
In-Situ Visualization with Membrane Layer
for Movie-based Visualization

Kohei Yamamoto and Akira Kageyama[0000−0003−0433−668X]

Department of Computational Science, Kobe University, Kobe 657-8501, Japan

Abstract. We propose a movie-based visualization for High Perfor-
mance Computing (HPC) visualization. In this method, a viewer in-
teractively explores a movie database with a specially designed applica-
tion program called a movie data browser. The database is a collection
of movie files that are tied with the spatial coordinates of their view-
points. One can walk through the simulation’s data space by extracting
a sequence of image files from the database with the browser. In this
method, it is important to scatter as many viewpoints as possible for
smooth display. Since proposing the movie-based visualization method,
we have been developing some critical tools for it. In this paper, we re-
port the latest development for supercomputers to apply many in-situ
visualizations with different viewpoints in a Multiple Program Multiple
Data (MPMD) framework. A key feature of this framework is to place
a membrane-like layer between the simulation program and the visu-
alization program. Hidden behind the membrane layer, the simulation
program is not affected by the visualization program even if the number
of scattered viewpoints is large.

Keywords: Visualization · Movie-based visualization · HPC.

1 Introduction

The imbalance between processor speed and network bandwidth in High Perfor-
mance Computing (HPC) systems leads in-situ visualization to provide hope for
the future [11, 12, 10, 5, 4]. In general, in-situ visualization deprives users of inter-
active control of visualization parameters. We cannot change the visualization-
related variables after a simulation, unless we adopt special methods for render-
ing [15, 7]. These visualization-related variables include the applied visualization
algorithms, their parameters, and the camera settings. It is not reasonable to
resubmit a simulation job when, for example, we just want to observe a phe-
nomenon from a different view position.

We have proposed a way to realize an interactive viewing of in-situ visual-
ization that can be applied with standard rendering [6]. The key point of this
method is to apply multiple in-situ visualizations from different viewpoints.As
in the bullet-time method used in the movie industry, a number of visualiza-
tion cameras are placed in the simulation space. Each camera takes a sequence
of visualization images as the simulation goes on. In contrast to the steering

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_55

https://dx.doi.org/10.1007/978-3-030-22750-0_55

2 K. Yamamoto and A. Kageyama

approach [9, 2], the positions of the cameras are predefined before the simula-
tion. After the simulation, images from each camera are combined into a movie
file. Therefore, the output of this in-situ visualization method is a collection of
movie files, rather than numerical data files. Labeled with the cameras’ loca-
tions, the collection of movie files composes a movie database. Here we refer to
this approach to HPC visualization as “movie-based visualization”, since it is a
generalization of image-based visualization [1].

Movie Data Browser
time t

x

y

Movie field in 3D space

Interactive control of view-point path

Fig. 1. Interactive exploration of movie database.

After we proposed the idea of movie-based visualization, we developed a
specially designed PC application that extracts a sequence of still images from
the movie database and shows the sequence as an animation in a PC window.
The application, the movie data browser, enables its user to interactively change
the viewpoint by dragging the PC’s mouse or by keyboard input while a movie
is playing forward or backward in time; see Fig. 1.

A key point of this method is to place multiple cameras as densely as possible
in the simulation space. In contrast to the bullet-time method, our visualization
cameras have no mutual occlusion, regardless of how dense they are, but applying
many in-situ visualizations for a simulation is a challenging task.

2 Membrane Layer Method

Major (post hoc) visualization applications are now provided with in-situ li-
braries or tools, such as Catalyst [3] for ParaView and libsim [18] for VisIt. Var-
ious in-situ visualization infrastructures have also been developed for HPC, such
as Embree [17] and OSPray [16]. More general framework for high-performance
I/O middleware ADIOS [8] is also used in in-situ visualizations. We are also

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_55

https://dx.doi.org/10.1007/978-3-030-22750-0_55

In-Situ Visualization with Membrane Layer for Movie-based Visualization 3

developing an in-situ visualization tool that is based on KVS [14], a general-
purpose visualization software tool. We use the off-screen rendering mode of
KVS for visualizations on CPU cores of supercomputer systems.

