

B

1 6 BA AF

B 0 3

s0 s1 S count

Input:

Output: DF AA

D F 1 2

B C 2 4

a) When the pair of symbols 

matches to the entry.
b) An entry is added.

c) The invalidation occurs 

to replace the entry.

A D 4 2

C F 5 1

A A 6 1

Bank0

Bank1

Bank2

Bank3

# of search operations

with bank

w/o bank

1
1

B

1 6 BA AF

B 0 3

s0 s1 S count

Input:

Output: DF AA BA

D F 1 3

B C 2 4

B A 3 1

A D 4 2

C F 5 1

A A 6 2

Bank0

Bank1

Bank2

Bank3

# of search operations

with bank

w/o bank

1
1

B

1 6 BA AF

B 0 3

s0 s1 S count

Input:

Output: DF AA BA AF

D F 1 3

B C 2 4

B A 3 1

A D 4 2

A F 5 1

A A 6 2

Bank0

Bank1

Bank2

Bank3

# of search operations

with bank

w/o bank

1
1

1
1

Total

Total

4
4

Fig. 2. Decompression example of LCA-DLT with the bank select method.

entries even if the entropy of the data is dynamically changing. This causes
multiple assignments of the table entries of the same data pair among multiple
banks. Another function uses a part of the inputted data itself. In this case, the
selected bank indices are spread among the entire table entries according to the
entropy of the inputted data stream. Let us introduce a simple example to keep

fast hash calculation such as nb =
∑K/2−1

k=0 2k · s0,k+
∑K−1

k=K/2 2k · s1,k−K/2 where
K = log2 Nb and si,j is a bit of si. nb is combined by log2 K bits made from
the LSBs of inputted symbols (s0, s1). Here, the combined bits can be generated
by picking up the least significant K/2 bits from s0 and s1 respectively. In this
case, the bank selection will be depending on the entropy of the entire data
elements. This would cause data concentration in several banks if the number of
data combinations is few (i.e. the entropy of the data is low). We will evaluate
the effects of the hash methods in the performance evaluation.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_59

https://dx.doi.org/10.1007/978-3-030-22750-0_59


Reducing Symbol Search Overhead on Stream-based Data Compression 5

We shall show examples of the compression and the decompression flows.
Fig. 1 and Fig. 2 illustrate examples under the conditions: N and Nb are 8 and
4 respectively, and the hash function is the nb of the data major approach. We
assume that the inputted data stream consists of ASCII characters in 8bits. The
combined K bits are organized by the least significant bit of each ASCII code of
the input data pair. In this case, the least significant bit of each symbol in the
pair is combined and finally the two-bit bank number nb is decided.

Regarding the compression operation, we assume that after several data has
been processed and then the part of the stream “DFAABAAF” is inputted to
the compressor. Fig. 1 a) shows the case when the first two pairs match to the
table entries. Here, we count the numbers of search operations with/without the
bank select method. In the case of “DF”, the number of search operations is
two in both cases. However, in the case of “AA”, because the bank number is
3 decided by the combination of the LSB of “A”s (0x41). Therefore, the bank
select method finds the entry from the first search in the bank. However, in the
case without banks, it searches the entry from the top of the table. It needs six
search operations. Fig. 1 b) shows the case when the pair is inserted to a bank.
In order to know that the inputted data pair must be inserted to an empty entry,
the case without bank needs to search all the entries in the table, and then it
inserts a new entry. Therefore, it needs 6 search operations. Besides, the case
with bank performs just a search operation in a bank. Finally, Fig. 1 c) shows
the case of invalidation operation to replace the entry. It is the same as the case
of the insertion operation. It needs to count maximally the number of entries
in a bank. However, without the bank, it needs to search all the entries in the
table and finds an entry to replace it. According to the total number of the
search operations in the compression example, the one without banks becomes
almost four times more search operations than the one with banks. Thus, the
complexity of the search operation becomes approximately O(N/Nb).

On the other hand, regarding the decompression operation, the decompressor
reads an inputted symbol and searches the entry associated by the symbol value
as the index of the table. In the case when the compressed symbols match to
the entries as shown in Fig. 2 a), the numbers of search operations for ’1’ and
’6’ are both one time. This is the same when the case without bank. The new
entry insertion is performed for the table such as the case of “BA” as shown in
Fig. 2 b), after the decompressor searches the index ’B’ in the table. However,
’B’ as the index of the table is more than the number of entries. It knows that
there is not any matched entries and then insert it to a new entry. Therefore, the
number of search operations is always one. Finally, in the case of invalidation
of the entry as shown in Fig. 2 c), the number of search operations is the same
as the insertion. Thus, the numbers of search operations with/without the bank
select method are totally the same.

