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Abstract. We introduce a method of calculating and rendering shapes
in a non-Euclidean 2D space in real-time using hyperbolic and spherical
trigonometry. We record the objects’ parameters in a polar coordinate
system and use azimuthal equidistant projection to render the space
onto the screen. We discuss the complexity of this method, renderings
produced, limitations and possible applications of the created software
as well as potential future developments.
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Fig. 1. Time-lapse images of multiple objects moving through spherical (a), planar (b)
and hyperbolic (c) 2D space calculated and rendered by the described software

1 Introduction
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Fig. 2. Comparison of parallel lines in the 2D spaces

Non-Euclidean geometry is a
field that studies any space
that arises from changing Eu-
clid’s fifth postulate [1] or
changing the metric require-
ment. In spherical geometry,
Fig. 2 (a), all geodesics (short-
est paths in a non-planar space) intersect: don’t preserve the distance and appear
to ‘bend’ towards each other. In Hyperbolic geometry, Fig. 2 (c), each line has
an infinite number of parallel lines, as they appear to ‘bend’ away from each
other.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_49

https://dx.doi.org/10.1007/978-3-030-22750-0_49


1 
 

 

 

 

 

r 
Θ 

A 

O 

Y 

x 

Fig. 3. Point A with polar coor-
dinates r and θ

We present a method for calculating the
object’s position and its vertices in polar
coordinates using spherical [2] or hyperbolic
trigonometry [3] [4]. A polar coordinate system
of the form (r, θ) is used in this model for all cal-
culations instead of Cartesian coordinates. The
centre of the of the screen is taken as a refer-
ence point O(0, 0) for the distance coordinate,
r, while eastbound is the reference direction for

the bearing coordinate, θ. This allows the same coordinates to be used irrespec-
tive of the currect curvature. In order to render the curved space onto a flat 2D
screen, we are using azimuthal equidistant projection. By definition, distances
and bearing from the centre of the projection are preserved. This works well
with Polar coordinates, projection is intuitive and can be used with no changes
for both spherical and hyperbolic 2D spaces.

2 Method
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Fig. 4. O (0, 0), reference
point; C (rc, θc), position
and local reference point; Vx

(rx, θx), vertices; OO’, refer-
ence direction; CC’, local ref-
erence direction

The calculations are split into two parts: move-
ment of the objects and rendering of the shapes.
The screen (rendering space) is limited to a cir-
cle of an arbitrary size. When the object’s centre
moves past the circumference of the circle, it is
repositioned to the antipodal point on the circle
with the velocity preserved. This is implemented
in order to keep the objects in the visible area on
the screen.

Shape has a list of position vectors for each
vertex in local coordinates with object’s position
being the reference point and reference direction is
taken as the reverse of its position vector (Fig. 4).

2.1 Rendering the shape

Let K ∈ [−1, 1] ⊂ < s.t. K = 0⇒ Euclidean Geometry;
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Fig. 5. Spherical triangle

K > 0⇒ Spherical Geometry, r = 1√
K

Theorem 1. For a sphere of radius r and
hence Gaussian curvature K = 1

r2 and a
spherical triangle on its surface described by
points u, v and w, connected by great circles
that form the edges a, b, c (interpreted as sub-
tended angles) and an angle C (Fig. 5), the
spherical law of cosines [5] states:
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Fig. 6. Hyperbolic triangle

K < 0⇒ Hyperbolic Geometry, k = − 1√
K

Theorem 2. For a hyperbolic plane with
Gaussian Curvature K = − 1

k2 and a hyper-
bolic triangle on its surface described by points
u, v and w, connected by geodesics that form
the edges a, b and c, as well as an angle
C (Fig. 6), the hyperbolic law of cosines [6]
states:

cosh
c
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= cosh
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k
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k
− sinh
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k
sinh

b

k
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Note: To simplify the equations below, all lengths are assumed to have been
divided by r or k depending on the value of K.

 

 

 

 

 

 

 

 

 

  

Polar coordinate system with a 
reference point O (0, 0) 
C(rc, ϴc), object position, 

reference point of local 
coordinate system 

V(rv, ϴv), object’s vertex with 
local coordinates (rlocal, ϴlocal) 

OV = rv, OC = rc, CV = rlocal 
∠VOO’ =  ϴv, ∠VOC = Δϴ,  
∠COO’ =  ϴc, ∠VCC’ =  ϴlocal 
∠OCC’ = α, angle of rotation 
∠OCV = β, angle between rlocal  

and rc 
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Fig. 7. Finding the θ and r coordinates of an object’s vertices through a hyper-
bolic/spherical triangle OCV ; Case (a): θlocal + α < π; case (b): θlocal + α > π

Corollary 1. Given: O(0, 0), C(rc, θc), V(rv, θv), OC = rc, CV = rlocal,
6 COO’ = θc, 6 OCC’ = α, 6 VCC’ = θlocal