In order to make the movie-based visualization method a practical tool for
simulations, it is necessary to avoid the speed deterioration of the simulation by
the in-situ generation of many movie files. The key idea proposed in this paper
is to separate the simulation from the visualization by placing a semipermeable
membrane-like layer between them. The two programs are “invisible” to each
other.

Both the simulation and the visualization are parallelized. They are basi-
cally independent MPI programs with their own MPI Init and MPI Finalize

functions. The semipermeable membrane between them is also an independent
parallel program. The simulation program sends data to the membrane, and
the visualization program receives them from the membrane under a Multiple
Program Multiple Data (MPMD) framework.

In fact, the membrane is composed of two independent MPI programs. They
correspond to the two sides of a plane; one is the front face, or simulation side,
and the other is the back face, or visualization side. Therefore, we have four
independent MPI programs in total. When one of the four programs stops be-
cause of an error, a signal is sent to the other programs to finalize the whole
job. The numerical data flow is basically one way; it is sent from the simulation
to the membrane, then to the visualization. The error signal of the visualization
program is the only signal that is sent backward, from the visualization to the
simulation. That is the reason why we call it a semipermeable membrane.

Owing to the MPMD framework, we can apply multiple in-situ visualizations
in an asynchronous way. In contrast to the synchronous cases,we apply multiple
in-situ visualizations on other processor nodes of the supercomputer system while
the simulation is running.For a larger computational load for the visualization,
or for a larger number of viewpoints of the in-situ visualization, we just allocate
more computer nodes for additional MPI processes for the visualization program.

Since the membrane’s front face is devoted only to receiving data from the
simulation, the simulation program can assume that each data transfer is com-
pleted without delay. The simulation program does not wait for completion of
the visualization for each item of data.

The membrane’s back face stores the latest simulation data and passes them
to the visualization program when they are requested. If new data are sent
from the simulation before completing the visualization of previous data, the
stored data in the membrane is overwritten. In other words, it is possible that
some image frames are missing in the final product of the in-situ visualization
movies when it takes an unusually long time to render an image. We accept it as
unavoidable in this framework at present but it could be improved in the future.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_55

https://dx.doi.org/10.1007/978-3-030-22750-0_55

4 K. Yamamoto and A. Kageyama

Sim.

program

Main loop

Viz.

program

Main loop

request

of new data

data
data

Membrane

images

front

face

back

face

Fig. 2. The membrane layer between the simulation and visualization programs.

3 Experiments

To demonstrate the applicability of the membrane method to in-situ visual-
ization of practical simulations on supercomputers, we have performed a simple
computational fluid dynamics simulation on a supercomputer system, Oakforest-
PACS (Fujitsu PRIMERGY CX600 M1, 8208 nodes of Intel Xeon Phi) for the
well-known smoke-ring formation [13]. The simulation region is a rectangular
box of size Lx ×Ly ×Lz = 30 m × 10 m × 10 m. Periodic boundary conditions
are assumed in all (x, y, and z) directions. Compressible Navier-Stokes equations
for an ideal gas are solved with a second-order central finite difference method
for the spatial derivatives and an explicit fourth-order Runge-Kutta method for
time integration. The code is parallelized based on a three-dimensional decom-
position with 24 (= 6 × 2 × 2) domains. An MPI process is assigned to each
domain.

In this experiment, we visualize three scalar fields, pressure p, mass density
ρ, and enstrophy density q = |∇ × v|2, where v is the flow velocity. The front
face of the membrane consists of three (same as the number of fields) MPI
processes, and the back face of it has the same number of MPI processes. A
process of the front face receives one of the scalar fields from the simulation and
its counterpart process of the back face passes the scalar data to the visualization
program on request. As for the visualization program, we allocate 27 cameras
in this experiment, with one MPI process for each camera. In total, we invoke
57 MPI processes (57 processor nodes): 24 (for simulation) + 3 (for front face of
the membrane) + 3 (for back face of the membrane) + 27 (for visualization).

