
Parallel parametric linear programming solving,
and application to polyhedral computations

Camille Coti1, David Monniaux2, and Hang Yu2

1 LIPN, CNRS UMR 7030, Université Paris 13, Sorbonne Paris Cité
99, avenue Jean-Baptiste Clément, F-93430 Villetaneuse, FRANCE

Camille.Coti@lipn.univ-paris13.fr
2 Univ. Grenoble Alpes, CNRS, Grenoble INP?, F-38000 Grenoble, France

First-name.Last-name@univ-grenoble-alpes.fr

Abstract. Parametric linear programming is central in polyhedral com-
putations and in certain control applications. We propose a task-based
scheme for parallelizing it, with quasi-linear speedup over large problems.

1 Introduction

A convex polyhedron, or polyhedron for short here, in dimension n is the solution
set over Qn (or, equivalently, Rn) of a system of inequalities (with integer or
rational coefficients). Polyhedra in higher dimension are typically used to enclose
the reachable states of systems whose state can be expressed, at least partially,
as a vector of reals or rationals; e.g. hybrid systems or software [3].

The conventional approaches for polyhedral computations are the dual de-
scription (using both vertices and faces) and Fourier-Motzkin elimination. They
both suffer from high complexity on relevant cases. We instead express im-
age, projection, convex hull etc. as solutions to parametric linear programmings,
where parameters occur linearly within the objective. A solution to such a pro-
gram is a quasi-partition of the space of parameters into polyhedra, with one
optimum associated to each polyhedron. The issue is how to compute this solu-
tion efficiently. In this article, we describe how we parallelized our algorithm.

2 Sequential algorithms

Here we are leaving out how polyhedral computations such as projection and
convex hull can be reduced to parametric linear programming — this is covered
in the literature [4,7] — and focus on solving the parametric linear programs.

2.1 Non-parametric linear programming (LP)

A linear program with n unknowns is defined by a system of equations AX = B,
where A is an m × n matrix; a solution is a vector X such that X ≥ 0 on all
? Institute of Engineering Univ. Grenoble Alpes

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_52

https://dx.doi.org/10.1007/978-3-030-22750-0_52

2 Camille Coti et al.

coordinates and AX = B. The program is said to be feasible if it has at least one
solution, infeasible otherwise. In a non-parametric linear program one considers
an objective C: one wants the solution that maximizes CTX. The program is
deemed unbounded if it is feasible yet it has no such optimal solution.

Example 1. Consider the polygon P defined by x1 ≥ 0, x2 ≥ 0, 3x1 − x2 ≤ 6,
−x1 + 3x2 ≤ 6. Define x3 = 6 − 3x1 + x2 and x4 = 6 + x1 − 3x2. Let X =
(x1, x2, x3, x4), and then P is the projection onto the first two coordinates of the
solution set of AX = B ∧X ≥ 0 where A =

[
1 −3 0 −1
−3 1 −1 0

]
and B = [66].

An LP solver takes as input (A,B,C) and outputs “infeasible”, “unbounded”
or an optimal solution. Most solvers work with floating-point numbers and their
final answer may be incorrect: they may answer “infeasible” whereas the problem
is feasible, or give “optimal solutions” that are not solutions, or not optimal.

In addition to a solution X∗, solvers also provide the associated basis: X∗ is
defined by setting n −m of its coordinates to 0 (known as nonbasic variables)
and solving for the other coordinates (known as basic variables) using AX∗ = B,
and the solver provides the partition into basic and nonbasic variables it used. If
a floating-point solver is used, it is possible to reconstruct an exact rational point
X∗ using that information and a library for solving linear systems in rational
arithmetic. One then checks whether it is truly a solution by checking X∗ ≥ 0.

The optimal basis also contains a proof of optimality of the solution. We
compute the objective function CTX as

∑
i∈N αiXi + c where N is the set of

indices of the nonbasic variables and c is a constant, and conclude that the
solution obtained by setting these nonbasic variables to 0 is maximal because
all the αi are nonpositive. If X∗ is not a solution of the problem (X∗ ≥ 0 fails)
or is not optimal, then we fall back to an exact implementation of the simplex
algorithm.

Example 1 (continued). Assume the objective is C =
[
1 1 0 0

]
, that is, CTX =

x1 + x2. From AX = B we deduce x1 = 3− 3
8x3 −

1
8x4 and x2 = 3− 1

8x3 −
3
8x4.

Thus x1 + x2 = 6− 1
2x3 −

1
2x4.

Assume x3 and x4 are nonbasic variables and thus set to 0, then X∗ =
(x1, x2, x3, x4) = (3, 3, 0, 0). It is impossible to improve upon this solution: as
X ≥ 0, changing the values of x3 and x4 can only decrease the objective o =
6− 1

2x3−
1
2x4. This expression of o from the nonbasic variables can be obtained

by linear algebra once the partition into basic and nonbasic variables is known.

