
Rendering Non-Euclidean Space in Real-Time
Using Spherical and Hyperbolic Trigonometry

Daniil Osudin, Dr Chris Child, and Prof Yang Hui-He

City, University of London

Abstract. We introduce a method of calculating and rendering shapes
in a non-Euclidean 2D space in real-time using hyperbolic and spherical
trigonometry. We record the objects’ parameters in a polar coordinate
system and use azimuthal equidistant projection to render the space
onto the screen. We discuss the complexity of this method, renderings
produced, limitations and possible applications of the created software
as well as potential future developments.

Keywords: non-Euclidean geometry · spherical trigonometry · hyperbolic trigonom-
etry · azimuthal equidistant projection · Polar coordinate system · real-time

(a) (b) (c)

Fig. 1. Time-lapse images of multiple objects moving through spherical (a), planar (b)
and hyperbolic (c) 2D space calculated and rendered by the described software

1 Introduction

(b) Planar (a) Spherical (c) Hyperbolic

Fig. 2. Comparison of parallel lines in the 2D spaces

Non-Euclidean geometry is a
field that studies any space
that arises from changing Eu-
clid’s fifth postulate [1] or
changing the metric require-
ment. In spherical geometry,
Fig. 2 (a), all geodesics (short-
est paths in a non-planar space) intersect: don’t preserve the distance and appear
to ‘bend’ towards each other. In Hyperbolic geometry, Fig. 2 (c), each line has
an infinite number of parallel lines, as they appear to ‘bend’ away from each
other.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_49

https://dx.doi.org/10.1007/978-3-030-22750-0_49

1

r
Θ

A

O

Y

x

Fig. 3. Point A with polar coor-
dinates r and θ

We present a method for calculating the
object’s position and its vertices in polar
coordinates using spherical [2] or hyperbolic
trigonometry [3] [4]. A polar coordinate system
of the form (r, θ) is used in this model for all cal-
culations instead of Cartesian coordinates. The
centre of the of the screen is taken as a refer-
ence point O(0, 0) for the distance coordinate,
r, while eastbound is the reference direction for

the bearing coordinate, θ. This allows the same coordinates to be used irrespec-
tive of the currect curvature. In order to render the curved space onto a flat 2D
screen, we are using azimuthal equidistant projection. By definition, distances
and bearing from the centre of the projection are preserved. This works well
with Polar coordinates, projection is intuitive and can be used with no changes
for both spherical and hyperbolic 2D spaces.

2 Method

ϴ1

V3

V4

r1

C

V2

V1

C’
O O’

Fig. 4. O (0, 0), reference
point; C (rc, θc), position
and local reference point; Vx

(rx, θx), vertices; OO’, refer-
ence direction; CC’, local ref-
erence direction

The calculations are split into two parts: move-
ment of the objects and rendering of the shapes.
The screen (rendering space) is limited to a cir-
cle of an arbitrary size. When the object’s centre
moves past the circumference of the circle, it is
repositioned to the antipodal point on the circle
with the velocity preserved. This is implemented
in order to keep the objects in the visible area on
the screen.

Shape has a list of position vectors for each
vertex in local coordinates with object’s position
being the reference point and reference direction is
taken as the reverse of its position vector (Fig. 4).

2.1 Rendering the shape

Let K ∈ [−1, 1] ⊂ < s.t. K = 0⇒ Euclidean Geometry;

w

u

v

b

a
c

C

Fig. 5. Spherical triangle

K > 0⇒ Spherical Geometry, r = 1√
K

Theorem 1. For a sphere of radius r and
hence Gaussian curvature K = 1

r2 and a
spherical triangle on its surface described by
points u, v and w, connected by great circles
that form the edges a, b, c (interpreted as sub-
tended angles) and an angle C (Fig. 5), the
spherical law of cosines [5] states:

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_49

https://dx.doi.org/10.1007/978-3-030-22750-0_49

cos
c

r
= cos

a

r
cos

b

r
+ sin

a

r
sin

b

r
cosC (1)

w u

v

b

a c

C

Fig. 6. Hyperbolic triangle

K < 0⇒ Hyperbolic Geometry, k = − 1√
K

Theorem 2. For a hyperbolic plane with
Gaussian Curvature K = − 1

k2 and a hyper-
bolic triangle on its surface described by points
u, v and w, connected by geodesics that form
the edges a, b and c, as well as an angle
C (Fig. 6), the hyperbolic law of cosines [6]
states:

cosh
c

k
= cosh

a

k
cosh

b

k
− sinh

a

k
sinh

b

k
cosC (2)

Note: To simplify the equations below, all lengths are assumed to have been
divided by r or k depending on the value of K.