As we have seen in the examples above, we have confirmed that the bank
select method has the effective speedup technique for the compression. Even if
the processing speed is fast, it is not a novel technique if the effective compression
ratio degrades than the compressor without the bank select method. In the next

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_59

https://dx.doi.org/10.1007/978-3-030-22750-0_59


6 S. Yamagiwa et al.

Fig. 3. Comparisons of compression times of LCA-DLT with the bank select method.

Fig. 4. Comparisons of compression ratios of LCA-DLT with/without the bank select
method among different hash functions.

section, we will discuss the actual computing speed and the compression ratio
to validate the proposed technique.

4 Performance evaluation

We used several patterns of 10Mbyte benchmark data of a text collection avail-
able from [1]. We have implemented compressor/decompressor with/without the
bank select method using C#. The execution time measurement has been per-
formed in a 64bit Windows 8 PC with Intel Core i7 2.7GHz and 8GByte memory.

First, we measured the elapsed times of individual operations in the com-
pression process: Insertion is the time for inserting a new symbol pair entry to
the table, Deletion is the one for deleting an entry(s) from the table by the in-
validation operation, and Search is the one for searching operation for the input
pair, as shown in Fig. 3 when four compressor modules are cascaded. The bars
show the execution times of the individual operations with varying the number
of banks from 1 to 16. The total number of entries in the table is configured to
256. In the case when the number of banks is 1 as shown in the graph, it is pre-
cisely equal to the case without banks. The line shows the speedup ratio where

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_59

https://dx.doi.org/10.1007/978-3-030-22750-0_59


Reducing Symbol Search Overhead on Stream-based Data Compression 7

the execution time of search operations is divided by the one without banks.
We have evaluated the speedup applying different kinds of the hash function:
one is the hash function based on sequence index, and another is based on a bit
combination of inputted data.

According to the graphs, in both cases of the different hash functions, we
have confirmed that the search operation occupies a large part of the total exe-
cution. Therefore, when the number of banks is increased, the time of the search
operations is linearly decreased for two times when it is changed to the twice
number of the banks. The total execution times of Fig. 3 a) are larger than the
ones of Fig. 3 b). This means that insertion and deletion times are larger because
the compression ratios become worse as we will discuss in the next evaluation.

Next, Fig. 4 shows the compression ratios. The compression ratios in the case
when the hash function uses the sequence index become worse when the number
of banks is increased. The hash function selects all the banks fairly. Because the
invalidation operations occur frequently among all the banks, the table search
often does not match the input pair to the corresponding one in the table. On
the other hand, in the case when the hash function uses a bit combination of
symbol pair. it results better compression ratios than the round-robin case. When
the hash function uses the data itself, the bank selection is affected directly by
data entropy. Therefore, the corresponding symbol pair is always mapped to the
same bank. This causes high probability to match the inputted symbol pair to
the entry in the bank.

5 Conclusion

We have proposed a novel method to speedup lossless compression operation
called the bank select method. It divides the symbol lookup table to multiple
banks. The banks are selected by the hash function. We applied it to the stream-
based lossless data compression algorithm called LCA-DLT. The evaluation has
shown the drastic improvement of execution time. We have confirmed that the
method is effective to reduce the search operations in compression.

Acknowledgement

This work is partially supported by JSPS KAKENHI Grant Number 15H02674
and JST CREST Grant Number JPMJCR1402.

References

1. http://pizzachili.dcc.uchile.cl/
2. Yamagiwa, S., Marumo, K., Sakamoto, H.: Stream-based Lossless Data Compression

Hardware using Adaptive Frequency Table Management. In: Proceedings of the
VERY LARGE DATA BASES / BPOE 2015, LNCS 9495. Springer (2015)

3. Ziv, J., Lempel, A.: A universal algorithm for sequential data compres-
sion. IEEE Transactions on Information Theory 23(3), 337–343 (May 1977).
https://doi.org/10.1109/TIT.1977.1055714

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_59

https://dx.doi.org/10.1007/978-3-030-22750-0_59