Fig. 3 shows visualizations by an isosurface of q by four cameras out of
27 cameras in total. Other visualizations for different physical variables lead
to basically the same images. The resulting movie files have sufficiently high
temporal resolution (high number of frames per second (FPS)) to analyze the
fluid dynamics in detail.

We next confirm the effect of the membrane as a barrier against increased
load for the visualization program. We compare two different styles of in-situ
visualization: one with the membrane-based asynchronous visualization method

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_55

https://dx.doi.org/10.1007/978-3-030-22750-0_55

In-Situ Visualization with Membrane Layer for Movie-based Visualization 5

time

camera positions

Fig. 3. Snapshot sequences of the propagation of a vortex ring, visualized from different
viewpoints. It shows four of the 27 viewpoints. The vortex ring is visualized by an
isosurface of the enstrophy density.

and the other a fully synchronous visualization (i.e., in-situ visualization embed-
ded into the simulation code).

We perform asynchronous and synchronous in-situ visualizations on the same
supercomputer system with the same simulation set-ups and physical parameters
as in the previous experiment. We measure execution time for the simulations
with different numbers of in-situ visualization cameras. As in the previous ex-
periment, we solve the vortex ring formation with 24 MPI processes, applying
in-situ visualizations every 100 simulation loops.

The numbers of cameras considered are 8, 16, 32, 64, and 128. We compare
the elapsed time in each case for 10, 000 simulation steps. In the embedded
synchronous in-situ case, the total number of MPI processes is fixed, while in
the membrane layer method, the number of MPI processes varies.

The result of the comparison is shown in Fig. 4. The elapsed time presented
in this figure is defined as the average of five runs. This figure shows that the
membrane method is always faster than the synchronous method and, more
importantly, it keeps the execution time for the simulation constant even if we
increase the number of in-situ visualization cameras.

4 Summary

We have proposed a movie-based visualization method for HPC [6]. In this
method, the viewer interactively explores a database of movie files, rather than a

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_55

https://dx.doi.org/10.1007/978-3-030-22750-0_55

6 K. Yamamoto and A. Kageyama

Membrane

Synchronous in-situ

Elapsed time

Number of distributed cameras

12,000

10,000

8,000

6,000

4,000

2,000

0

8 16 32 64 128

Fig. 4. Elapsed time for the vortex ring simulation with and without the membrane
layer.

numerical dataset, as in a standard post hoc visualization. The movie database
is a collection of movie files that are labeled with the spatial coordinates of the
viewpoint of each movie.

In this paper, we have proposed a framework for in-situ visualization on HPC
systems that enables simulation researchers to apply a large number of in-situ
visualizations with different viewpoints without slowing down the simulation.
The key idea is to place a semipermeable membrane layer between the simu-
lation and visualization programs. The membrane is implemented by two MPI
programs that correspond to two faces, the front face and the back face of the
membrane.

To confirm the effect of the membrane layer, we have compared two in-
situ visualizations, with and without the membrane, for a computational fluid
dynamics simulation. Without the membrane, the execution time grows as the
number of cameras increases. In contrast, with the membrane, the execution
time stays almost constant. This means that the increased computational load
for a larger number of cameras is safely absorbed by an increased number of
MPI processes for visualization, without affecting the simulation program. The
membrane method described in this paper could be regarded as a promising
approach to parallel in-situ visualizations, not only for movie-based visualization,
but also to in-situ visualizations in HPC in general.