Polar coordinate system with a
reference point O (0, 0)
C(rc, ϴc), object position,

reference point of local
coordinate system

V(rv, ϴv), object’s vertex with
local coordinates (rlocal, ϴlocal)

OV = rv, OC = rc, CV = rlocal
∠VOO’ = ϴv, ∠VOC = Δϴ,
∠COO’ = ϴc, ∠VCC’ = ϴlocal
∠OCC’ = α, angle of rotation
∠OCV = β, angle between rlocal

and rc

ϴc

O
ϴc

rv
rc

rlocal

V
β

ϴlocal

C

α
Δϴ

O’

C’
α

Δϴ

O

C

β
rc

ϴv

V

rv

ϴc

ϴlocal

C’

O’

rlocal

(a) (b)

Fig. 7. Finding the θ and r coordinates of an object’s vertices through a hyper-
bolic/spherical triangle OCV ; Case (a): θlocal + α < π; case (b): θlocal + α > π

Corollary 1. Given: O(0, 0), C(rc, θc), V(rv, θv), OC = rc, CV = rlocal,
6 COO’ = θc, 6 OCC’ = α, 6 VCC’ = θlocal

Find: rv, θv = ?
If K > 0, then: If K < 0, then:

cos rv = cos rc cos rlocal+

sin rc sin rlocal cosβ

cosh rv = cosh rc cosh rlocal−
sinh rc sinh rlocal cosβ

(3)

cos∆θv =
cos rlocal − cos rc cos rv

sin rcsinrv
cos∆θv =

cosh rc cosh rv − cosh rlocal
sinh rc sinh rv

(4)

In order to find rv, first find β = α + θlocal; if Π < β < 2Π, use the
explementary angle instead to determine to which side of OC the triangle lies.
Depending on that ∆θ is then added to or subtracted from θc to find θv.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_49

https://dx.doi.org/10.1007/978-3-030-22750-0_49

V1

Δϴ2

O

C

r2

r1

Δϴ1

r1local

V2

r2local

d

rc

ϴ1
ϴc ϴ2

(a) (b)

V1

d

V2

Δϴ2

O’ ϴ2

C

r1

ϴ1 ϴc

O

Δϴ1

rc

r1local

r2local

r2

Polar coordinate system with
a reference point O

C(rc, ϴc), object position,
reference point of local
coordinate system

V1(r1, ϴ1), object’s vertex 1
V2(r2, ϴ2), object’s vertex 2

OV1 = r1, OV2 = r2, OC = rc,
CV1 = r1local, CV2 = r2local,
V1V2 = d, object’s edge
∠V1OO’ = ϴ1, ∠V2OO’ = ϴ2,
∠COO’ = ϴc,
∠V1OC = Δϴ1, Δϴ1 = |ϴc - ϴ1|,
∠V2OC = Δϴ2, Δϴ2 = |ϴc - ϴ2|

O’

Fig. 8. Finding the length of edge d and the angle ∆θ. Case (a), ∆θ1 and ∆θ2 diverge,
so ∆θ is the sum; case (b), angles converge, so ∆θ is the absolute value of the difference.

Corollary 2. Given: O(0, 0), C(rc, θc), V1(r1, θ1), V2(r2, θ2), OC = rc, OV1

= r1, OV2 = r2, CV1 = r1local, CV2 = r2local, 6 COO’ = θc, 6 V1OO’ =
θ1, 6 V2OO’ = θ2

Find: d, ∆θ = ?
If angles converge, ∆θ = ‖∆θ1−∆θ2‖; if angles diverge, ∆θ = ‖∆θ1‖+‖∆θ2‖
If K > 0, then: If K < 0, then:

cos d = cos r1 cos r2+

sin r1 sin r2 cos∆θ

cosh d = cosh r1 cosh r2–

sinh r1 sinh r2 cos∆θ
(5)

r2

V2

Vi

d V1

C

ri
r1

Δϴi
Δϴ

O
ϴ2

ϴi

ϴ1

di

Polar coordinate system
with a reference point O
V1(r1, ϴ1), V2(r2, ϴ2), vertices
Vi(ri, ϴi), intermediate point
OV1 = r1, OV2 = r2, OVi = ri,
V1V2 = d, object’s edge
V1Vi = di, section of the edge
∠V1OO’ = ϴ1, ∠V2OO’ = ϴ2,
∠ViOO’ = ϴi, ∠OV1Vi = α,
∠V1OV2 = Δϴ, angle between
V1 and V2

∠V1OVi = Δϴi, angle
between V1 and Vi

α

O’

Fig. 9. Finding intermediate points in or-
der to render the edge.

Note: distance d is divided into a
number of equal parts in order to find
the distance di for each of the points
on the edge V1V2. The number of seg-
ments depends on the object tessela-
tion variable.