While the optimal value CTX∗, if it exists, is unique for a given (A,B,C),
there may exist severalX∗ for it, a situation known as dual degeneracy. The same
X∗ may be described by different bases, a situation known as primal degeneracy,
happening when more than n − m coordinates of X∗ are zero, and thus some
basic variables could be used as nonbasic and the converse.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_52

https://dx.doi.org/10.1007/978-3-030-22750-0_52

Parallel PLP solving, and application to polyhedral computations 3

2.2 Parametric linear programming (PLP)

For a parametric linear program, we replace the constant vector C by C0 +∑k
i=1 µiCi where the µi are parameters.3 When the µi change, the optimum

X∗ changes. Assume temporarily that there is no degeneracy. Then, for given
values of the µi, the problem is either unbounded, or there is one single optimal
solution X∗. It can be shown that the region of the (µ1, . . . , µk) associated to
a given optimum X∗ is a convex polyhedron (if C0 = 0, a convex polyhedral
cone), and that these regions form a quasi partition of the space of parameters
(two reegions may overlap at their boundary, but not in their interior) [4,5,7].
The output of the parametric linear programming solver is this quasi-partition,
and the associated optima—in our applications, the problem is always bounded
in the optimization directions, so we do not deal with the unbounded case.

Let us see in more details about how to compute these regions. We wish to
attach to each basis (at least, each basis that is optimal for at least one vector
of parameters) the region of parameters for which it is optimal.

Example 1 (continued). Instead of C =
[
1 1 0 0

]
we consider C =

[
µ1 µ2 0 0

]
.

Let us now express o = CTX as a function of the nonbasic variables x3 and x4:

o = (3µ1 + 3µ2) +
(
− 3

8µ1 − 1
8µ2

)
x3 +

(
− 1

8µ1 − 3
8µ2

)
x4 (1)

The coefficients of x3 and x4 are nonpositive if and only if 3µ1 + µ2 ≥ 0 and
µ1 + 3µ2 ≥ 0, which define the cone of optimality associated to that basis and
to the optimum X∗ = (3, 3, 0, 0).

The description of the optimality polyhedron by the constraints obtained
from the sign conditions in the objective function may be redundant: containing
constraints that can be removed without changing the polyhedron. Our proce-
dure [6] for removing redundant constraints from the description of a region R1

also provides a set of vectors outside of R1, a feature that will be useful.
Assume now we have solved the optimization problem for a vector of param-

eters D1, and obtained a region R1 in the parameters (of course, D1 ∈ R1). We
store the set of vectors outside of R1 provided by the redundancy elimination
procedure into a “working set” W to be processed, choose D2 in it. We compute
the region R2 associated to D2. Assume that R2 and R1 are adjacent, meaning
that they have a common boundary. We get vectors outside of R2 and add them
toW . We pick D3 inW , check that it is not covered by R1 or R2, and, if it is not,
compute R3, etc. The algorithm terminates when W becomes empty, meaning
the R1, . . . produced form the sought quasi-partition.

This simplistic algorithm can fail to work because it assumes that it is discov-
ering the adjacency relation of the graph. The problem is that, if we move from
a region Ri to a vector Dj /∈ Ri, it is not certain that the region Rj generated
from Dj is adjacent to Ri — we could miss some intermediate region. We modify
our traversal algorithm as follows. The working set contains pairs (R,D′) where
3 There exists another flavor of PLP with parameters in the right-hand sides of the
constraints.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_52

https://dx.doi.org/10.1007/978-3-030-22750-0_52

4 Camille Coti et al.

Algorithm 1 Concurrent push on the shared region structure.

procedure push_region(R)
atomic (i← nfill; nfill ← nfill + 1)
regions[i]← R
while nready < i do

possibly use a condition variable in-
stead of spinning
end while . nready = i
atomic nready ← i+ 1

end procedure

Algorithm 2 Task for parallel linear programming solver.
push_tasks adds new tasks to be processed (different under TBB and OpenMP).
test_and_insert(T, x) checks whether x already belongs to the hash table T , in which
case it returns true; otherwise it adds it and returns false. This operation is atomic.