References

1. Ahrens, J., Jourdain, S., O’Leary, P., Patchett, J., Rogers, D.H., Petersen, M.:
An Image-Based Approach to Extreme Scale in Situ Visualization and Analysis.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_55

https://dx.doi.org/10.1007/978-3-030-22750-0_55

In-Situ Visualization with Membrane Layer for Movie-based Visualization 7

International Conference for High Performance Computing, Networking, Storage
and Analysis, SC, 424–434 (2014)

2. Atanasov, A., Bungartz, H.j., Mehl, M., Mundani, R.p., Rank, E., Treeck, C.V.:
Computational Steering of Complex Flow Simulations. In: High Performance Com-
puting in Science and Engineering, Garching/Munich 2009. pp. 63–74 (2009)

3. Ayachit, U., Bauer, A., Geveci, B., O’Leary, P., Moreland, K., Fabian, N., Mauldin,
J.: ParaView Catalyst: Enabling In Situ Data Analysis and Visualization. Proceed-
ings of ISAV2015 pp. 25–29 (2015)

4. Bennett, J.C., Childs, H., Garth, C., Hentschel, B.: In Situ Visualization for Com-
putational Science. Dagstuhl Reports 8(07), 1–43 (2018)

5. Bethel, E.W., Childs, H., Hansen, C.: High performance visualization : enabling
extreme-scale scientific insight. CRC Press (2013)

6. Kageyama, A., Yamada, T.: An approach to exascale visualization: Interactive
viewing of in-situ visualization. Computer Physics Communications 185, 79–85
(2014)

7. Kawamura, T., Noda, T., Idomura, Y.: In-situ visual exploration of multivariate
volume data based on particle based volume rendering. Proceedings of ISAV 2016
D, 18–22 (2017)

8. Liu, Q., Logan, J., Tian, Y., Abbasi, H., Podhorszki, N., Choi, J.Y., Klasky, S.,
Tchoua, R., Lofstead, J., Oldfield, R., Parashar, M., Samatova, N., Schwan, K.,
Shoshani, A., Wolf, M., Wu, K., Yu, W.: Hello ADIOS: the challenges and lessons
of developing leadership class I/O frameworks. Concurrency and Computation:
Practice and Experience 26, 1453–1473 (2014)

9. Long, L.N., Plassmann, P.E., Sezer-uzol, N., Jindal, S.: Real-time visualization and
steering of large-scale parallel simulations. In: 11TH INTERNATIONAL SYMPO-
SIUM ON FLOW VISUALIZATION. pp. 1–12 (2004)

10. Ma, K.L.: In Situ Visualization at Extreme Scale: Challenges and Opportunities.
IEEE Computer Graphics And Applications pp. 14–19 (2009)

11. Ma, K.L., Wang, C., Yu, H., Tikhonova, A.: In-situ processing and visualization
for ultrascale simulations. Journal of Physics: Conference Series 78(1), 1–10 (2007)

12. Ross, R.B., Peterka, T., Shen, H.W., Hong, Y., Ma, K.L., Yu, H., Moreland, K.:
Visualization and parallel I/O at extreme scale. Journal of Physics: Conference
Series 125 (2008)

13. Saffman, P.G.: Vortex dynamics. Cambridge University Press (1992)
14. Sakamoto, N., Koyamada, K.: KVS: A simple and effective framework for scientific

visualization. J. Adv. Simulation. Sci. Eng. 2(1), 76–95 (2015)
15. Tikhonova, A., Correa, C.D., Kwan-Liu, M.: Explorable images for visualizing

volume data. IEEE Pacific Visualization Symposium 2010, PacificVis 2010 - Pro-
ceedings D(VIDi), 177–184 (2010)

16. Wald, I., Johnson, G.P., Amstutz, J., Brownlee, C., Knoll, A., Jeffers, J., Günther,
J., Navratil, P.: OSPRay - A CPU Ray Tracing Framework for Scientific Visualiza-
tion. IEEE Transactions on Visualization and Computer Graphics 23(1), 931–940
(2017)

17. Wald, I., Woop, S., Benthin, C., Johnson, G.S., Ernst, M.: Embree: A Kernel
Framework for Efficient CPU Ray Tracing. Acm Transactions on Graphics 33(4),
8 (2014)

18. Whitlock, B., Favre M, J., Meredith S, J.: Parallel in situ coupling of simulation
with a fully featured visualization system. Eurographics Symposium on Parallel
Graphics and Visualization pp. 101–109 (2011)

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_55

https://dx.doi.org/10.1007/978-3-030-22750-0_55

