
Automating the Generation of Comparison Weights for

Enhancing the AHP Decision-Making Process

Karim Zarour1,2, Djamel Benmerzoug1, Nawal Guermouche2, and Khalil Drira2

1 LIRE Laboratory, University of Constantine 2 - Abdelhamid Mehri,

Constantine, Algeria
2 LAAS-CNRS, University of Toulouse, Toulouse, France

{zarour.karim, djamel.benmerzoug}@univ-constantine2.dz

{nguermou, khalil}@laas.fr

Abstract. The Analytic Hierarchy Process (AHP) method is widely used to deal

with multi-criteria decision-making problems thanks to its simplicity and flexi-

bility. However, it is often criticized for subjectivity and inconsistency in assign-

ing the comparison weights that are based on expert judgments. In order to rem-

edy these shortcomings, we propose in this paper an algorithm that automatically

generates the pairwise comparison weights of alternatives according to each con-

sidered criterion. In addition, we demonstrate through an example that the judg-

ment matrices constructed by the algorithm are very consistent.

Keywords: Analytic Hierarchy Process, Multi-criteria decision-making, Auto-

matic generation of comparison weights, Consistency ratio, Subjectivity.

1 Introduction

Real-world decision-making problems are becoming increasingly complex due to the

large number of alternatives, heightened uncertainty, shorter deadlines, greater pres-

sure, environment dynamicity, etc. [1]. Several multi-criteria decision-making

(MCDM) methods have been proposed such as TOPSIS, and ELECTRE but the most

used and popular one is the Analytic Hierarchy Process (AHP) method that attracts

decision-makers by its simplicity and flexibility [4, 6, 9]. Despite its advantages, the

AHP method is often criticized for subjectivity and inconsistency in assigning compar-

ison weights. Indeed, the assigned weights must be readjusted until the Consistency

Ratio (CR) defined by [7] is equal to or less than 10%. In addition, experts may be

asked several times for pairwise comparisons, which is not practical, time-consuming,

and very annoying when the number of criteria or alternative is high.

In this paper, we propose an algorithm that automatically generates the pairwise

comparison weights of alternatives and fills the corresponding judgment matrices by

taking as input the real values of alternatives according to a set of criteria. The main

objective of the algorithm is to dispense with the tedious task of assigning weights,

which is usually done manually and therefore the decision-making process time could

be significantly reduced. In addition to the automation, we demonstrate through an ex-

ample on hosting offer selection that the proposed algorithm constructs very consistent

judgment matrices.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_53

https://dx.doi.org/10.1007/978-3-030-22750-0_53

2

The remainder of this paper is organized as follows. Section 2 overviews the AHP

method and its limitations. Some related work are addressed in Section 3. Section 4

presents and explains the proposed algorithm. Section 5 demonstrates the usefulness of

the algorithm through an illustrative example. Finally, Section 6 concludes this paper

and provides directions for future work.

2 AHP limitations

The AHP is a method developed by T. Saaty [8] for resolving decision problem with

multiple criteria through four major steps [7, 8]. Beyond its several advantages like the

hierarchical structuring of decision problems, the AHP method relies on the experience

and judgments of experts who give weights value directly. In this assessment way, the

weights may be attributed with prejudices and the results may have subjectivity. More-

over, the influence of human factor in AHP method can lead to wrong decisions. An-

other issue may arise when experts need to be asked several times for pairwise compar-

isons. For instance, a decision-making problem of 4 criteria and 3 alternatives requires

to ask experts 18 times. We find that this is not practical and may become very annoying

when the number of criteria or alternative is high. Furthermore, the AHP method is

supported by the Expert Choice tool but the comparison weights are filled manually.

3 Related work

There exists many work in the literature that improve the AHP method but most of them

focus on the consistency of judgment matrices on the grounds that it is the main weak-

ness of the AHP method. For example, Lin et al. [6] develop an adaptive AHP approach

that uses a genetic algorithm to recover the relative importance weights of the consid-

ered criteria. Benitez et al. [1] provide an optimization method for improving con-

sistency based on the minimization of the distance between each two judgment matri-

ces. Khatwani and Kar [5] propose an algorithm that can adjust the entries of judgment

matrices iteratively until reaching a desired level of consistency.

Certain researchers also aim to improve AHP in group decision-making. For in-

stance, two consensus models have been defined in [2] for group decision-making by

using the row geometric mean prioritization method. Huang et al. [4] demonstrate that

the efficiency of AHP can be significantly enhanced via an optimal expert allocation.