Find: rv, θv = ?
If K > 0, then: If K < 0, then:

cos rv = cos rc cos rlocal+

sin rc sin rlocal cosβ

cosh rv = cosh rc cosh rlocal−
sinh rc sinh rlocal cosβ

(3)

cos∆θv =
cos rlocal − cos rc cos rv

sin rcsinrv
cos∆θv =

cosh rc cosh rv − cosh rlocal
sinh rc sinh rv

(4)

In order to find rv, first find β = α + θlocal; if Π < β < 2Π, use the
explementary angle instead to determine to which side of OC the triangle lies.
Depending on that ∆θ is then added to or subtracted from θc to find θv.
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Polar coordinate system with 
a reference point O  

C(rc, ϴc), object position, 
reference point of local 
coordinate system 

V1(r1, ϴ1), object’s vertex 1 
V2(r2, ϴ2), object’s vertex 2 

OV1 = r1, OV2 = r2,  OC = rc,  
CV1 = r1local, CV2 = r2local,  
V1V2 = d, object’s edge 
∠V1OO’ = ϴ1, ∠V2OO’ = ϴ2, 
∠COO’ = ϴc,  
∠V1OC = Δϴ1, Δϴ1 = |ϴc -  ϴ1|, 
∠V2OC = Δϴ2, Δϴ2 = |ϴc -  ϴ2| 

O’ 

Fig. 8. Finding the length of edge d and the angle ∆θ. Case (a), ∆θ1 and ∆θ2 diverge,
so ∆θ is the sum; case (b), angles converge, so ∆θ is the absolute value of the difference.

Corollary 2. Given: O(0, 0), C(rc, θc), V1(r1, θ1), V2(r2, θ2), OC = rc, OV1

= r1, OV2 = r2, CV1 = r1local, CV2 = r2local, 6 COO’ = θc, 6 V1OO’ =
θ1, 6 V2OO’ = θ2

Find: d, ∆θ = ?
If angles converge, ∆θ = ‖∆θ1−∆θ2‖; if angles diverge, ∆θ = ‖∆θ1‖+‖∆θ2‖
If K > 0, then: If K < 0, then:

cos d = cos r1 cos r2+

sin r1 sin r2 cos∆θ

cosh d = cosh r1 cosh r2–

sinh r1 sinh r2 cos∆θ
(5)
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Polar coordinate system 
with a reference point O  
V1(r1, ϴ1), V2(r2, ϴ2), vertices 
Vi(ri, ϴi), intermediate point 
OV1 = r1, OV2 = r2, OVi = ri,     
V1V2 = d, object’s edge 
V1Vi = di, section of the edge 
∠V1OO’ = ϴ1, ∠V2OO’ = ϴ2, 
∠ViOO’ = ϴi, ∠OV1Vi = α, 
∠V1OV2 = Δϴ, angle between  
V1 and V2 

∠V1OVi =  Δϴi,  angle 
between  V1 and Vi 

α 

O’ 

Fig. 9. Finding intermediate points in or-
der to render the edge.

Note: distance d is divided into a
number of equal parts in order to find
the distance di for each of the points
on the edge V1V2. The number of seg-
ments depends on the object tessela-
tion variable.

Corollary 3. Given: O(0, 0), V1(r1, θ1),
V2(r2, θ2), Vi(ri, θi), OV1 = r1,
OV2 = r2, V1V2 = d, V1Vi =
di, 6 V1OO’ = θ1, 6 V2OO’ = θ2,
6 V1OV2 = ∆θ

Find: ri, θi = ?
If K > 0, then: If K < 0, then:

cosα =
cos r2 − cos r1 cos d

sin r1 sin d
cosα =

cosh r1 cosh d− cosh r2
sinh r1 sinh d

(6)

cos ri = cos r1 cos di+

sin r1 sin di cosα

cosh ri = cosh r1 cosh di–

sinh r1 sinh di cosα
(7)

cos∆θi =
cos di − cos r1 cos ri

sin r1 sin ri
cos∆θi =

cosh r1 cosh ri − cosh di
sinh r1 sinh ri

(8)
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α is calculated to find the angle opposite ri. Then ri and subsequently ∆θi
can be found using the cosine rule (illustrated on Fig. 9). Then to find actual
coordinates of the point Vi, ri should be multiplied by r or k depending on the
value of K; ∆θi should be added to or subtracted from angle θ1, depending on
the direction of the edge d, determined previously.

2.2 Updating object position

 Polar coordinate system with 
a reference point O  

Ctx(rtx, ϴtx),  position of the 
object at time x  

OCtx = rtx, object’s r 
coordinate at time x 
C’’0C’’1, geodesic of the 
object’s movement trajectory 
∠CtxOO’ = ϴtx, object’s β 
coordinate at time x 
∠OCtxC’tx = βtx, angle of 
rotation at time x 
∠OCtxC’’1 = γtx, direction of 
object’s movement at time x 
∠C’’1CtxC’tx = α, object’s 
orientation with respect to 
geodesic 
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Fig. 10. Movement of the object along a hyperbolic in Spherical (a) and Hyperbolic (b)
space. Orientation with respect to the geodesic is kept the same (angle α is constant)
if the object is not rotating.

