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Abstract. Neural Networks (NNs) are frequently applied to Multi Input
Multi Output (MIMO) problems, where the amount of data to manage
is extremely high and, hence, the computational time required for the
training process is too large. Therefore, MIMO problems are often split
into Multi Input Single Output (MISO) problems; MISOs are further de-
composed into several Single Input Single Output (SISO) problems. The
aim of this paper is to present an optimized approach for NNs training
based on properties of Singular Value Decomposition (SVD), allowing
to decompose the MISO NN into a collection of SISO NNs. The decom-
position provides a two-fold advantage: firstly, each SISO NN can be
trained by using a one-dimensional function, namely a limited dataset,
and then a parallel architecture can be implemented on a PC-cluster,
decreasing the computational cost. The parallel algorithm performance
are validated by using magnetic hysteresis dataset with the aim to prove
the computational speed up by preserving the accuracy.

Keywords: Neural Networks · Parallel Computing · Magnetic Hystere-
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1 Introduction

Neural Networks (NNs) for Multi-Input- Multi-Output (MIMO) problems have
gained wide attention in many scientific fields [6, 3], especially regarding complex
non-linear systems without a closed-form solution. In these applications, a NN,
able to learn non-linear relationship between quantities by means of a dataset,
represents a reasonable alternative to the use of mathematical models [19, 17].
The main drawback of any neural model is, however, the necessity of a large
amount of data/measurements for its set up; in fact, a NN with m inputs and
n outputs can be directly implemented to approximate a non-linear function,
provided the amount of data to manage is not too large; moreover the high
computational cost, needed for the wide size of training patterns and for complex
NN architecture, makes the direct approach inefficient.

Therefore, several authors make the problem easier by dividing MIMO NN
into a collection of n Multi-Input-Single-Output (MISO) NNs [8, 9], further, split
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into several Single-Input-Single-Output (SISO) NNs; in this way, their structure
appears to be considerably simplified and the time required by the whole learn-
ing process results to be lower. Singular Value Decomposition (SVD) turns out
to be a powerful instrument for switching between MISO NNs and a group of
SISO NNs, since it is defined for any array of data and it provides a low-rank
matrix, which is a good approximation to the original one [1, 7]; the efficiency of
this approach has already demonstrated in different works[16, 12]. The presented
paper concerns the implementation of parallel algorithm on a PC-cluster that
is able to address the SISO NN training process to a cluster node, separately,
decreasing strongly the computational cost. Moreover, the parallel architecture
obtained from SVD-based approximation is applied to magnetic hysteresis data
and the study of its ability to model the magnetic hysteresis constitutes the
main issue of this work. Indeed, although the magnetic hysteresis problem has
been already solved by the authors through a suitably trained NN [11, 2, 10, 13],
it is still a difficult task [5, 4, 14], especially when dealing with materials having
large variance in characteristics and NN must be trained with a dataset describ-
ing these conditions. Obtaining such data involves a whole set of measurements
that can be very difficult to perform; thus, to solve this problem in a feasible
way, the parallel SVD-based algorithm is applied to a 2D-array, which repre-
sents the magnetic permeability, µ, obtained starting from experimental values
of magnetic field, H, and flux density, B [15].

This paper is organized as follows: Section 2 summarizes some of the main
properties of the SVD technique, emphasizing the decomposition of bidimen-
sional functions. Section 3 focuses on the parallel algorithm implemented for
training each SISO NN: firstly, MISO-SISO decomposition is introduced, point-
ing out the training of each SISO NN, then, PC-cluster characteristics are in-
troduced. In Section 4 the performances of parallel algorithm are evaluated by
using magnetic hysteresis data and, finally, in Section 5, the conclusions follow.

2 The approximation method: SVD

Among the methods used to simplify a MISO problem into a collection of SISO,
the SVD represents a valid tool, that allows to approximate a multivariate func-
tions without losing accuracy.