However, although consulting several experts for evaluating criteria and alternatives

may reduce the bias of personal subjectivity, it requires further calculations and a longer

decision process. Furthermore, few work have been realized for improving the AHP

method in other aspects. For example, Xiulin and Dawei [9] aim to simplify the calcu-

lations needed to construct the judgment matrices by adopting a scale of only three

values instead of nine values. In [3], the authors present and test a model based on

Multi-layer Perceptron (MLP) neural networks that is capable of completing missing

values in AHP judgment matrices. However, to the best of our knowledge, there is no

work in the literature that automates the generation of pairwise comparison weights in

the AHP method.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_53

https://dx.doi.org/10.1007/978-3-030-22750-0_53

3

4 An automatic comparison of alternatives

To overcome the AHP limitations tackled previously, we propose an algorithm (Algo-

rithm 1) that automatically generates the pairwise comparison weights and fills the

judgment matrix corresponding to each criterion. The algorithm takes as input a matrix

‘TabVal’ containing the real values of alternatives according to a set of criteria. The

structure of input and output matrices is presented in Figure 1.

Algorithm 1: Automatic filling of alternative comparison matrices.

Declaration

TabComp : a square matrix [(N+1) × (N+1)] of real numbers; /* an empty comparison matrix,

N is the number of alternatives to compare */

AltComp : { TabComp }; /* a set of comparison matrices (a TabComp for each criterionk) */

TabVal : a matrix [(M+1) × (N+1)] of real numbers; /* TabVal is a matrix containing the val-

ues of alternatives according to each criterion */

/* TabComp and TabVal have the same number of columns N (the number of compared alterna-

tives), M is the number of considered criteria. */

i, j, k : integer;

Begin

 Scalling (TabVal); /* Scaling the real values of alternatives */

 AltComp  { };

 For (k=1 ; k ≤ M; k++) Do { /* for each criterionk */

 TabCompk = New TabCom (); /* a new comparison matrix for each criterionk */

 For (i=1 ; i ≤ N ; i++) Do {

 TabCompk(alti, alti)  1; /* fill in the matrix diagonal with 1 */

 }

 i  1; j 2;

 If (Criterionk IS Criterion to be minimized) Then {

 While (i ≤ N-1) Do { /* browse TabVal */

 While (j ≤ N) Do { /* browse TabVal */

 Compare (TabVal(critk, alti), TabVal(critk, altj)); /* this procedure compares 2 alter-

natives and inserts the comparison weight into TabCompk */

 j  j +1;

 }

 i  i +1; j  i +1;

 }

 }

 Else { /* Criterionk is to be maximized */

 While (i ≤ N-1) Do { /* browse TabVal */

 While (j ≤ N) Do { /* browse TabVal */

 Compare (TabVal(critk, altj), TabVal(critk, alti));

 j  j +1;

 }

 i  i +1; j  i +1;

 }

 }

 AltComp  AltComp ∪ { TabCompk }; /* add to the result the comparison matrix of al-

ternatives for the criterionk */

 }

 Return (AltComp);

End ;

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_53

https://dx.doi.org/10.1007/978-3-030-22750-0_53

4

Fig. 1. Automatic generation of pairwise comparison matrices

Besides the automation, we will also show through the example of the next section

that the proposed algorithm generates consistent judgment matrices (i.e. the consistency

ratio is less than or equal to 10%). Indeed, judgment matrix consistency is one of the

most challenging problems when using AHP [2, 9].

In order to respect the Saaty’s scale [8], we have integrated in the beginning of the

algorithm a procedure called ‘Scalling’, which allows to put the real values on a scale

of numbers ranging from 0 to 8. After creating an alternative comparison table and

filling its diagonal with '1', the 'Compare' procedure is iteratively called within two

nested loops. This procedure takes as parameter two values characterizing two different

alternatives according to a given criterion. Next, it generates the two comparison

weights (one weight to compare Alternative i and Alternative j and another for the op-

posite) and inserts them in the ‘TabCom’ comparison matrix corresponding to the cri-

terion in question. The instructions of ‘Scaling’ and 'Compare' procedures are described

in the following:

Procedure Scaling (TabVal: Matrix [(M+1) × (N+1)] of real numbers)

Declaration MaxValue: float; i, k: integer;

Begin

 For (k=1 ; k ≤ M; k++) Do { /* for each criterionk */

 MaxValue  TabVal(critk, alt1);