procedure process_task((Rfrom, D))
Rcov ← is_covered(D, regions)
if Rcov == none then
basis ← float_lp(A,B,C(D))
if ¬test_and_insert(bases, basis)

then
X∗ ← exact_point(basis)
o← exact_objective(basis)
if ¬(X∗ ≥ 0 ∧ o ≤ 0) then
(basis, X∗)← exact_lp(A,B,C(D))

end if
S ← sign_conditions(basis)
R← eliminate_redundancy(S)
for each constraint i in R do
Dnext ← compute_next(R, i)
push_tasks(Dnext)

end for
push_region(R,X ∗)
Rcov ← R

end if
end if
if ¬are_adjacent(Rfrom, Rcov) then
D′ ← midpoint(Rfrom, Rcov, D)
W ←W ∪ {(Rfrom, D′)}

end if
end procedure

procedure is_covered(D, regions))
for i ∈ 0 . . . nready − 1 do . nready to

be read at every loop iteration
(R,X∗)← regions[i]
if D covered by R then
return(R)

end if
end for
return(none)

end procedure

R is a region and D′ /∈ R a vector (there is a special value none for R). The
region R′ corresponding to D′ is computed. If R and R′ are not adjacent, then a
vector D′′ in between R and R′ is computed, and (R,D′′) added to the working
set. This ensures that we obtain a quasi-partition in the end. Additionally, we
obtain a spanning tree of the region graph, with edges from R to R′.

The last difficulty is degeneracy. We have so far assumed that each optimiza-
tion direction corresponds to exactly one basis. In general this is not the case,
and the interiors of the optimality regions may overlap. This hinders perfor-
mance. The final result is no longer a quasi-partition, but instead just a covering
of the parameter space—enough for projection, convex hull etc. being correct.

3 Parallel parametric linear programming

Our algorithms are designed in a task-based execution model. The sequential
algorithm executes tasks taken from a working set, which can themselves spawn
new tasks. In addition, it maintains the set regions of regions already seen, used:

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_52

https://dx.doi.org/10.1007/978-3-030-22750-0_52

Parallel PLP solving, and application to polyhedral computations 5

0 4 8 12 16 20 24 28 32
Number of threads

0

100

200

300

400

500

600
Ex

ec
ut

ion
 ti

me
 (s

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee

du
p

Execution time
Speedup

(a) 2 dimensions projected

0 4 8 12 16 20 24 28 32
Number of threads

0

50

100

150

200

250

300

350

400

Ex
ec

ut
ion

 ti
me

 (s
)

0.0

0.5

1.0

1.5

2.0

2.5

Sp
ee

du
p

Execution time
Speedup

(b) 5 dimensions projected

Fig. 1: 9 constraints, no redundant ones, 16 variables, 2–36 regions, OpenMP.

i) for checking if a vector D belongs to a region already covered (is_covered);
ii) for checking adjacency of regions; iii) for adding new regions found. Therefore,
in a parallel task model, this algorithm is straightforwardly parallel. The regions
are inserted into a concurrent array. We investigated two task scheduling strate-
gies. A static approach starts all the available tasks, waits for them to complete
and collects all the new tasks (R,D) into the working set, until no new task is
created and the working set is empty. A dynamic approach allows adding new
tasks to the working set dynamically and runs the tasks until that set is empty.

The number of tasks running to completion (not aborted early due to a test)
is the same as the number of generated regions. The is_covered(D, regions) loop
can be easily parallelized as well. We opted against it as it would introduce a
difficult-to-tune second level of parallelism.

We implemented these algorithms using Intel’s Thread Building Blocks (TBB
[8]) and OpenMP tasks [1], both providing a task-based parallelism model with
different features.

The dynamic task queue can be implemented using TBB’s tbb::parallel_do,
which dynamically schedules tasks from the working set on a number of threads.
The static scheduling approach can simply be implemented by a task synchro-
nization barrier (such as OpenMP’s barrier).

That first implementation of the dynamic task scheduling approach was slow.
The working set often contained tasks such that the regions generated from them
were the same, leading to redundant computations. The workaround was to add
a hash table storing the set of bases (each being identified by the ordered set of
its basic variables) that have been or are currently being processed. A task will
abort after solving the floating-point linear program if it finds that its basis is
already in the table.

4 Performance evaluation

We implemented our parallel algorithms in C++, with three alternate schemes
selectable at compile-time: no parallelism, OpenMP parallelism or TBB.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_52

https://dx.doi.org/10.1007/978-3-030-22750-0_52

6 Camille Coti et al.

0 4 8 12 16 20 24 28 32
Number of threads

0

10000

20000

30000

40000

50000

60000
Ex

ec
ut

ion
 ti

me
 (s

)

0

2

4

6

8

10

12

14

16

Sp
ee

du
p

Execution time
Speedup

(a) 2 dimensions projected, 4 redundant
constraints

4 8 12 16 20 24 28 32
Number of threads

0

10000

20000

30000

40000

50000

Ex
ec

ut
ion

 ti
me

 (s
)

0

2

4

6

8

Sp
ee

du
p

Execution time
Speedup

(b) 5 dimensions projected, 4 redundant
constraints

Fig. 2: 24 constraints, 10 variables, 8–764 regions, OpenMP.