The SVD of a rectangular matrix A ∈ Rm×n is the factorization of A into
the product of three matrices: A = UΣVT where U =(u1 . . . um) ∈ Rm×m, V=
(v1 . . . vn) ∈ Rn×n and Σ ∈ Rm×n is a diagonal one having its non-zero diagonal
entries equal to the singular values σk,k with k=1,...,p and p=min(m,n), written
in descending order σ1,1 > σ2,2 > ... > σp,p > 0. Thus:

A =

p∑
k=1

σk,ku〈k〉(vT )〈k〉 (1)

where u〈k〉 ⊂ Rm and v〈k〉 ⊂ Rn are orthonormal vectors coincident with
the column vectors of matrices U and VT , respectively. Usually, the smallest
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singular values are neglected and an approximated version of (??) and (1) is
considered:

Â =

p̂∑
k=1

σk,ku〈k〉(vT )〈k〉 (2)

with σ1,1 > σ2,2 > ... > σp̂,p̂ > 0 and p̂ < min(m,n) , whereas σj,j is forced
to be 0, for p̂ < j < p.

Let us assume that the A entries are coming from the sampling of a bivari-
ate function f(x1, x2), so Ai,j = f(x1,i, x2,j) with i = 1 . . .m and j = 1 . . . n.
Correspondingly, the columns of the matrices U and V T are arising from the
sampling of unknown univariate functions, uk,i = ψk(x1,i) and vTk,j = ηk(x2,j).
Once obtained p̂ with a fixed accuracy ε, the approximation can be written as
follows:

Âi,j = f̂(x1,i, x2,j) =

p̂∑
s=1

σsψ̂s(x1,i)η̂s(x2,j) (3)

The different unknown univariate functions in (3) can be evaluated by ap-
propriate curve fitting techniques, such as NNs.

3 Parallel algorithm for SISO NNs training

3.1 MISO NN decomposition

The SVD-based approximation of bivariate functions described in the previous
section can be exploited for optimizing the feed-forward MISO NNs learning
process. Thus, the idea is to split the MISO NN into several SISO NN by applying
the SVD-based approximation of multivariate functions, to reduce the time of
learning process and to simplify the NN architecture.

Let us consider an array of data A, obtained by sampling a 2D-function
f(x1, x2), and define a decomposition operator, D, which indicates the SVD of

function f(x1, x2), D{f(x1, x2)} =
∑p̂

i=1 σiψi(x1)ηi(x2).
When the operator is applied, it generates 2 × p̂ univariate functions and

each of them can be approximated by a SISO NN, as shown in Figure 3.
Every SISO NN presents a simple feed-forward architecture, composed by an

input neuron, one hidden layer and an output neuron. The main advantage is
that each NN is independent from the other, so its training can be implemented
as a stand-alone process being part of a larger parallel architecture.

3.2 Parallel computing in a PC-cluster system

The principal aim of using a PC-cluster is to improve the performance for large
computational task, such as MISO NN training, that can be divided into smaller
tasks distributed around the nodes. The SISO NN training is implemented on
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Fig. 1. Scheme of Parallel algortihm implemented for SISO NNs training.

a high performance computing, HPC, cluster, that consists of 4 compute nodes,
each one composed of 24 CPUs. A Single Program Multiple Data, SPMD, par-
allel model is performed; thus, the master node sends the program, involving
training set and algorithm, to the others computational nodes and it commands
every one to execute the learning process of a SISO NN. The communication
is realized through the Message Passing Interface standard, MPI, which allows
the programmer to easily pass the message from one of computers to the others
by calling the function offered from the libraries. Generally, a parallel process
requires a communicator, containing a group of processes, whose number defines
its size, r ; each process has a rank inside the communicator, namely a number
that permits to recognize it. So, the implementation of parallel NNs training in-
volves a communicator having n× p̂ size, where n indicates the dimension of the
initial array of data; especially, r = 2× p̂ for 2-D array, n=2. As shown in Fig-
ure 2, each process returns a SISO NN, able to approximate the one-dimensional
function, representing the U matrix columns or VT matrix rows. Once, the U
and V matrices have been reconstructed, the approximation of original array
can be obtained, by using equation 2.