 For (i=2; i ≤ N; i++){ /* search for the maximum value of alternatives according to

criterionk */

 If (TabVal(critk, alti) > MaxValue) Then {

 MaxValue  TabVal(critk, alti);

 }

 }

 For (i=1 ; i ≤ N; i++) {

 TabVal(crit k, alt i) 
TabVal(crit k,alt i) ∗ 8

𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒
 ; /* scaling each value */

 }

 }

End;

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_53

https://dx.doi.org/10.1007/978-3-030-22750-0_53

5

Procedure Compare (X: float, Y: float)

Declaration difference : float;

Begin

 difference  X - Y;

 If (difference ≥ 0) Then {

 TabComp(alti, altj) 
1

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 +1
 ; TabComp(altj, alti)  𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 + 1 ;

 }

 Else {

 TabComp(alti, altj)  |𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒| + 1; TabComp(altj, alti) 
1

|𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒| +1
 ;

 }

End;

5 Illustrative example

In order to illustrate the application of our algorithm, we suppose a company that wants

to host its online booking platform and it hesitates between six dedicated servers.

Hence, the company decided to apply the AHP method in order to choose the hosting

offer that best meets its requirements. The characteristics of the dedicated servers pro-

posed by each online hosting offer that the company faces are represented in table 1

(values that are at the top of cells).

Table 1. Values of alternatives according to each criterion

Offer

name /

Criteria

Magic

Epsi-

lone

OVH

EG-

32

Magic

Delta

Bluehost

Prenium

eStrux-

ture In-

tel Xeon

Serverroom

Intel E5-

2630L

Hive-

locity

Skylake

CPU fre-

quency

(Ghz)

2.6 3.8 3.06 2.5 3.3 2.0 3.4

5.5 8 6.4 5.2 6.9 4.2 7.2

0.08 0.3 0.13 0.07 0.17 0.05 0.2

CPU

cores

8 4 12 4 4 6 4

(5.3) (2.7) (8) (2.7) (2.7) 4 (2.7)

0.2 0.06 0.44 0.06 0.06 0.12 0.06

RAM

(GB)

128 32 96 16 32 32 64

8 2 6 (1) 2) 2) (4)

0.43 0.05 0.24 0.03 0.06 0.06 0.13

Storage

(TB)

2 8 2 1 1 0.48 0.96

(2) (8) (2) (1) (1) (0.5) (1)

0.11 0.53 0.11 0.06 0.06 0.07 0.06

Band-

width

(Mbps)

150 500 150 200 100 300 1024

(1.2) (3.9) (1.2) (1.6) (0.8) (2.3) (8)

0.06 0.18 0.06 0.07 0.04 0.1 0.49

Price

(€/month)

199 99.99 129 89 137 129 145

(8) (4) (5.2) (3.6) (5.6) (5.2) (5.8)

0.03 0.24 0.13 0.29 0.1 0.13 0.08

In what follows, we describe how our algorithm intervenes in the AHP method for

solving this MCDM problem after structuring it hierarchically.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_53

https://dx.doi.org/10.1007/978-3-030-22750-0_53

6

5.1 Comparison of alternatives

Before comparing alternatives, the algorithm scales their real values and the values of

alternatives after scaling are represented in the middle in table 1. Once the real values

are scaled, the algorithm generates a comparison matrix of alternatives according to

each criterion. Table 2 represents the comparison matrices generated in our example

for the criterion of CPU frequency (the absolute weights are represented without paren-

theses and the relative weights in parentheses) and it is the same principle for the other

five criteria.

Table 2. The pairwise comparisons generated according to the CPU frequency

Magic

Epsi-

lone

OVH

EG-

32

Magic

Delta

Blue-

host

eStrux-

ture

Server-

room

Hive-

locity

Aver-

age

Magic Ep-

silone

1

(0.08)

1/3.5

(0.09)

1/1.9

(0.06)

1.3

(0.09)

1/2.4

(0.07)

2.3

(0.11)

1/2.7

(0.07)
8%

OVH EG-

32

3.5

(0.28)

1

(0.32)

2.6

(0.32)

3.8

(0.26)

2.1

(0.34)

4.8

(0.23)

1.8

(0.35)
30%

Magic

Delta

1.9

(0.15)

1/2.6

(0.12)

1

(0.12)

2.2

(0.15)

1/1.5

(0.11)

3.2

(0.15)

1/1.8

(0.11)
13%

Bluehost
1/1.3

(0.06)

1/3.8

(0.08)

1/2.2

(0.06)

1

(0.07)

1/2.7

(0.06)

2

(0.10)