0 5 10 15 20 25 30 35 40
Number of threads

0.0

0.2

0.4

0.6

0.8

1.0

Ex
ec

ut
ion

 ti
me

 (s
)

1e8

0

5

10

15

20

25
Sp

ee
du

p
Execution time
Speedup

(a) OpenMP on Paranoia

0 10 20 30 40 50 60 70 80
Number of threads

0

1

2

3

4

5

Ex
ec

ut
ion

 ti
me

 (s
)

1e7

0

5

10

15

20

25

30

Sp
ee

du
p

Execution time
Speedup

(b) TBB on Pressembois

Fig. 3: 120 constraints, 50 variables, 1 dimension projected, 3459–3718 regions.

All benchmarks were run on the Paranoia cluster of Grid’5000 [2] and on
a server called Pressembois. Paranoia has 8 nodes, each with 2 Intel R© Xeon R©

E5-2660v2 CPUs (10 cores, 20 threads/CPU) and 128 GiB of RAM. Code was
compiled using GCC 6.3.1 and OpenMP 4.5 (201511). The nodes run Linux
Debian Stretch with a 4.9.0 kernel. Pressembois has 2 Intel Xeon Gold 6138
CPU (20 cores/CPU, 40 threads/CPU) and 192 GiB of RAM. It runs a 4.9 Linux
kernel, and we used GCC 6.3. Every experiment was run 10 times. The plots
presented in this section provide the average and standard deviation. Paranoia
was used for the OpenMP experiments, whereas Pressembois was used for TBB.

We evaluated our parallel parametric linear programming implementation
by using it to project polyhedra, a very fundamental operation. We used a set
of typical polyhedra, with different characteristics: numbers of dimensions, of
dimensions to be projected and of constraints, sparsity. Here we present a subset
of these benchmarks, each comprising 50 to 100 polyhedra.

On problems that have only few regions, not enough parallelism can be ex-
tracted to exploit all the cores of the machine. For instance, Figure 1 presents
two experiments on 2 to 36 regions using the OpenMP version. It gives an accept-
able speed-up on a few cores (up to 10), then the computation does not generate
enough tasks to keep the additional cores busy. As expected, when the solution

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_52

https://dx.doi.org/10.1007/978-3-030-22750-0_52

Parallel PLP solving, and application to polyhedral computations 7

0

1

2

3

4

5

6

7

8

9

10

31

32

33

34

11 12 13

14

29

15 16 17 18 19 20 21

22

28

23

25

24

26 27

30

(a) 1 thread

0

1 2 3 4 5 6 7

9 10 11 12 17 22 13 14 15 16 8 18 19 20 21

2423 25 28 30 26 31 27 29 37 33 32 34

35 36

(b) 30 threads

3 6 9 12 15 18
Number of threads

0

1000

2000

3000

4000

5000

Ex
ec

ut
io

n
tim

e
(s

)

0

1

2

3

4

5

6

Sp
ee

du
p

Execution time
Speedup

(c) Performance

Fig. 4: Generation graph of the regions from one polyhedron, computed with 1
and 30 threads. The region graphs, depending on overlaps etc., are different; the
numbers in both trees have no relationship.

has many regions, computation scales better. Figure 2 presents the performance
obtained on polyhedra made of 24 constraints, involving 8 to 764 regions, using
the OpenMP version. The speed-up is sublinear, especially beyond 20 cores.

On larger polyhedra, with 120 constraints and 50 variables, the speedup is
close to linear with both OpenMP and TBB (Fig. 3). The parallelism extracted
from the computation is illustrated by Fig. 4, on a polyhedron involving 29
constraints and 16 variables. Figure 4b shows the number of parallel tasks.

References

1. OpenMP Application Programming Interface, 4.5 edn. (2015)
2. Cappello, F., al: Grid’5000: A large scale and highly reconfigurable grid experimental

testbed. In: International Workshop on Grid Computing. IEEE/ACM (2005)
3. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables

of a program. In: POPL. pp. 84–96. ACM Press (1978)
4. Jones, C., al: On polyhedral projections and parametric programming. J. Optimiza-

tion Theory and Applications 138(2), 207–220 (2008)
5. Jones, C.N., Kerrigan, E.C., Maciejowski, J.M.: Lexicographic perturbation for mul-

tiparametric linear programming with applications to control. Automatica (2007)
6. Maréchal, A., Périn, M.: Efficient elimination of redundancies in polyhedra by ray-

tracing. In: VMCAI. LNCS, vol. 10145, pp. 367–385. Springer (2017)
7. Maréchal, A., Monniaux, D., Périn, M.: Scalable minimizing-operators on polyhedra

via parametric linear programming. In: SAS. Springer (2017)
8. Reinders, J.: Intel threading building blocks: outfitting C++ for multi-core processor

parallelism. " O’Reilly Media, Inc." (2007)

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_52

https://dx.doi.org/10.1007/978-3-030-22750-0_52