4 Validation of SVD-based parallel algorithm: magnetic
hysteresis data

With the aim to validate the presented approach, the parallel algorithm is used
to train a neural network implemented for modelling magnetic hysteresis. A
collection of asymmetric loops has been generated for building the data set for
NN training by employing Preisach model in Matlab environment [18]. Each
loop has been sampled in n points and for every couple of coordinates [Hk, Bk]
the corresponding differential magnetic permeability, µk has been computed. As
a result, an array of data µ(Bn, Hn) function of H and B variables is obtained
to test the SVD-based algorithm.

Thus, assuming x1 = B1, ..., Bm, x2 = H1, ...,Hn and f(x1, x2) = µ(H,B),
the SVD applied to bivariate function returns
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Fig. 2. Parallelization of training process. From left to right: trasformation of MISO
NN into several SISO NNs. Each NN training represents a process of rank k, with
k = 1...p̂, executed by a cluster node.

µi,j = µ(Bi, Hj) =

p∑
s=1

σsψs(Bi)ηs(Hj) (4)

To reduce the total number of NNs required for reconstructing the original
function, a threshold value is fixed to ε = 0.001 in order to obtain a reduced
SVD form with p̂ = 3.

µ̂i,j =

3∑
s=1

σsψ̂s(Bi)η̂s(Hj) (5)

After decomposition, the total number of SISO NNs results to be 6: 3
univariate functions of B, ψ1(B), ψ2(B), ψ3(B); 3 univariate functions of H,
η1(H), η2(H), η3(H). Each SISO NN has a feed-forward architecture and it was
trained by using Levenberg Marquardt algorithm. The NN architecture consists
of a input neuron, representing the B or H variable sampled in n points, the
hidden layer is composed by 8 neurons and the output neuron returns the one
dimensional function ψ(B) or η(H), respectively. The training set for each NN
is made by 70 of 100 sampled points belonging to the univariate function, which
is intended to approximate. So, for computing the parallel learning process, the
master node has to send a program, including the training set and Levenberg
Marquardt algorithm, to the others one. Hence, a communicator, involving 6
processes distributed between the 4 available compute nodes, is set up as shown
in Figure 1, with the purpose to minimize the computational effort of a single
node. The performance of NN is compared with the points excluding the ones
in the training, especially, test set is composed by 30 samples. The NN shows a
good accuracy in modelling, figure 3 shows that each NN is able to reproduce
the univariate function trend, with a MSE ' 10−8. Finally, the NN outputs are
exploited to reconstruct the µ array, following the equation 5. Table 1 shows a
comparison between the time required by whole learning process with and with-
out parallel architecture implementation; a strong reduction of computational
time is achieved.
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Fig. 3. Results on validation test of NNs: left ψs(B); right ηs(H).

System Training time (s)

Serial implementation 30.81
Parallel implementation 7.24

Table 1. Computational time results achieved for the bivariate function, µ(B,H).

5 Conclusions

An optimization algorithm able to perform parallel learning process of SISO NNs,
by exploiting the SVD properties has been presented. A well-known challenging
topic is constituted by the modelling of magnetic hysteresis, a typical MISO
problem. Thus, a procedure for magnetic hysteresis loops identification has been
proposed. The method is based on the parallelization of NNs training processes,
that allows to accurately model the hysteresis problem achieving a reduction of
computational cost. The implemented SISO-based approach allows to provide
a solution, even when the conventional use of a MISO strategy fails. Results
show that the proposed method is a suitable tool for modelling the magnetic
hysteresis, it is capable of reducing the processing time strongly and, at the same
time, preserving the accuracy of solution. The presented technique constitutes
an effective solution based on which the more complex problem of 3D magnetic
hysteresis can be solved, hence, should be considered a valid starting point for
future developments. In particular, it is worth noticing that the method can, in
general, suit any multidimensional problem.
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