1/3

(0.07)
7%

eStruxture
2.4

(0.19)

1/2.1

(0.15)

1.5

(0.18)

2.7

(0.19)

1

(0.16)

3.7

(0.18)

1/1.3

(0.15)
17%

Server-

room

1/2.3

(0.03)

1/4.8

(0.07)

1/3.2

(0.04)

½

(0.03)

1/3.7

(0.04)

1

(0.05)

¼

(0.05)
5%

Hivelocity
2.7

(0.21)

1/1.8

(0.18)

1.8

(0.22)

3

(0.21)

1.3

(0.21)

4

(0.19)

1

(0.20)
20%

5.2 Verification of the comparison consistency

We have used the Expert Choice tool to check the consistency of the pairwise compar-

isons and we observe in figure 2 that excepted the storage criterion, the consistency

ratio (CR) is fairly stable and very far from the acceptable limit of 10%. This proves

that our algorithm generates very consistent comparison matrices. Furthermore, we

have verified through tests that the algorithm generates consistent comparison matrices

(the CR varies between 1% and 3%) whatever the number of alternatives.

Fig. 2. The consistency ratio corresponding to each alternative comparison matrix

0.6 %
1.5 % 2.2 %

8.3 %

2.3 % 1.3 %

0%

5%

10%

CPU
frequency

CPU cores RAM Storage Bandwidth Price

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_53

https://dx.doi.org/10.1007/978-3-030-22750-0_53

7

The last step consists calculating the final score of each alternative by multiplying the

final values of alternatives (shown at the bottom of cells in table 1) by the final weights

of criteria that depend company’s requirements.

6 Conclusion and future work

In order to enhance the AHP method, we have proposed in this paper an algorithm that

automatically generates the pairwise comparison weights of alternatives and construct

a judgment matrix for each considered criterion. The algorithm takes as input the real

values of alternatives according to a set of criteria and puts them on a scale of eight

values so that the generated weights respect the Saaty’s scale. The applicability and

usefulness of our algorithm has been demonstrated through an example on hosting offer

selection. In addition to the automation, the illustrative example has also shown that the

judgment matrices generated by our algorithm are very consistent.

For future work, we envisage to integrate into the proposed algorithm a procedure that

quantify qualitative criteria. We also want to incorporate new methods or reuse existing

ones that allow readjusting the comparison weights of judgment matrices in order to

further reduce the consistency ratio. Moreover, it would also be interesting to compare

the obtained consistency ratios with those of similar work. Finally, we intend to extend

the Expert Choice software with the proposed algorithm through a plugin.

References

1. Benitez, J., Delgado-Galvan, X., Izquierdo, J., Pérez-Garcia, R.: Improving consistency in

AHP decision-making processes. Applied Mathematics and Computation 219(5), 2432–

2441 (2012).

2. Dong, Y., Zhang, G., Hong, W., Xu, Y.: Consensus models for AHP group decision making

under row geometric mean prioritization method. Decision support systems 49(3), 281–289

(2010).

3. Gomez-Ruiz, J.A., Karanik, M., Pelaez, J.I.: Improving the Consistency of AHP Matrices

Using a Multi-layer Perceptron-Based Model. In: Proceedings of the 9th International Work-

Conference on Artificial Neural Networks, pp. 41–48. Springer (2009).

4. Huang, E., Zhang, S., Lee, L., Chew, E., Chen, C.: Improving Analytic Hierarchy Process

Expert Allocation Using Optimal Computing Budget Allocation. IEEE Transactions on Sys-

tems, Man, and Cybernetics: Systems 46(8), 1140–1147 (2016).

5. Khatwani, G., Kar, A.K.: Improving the Cosine Consistency Index for the analytic hierarchy

process for solving multi-criteria decision-making problems. Applied Computing and Infor-

matics 13(2), 118–129 (2017).

6. Lin, C., Wang, W., Yu, W.: Improving AHP for construction with an adaptive AHP ap-

proach (A3). Automation in Construction 17(2), 180–187 (2008).

7. Saaty, T.L.: Decision making with the analytic hierarchy process. International Journal of

Services Sciences 1(1), 83–98 (2008).

8. Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill. New York (1980).

9. Xiulin, S., Dawei, L.: An Improvement Analytic Hierarchy Process and its Application in

Teacher Evaluation. In: Proceedings of the 5th International Conference on Intelligent Sys-

tems Design and Engineering Applications, pp. 169–172. IEEE (2014).

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_53

https://dx.doi.org/10.1007/978-3-030-22750-0_53