Corollary 3. Given: O(0, 0), V1(r1, θ1),
V2(r2, θ2), Vi(ri, θi), OV1 = r1,
OV2 = r2, V1V2 = d, V1Vi =
di, 6 V1OO’ = θ1, 6 V2OO’ = θ2,
6 V1OV2 = ∆θ

Find: ri, θi = ?
If K > 0, then: If K < 0, then:

cosα =
cos r2 − cos r1 cos d

sin r1 sin d
cosα =

cosh r1 cosh d− cosh r2
sinh r1 sinh d

(6)

cos ri = cos r1 cos di+

sin r1 sin di cosα

cosh ri = cosh r1 cosh di–

sinh r1 sinh di cosα
(7)

cos∆θi =
cos di − cos r1 cos ri

sin r1 sin ri
cos∆θi =

cosh r1 cosh ri − cosh di
sinh r1 sinh ri

(8)

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_49

https://dx.doi.org/10.1007/978-3-030-22750-0_49

α is calculated to find the angle opposite ri. Then ri and subsequently ∆θi
can be found using the cosine rule (illustrated on Fig. 9). Then to find actual
coordinates of the point Vi, ri should be multiplied by r or k depending on the
value of K; ∆θi should be added to or subtracted from angle θ1, depending on
the direction of the edge d, determined previously.

2.2 Updating object position

 Polar coordinate system with
a reference point O

Ctx(rtx, ϴtx), position of the
object at time x

OCtx = rtx, object’s r
coordinate at time x
C’’0C’’1, geodesic of the
object’s movement trajectory
∠CtxOO’ = ϴtx, object’s β
coordinate at time x
∠OCtxC’tx = βtx, angle of
rotation at time x
∠OCtxC’’1 = γtx, direction of
object’s movement at time x
∠C’’1CtxC’tx = α, object’s
orientation with respect to
geodesic

βt2

ϴt1

ϴt2

ϴt0

rt0

βt0
C’’0

Ct2

O’

βt1

γ t1

O

α

C’t0

C’t1

γ t0

γt2

C’t2

C’’1

rt2

rt1

Ct0

Ct1

α

α

βt2

α
γ t1

βt1

rt2

ϴt1

ϴt2

O ϴt0 O’

C’t2

C’t0

C’t1

C’’1

(a) (b)

α γ t0

Ct0

βt0

α

γt2

Ct2
rt0

rt1

Ct1

C’’0

Fig. 10. Movement of the object along a hyperbolic in Spherical (a) and Hyperbolic (b)
space. Orientation with respect to the geodesic is kept the same (angle α is constant)
if the object is not rotating.

Corollary 4. Given: O(0, 0), Ct0(rt0, θt0), Ct1(rt1, θt1), OCt0 = rt0, Ct0Ct1

= rp, 6 Ct0OO’ = θt0, 6 OCt0C” = γt0, 6 OCt0C’t0 = βt0
Find: rt1, θt1, γt1, βt1 = ?

γt0 should be 0 to π, if calculated value is γt0 > π, take the explemntary
angle. This indicates the movement direction with respect to the reference point.

Let 6 OCt1Ct0 = γ′t1
If K > 0, then: If K < 0, then:

cos rt1 = cos rt0 cos rp+

sin rt0 sin rp cosα

cosh rt1 = cosh rt0 cosh rp+

sinh rt0 sinh rp cosα
(9)

cos∆θ =
cos rp − cos rt0 cos rt1

sin rt0 sin rt1
cos∆θ =

cosh rt0 cosh rt1 − cosh rp
sinh rt0 sinh rt1

(10)

cos γ′t1 =
cos rt0 − cos rp cos rt1

sin rp sin rt1
cos γ′t1 =

cosh rp cosh rt1 − cosh rt0
sinh rp sinh rt1

(11)

α = βt0 − γt0. α is the difference between rotation direction and the geodesic
of movement (C”0C”1), it does not change if the object is not rotating. Hence,
βt1 = γt1 + α. Because γ′t1 and γt1 are supplementary angles, γt1 = Π − γ′t1.

To find the θ coordinate, either subtract or add ∆θ to the θc depending on
whether the angle α or its explementary angle is used for this calculation.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_49

https://dx.doi.org/10.1007/978-3-030-22750-0_49

3 Results

3.1 Implementation

Using the method described above and OpenGL, we created a software capable
of calculating the objects and rendering the vector graphics in a non-Euclidean
space with constant curvature in the range of −1 ≤ K ≤ 1. Fig. 1 shows the
time-lapses of multiple objects in spherical (a), planar (b) and hyperbolic (c)
geometries. They show movement through different geodesics at K = 1, K = 0
and K = −1 respectively. Starting positions as well as shape definitions of each
object are the same across all time-lapses (grid-lines have been created and
rendered as separate objects). The software can calculate the object moving
in arbitrary direction with arbitrary speed as well as starting from arbitrary
position in the space.

Curvature of the world can be modified in real-time using keyboard inputs in
a similar manner to controlling the object’s acceleration and orientation. Another
feature is the cut-off of the world at a distance of N pixels. This can be seen in the
hyperbolic and planar time-lapse images. While these spaces should be infinite,
we chose to limit them in order to keep objects within the boundaries of the
screen (non-shaded area). We created a video [7] displaying the implementation.

3.2 Complexity Analysis

Positions of each vertex need to be calculated, requiring O(v) time, where v is
the number of vertices. Subsequently, intermediate points have to be computed,
requiring O(i) time to find all of the points on a single edge, where i is the
level of tessellation. Complexity to render the world with s number of shapes is
therefore O(s ∗ v ∗ i). The best case would be equal to O(n) complexity, if two of
the terms are negligibly small. The worst case can be approximated to O(n3) if
all terms were comparably large. Spatial complexity for shape rendering is only
O(v ∗ i) as previous shape’s data is rewritten to store the next shape’s data. So
either O(n) in the best case or O(n2) in the worst case.

Only one movement calculation per object is required and the previous po-
sition record is overwritten, both spatial and time complexity is O(n), where n
is the number of objects in the world.

Trigonometric and hyperbolic functions in the calculations are slower to com-
pute than simpler operations, hence additional cost (implementation dependent).
For example the AGM iteration [8] method is faster than the previously common
Taylor series method.

4 Discussion

Implementation does not affect performance up to a certain number of objects
or tessellation amount. The focus was on implementing the method correctly
and having it work continuously under any curvature in the range −1 ≤ K ≤ 1.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_49

https://dx.doi.org/10.1007/978-3-030-22750-0_49

The next step in the project’s development is improving the execution time
using parallelised calculations. Subsequent calculation of the points creates a
bottleneck, which can be solved by performing some calculations directly on the
GPU. Other approaches are considered as well, including lookup tables to speed
up trigonometric calculations, for example, Frank Rochet’s implementation [9];
or finding intermediate points from a geodesic equation.

Potential applications for the software include education about non-Euclidean
geometry (more intuitive than standard projections: Poincare disk and Upper
Half-Plane models); cartography [10] (the engine could be modified to efficiently
convert data into different projections); ecology [11] and climatology [12] (mod-
elling dynamic systems); Astrophysics (modelling systems of cosmological ob-
jects and gravitational fields) and video games (game engine for a real-time
continuous non Euclidean space, unlike HyperRogue [13], which uses step by
step implementation).

References

1. T. L. Heath, Euclid’s Elements. Dover, 1956. (translated).
2. I. Todhunter, Spherical Trigonometry For the use of colleges and schools. Project

Gutenberg License, 1886. (republished November 12, 2006).
3. H. S. Carslaw, The Elements of Non-Euclidean Plane Geometry and Trigonometry.

Longmans, Green and co., 1916.
4. T. Traver, “Trigonometry in the hyperbolic plane,” 2014 (accessed December 2017).

Manuscript.
5. W. Gellert, S. Gottwald, M. Hellwich, H. Kästner, and H. Küstner, The VNR

Concise Encyclopedia of Mathematics, 2nd ed. Van Nostrand Reinhold: New York,
1989. ch. 12.

6. J. Gray, Non-euclidean geometry—A re-interpretation. Historia Mathematica,
1979. 236–258.

7. D. Osudin, C. Child, and Y. Hui-He, “Rendering non-euclidean
space in real-time using spherical and hyperbolic trigonometry,” 2019.
https://youtu.be/A1ZCFh5qfNg.

8. R. P. Brent, “Multiple-precision zero-finding methods and the complex-
ity of elementary function evaluation,” 2010 (accessed August 26, 2018).
http://arxiv.org/abs/1004.3412v2.

9. F. Rochet, “Fast trigonometry functions using lookup tables,” 2004
(accessed August 30, 2018). http://www.flipcode.com/archives/
Fast Trigonometry Functions Using Lookup Tables.shtml.

10. G. Gartner and H. Huang, “Recent research developments in modern cartography
in europe,” Issue 1: EuroCarto 2015, 2015.

11. C. Sutherland, “Modelling non-euclidean movement and landscape connectivity in
highly structured ecological networks,” British Ecological Society, 2014.

12. C. Frei, “Interpolation of temperature in a mountainous region using nonlinear
profiles and non-euclidean distances,” Royal Meteorological Society, 2013.

13. Zeno Rogue Games, “Hyperrogue,” 2019. http://roguetemple.com/z/hyper/.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_49

https://dx.doi.org/10.1007/978-3-030-22750-0_49