Corollary 4. Given: O(0, 0), Ct0(rt0, θt0), Ct1(rt1, θt1), OCt0 = rt0, Ct0Ct1

= rp, 6 Ct0OO’ = θt0, 6 OCt0C” = γt0, 6 OCt0C’t0 = βt0
Find: rt1, θt1, γt1, βt1 = ?

γt0 should be 0 to π, if calculated value is γt0 > π, take the explemntary
angle. This indicates the movement direction with respect to the reference point.

Let 6 OCt1Ct0 = γ′t1
If K > 0, then: If K < 0, then:

cos rt1 = cos rt0 cos rp+

sin rt0 sin rp cosα

cosh rt1 = cosh rt0 cosh rp+

sinh rt0 sinh rp cosα
(9)

cos∆θ =
cos rp − cos rt0 cos rt1

sin rt0 sin rt1
cos∆θ =

cosh rt0 cosh rt1 − cosh rp
sinh rt0 sinh rt1

(10)

cos γ′t1 =
cos rt0 − cos rp cos rt1

sin rp sin rt1
cos γ′t1 =

cosh rp cosh rt1 − cosh rt0
sinh rp sinh rt1

(11)

α = βt0 − γt0. α is the difference between rotation direction and the geodesic
of movement (C”0C”1), it does not change if the object is not rotating. Hence,
βt1 = γt1 + α. Because γ′t1 and γt1 are supplementary angles, γt1 = Π − γ′t1.

To find the θ coordinate, either subtract or add ∆θ to the θc depending on
whether the angle α or its explementary angle is used for this calculation.
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3 Results

3.1 Implementation

Using the method described above and OpenGL, we created a software capable
of calculating the objects and rendering the vector graphics in a non-Euclidean
space with constant curvature in the range of −1 ≤ K ≤ 1. Fig. 1 shows the
time-lapses of multiple objects in spherical (a), planar (b) and hyperbolic (c)
geometries. They show movement through different geodesics at K = 1, K = 0
and K = −1 respectively. Starting positions as well as shape definitions of each
object are the same across all time-lapses (grid-lines have been created and
rendered as separate objects). The software can calculate the object moving
in arbitrary direction with arbitrary speed as well as starting from arbitrary
position in the space.

Curvature of the world can be modified in real-time using keyboard inputs in
a similar manner to controlling the object’s acceleration and orientation. Another
feature is the cut-off of the world at a distance of N pixels. This can be seen in the
hyperbolic and planar time-lapse images. While these spaces should be infinite,
we chose to limit them in order to keep objects within the boundaries of the
screen (non-shaded area). We created a video [7] displaying the implementation.

3.2 Complexity Analysis

Positions of each vertex need to be calculated, requiring O(v) time, where v is
the number of vertices. Subsequently, intermediate points have to be computed,
requiring O(i) time to find all of the points on a single edge, where i is the
level of tessellation. Complexity to render the world with s number of shapes is
therefore O(s ∗ v ∗ i). The best case would be equal to O(n) complexity, if two of
the terms are negligibly small. The worst case can be approximated to O(n3) if
all terms were comparably large. Spatial complexity for shape rendering is only
O(v ∗ i) as previous shape’s data is rewritten to store the next shape’s data. So
either O(n) in the best case or O(n2) in the worst case.

Only one movement calculation per object is required and the previous po-
sition record is overwritten, both spatial and time complexity is O(n), where n
is the number of objects in the world.

Trigonometric and hyperbolic functions in the calculations are slower to com-
pute than simpler operations, hence additional cost (implementation dependent).
For example the AGM iteration [8] method is faster than the previously common
Taylor series method.

4 Discussion

Implementation does not affect performance up to a certain number of objects
or tessellation amount. The focus was on implementing the method correctly
and having it work continuously under any curvature in the range −1 ≤ K ≤ 1.
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The next step in the project’s development is improving the execution time
using parallelised calculations. Subsequent calculation of the points creates a
bottleneck, which can be solved by performing some calculations directly on the
GPU. Other approaches are considered as well, including lookup tables to speed
up trigonometric calculations, for example, Frank Rochet’s implementation [9];
or finding intermediate points from a geodesic equation.

Potential applications for the software include education about non-Euclidean
geometry (more intuitive than standard projections: Poincare disk and Upper
Half-Plane models); cartography [10] (the engine could be modified to efficiently
convert data into different projections); ecology [11] and climatology [12] (mod-
elling dynamic systems); Astrophysics (modelling systems of cosmological ob-
jects and gravitational fields) and video games (game engine for a real-time
continuous non Euclidean space, unlike HyperRogue [13], which uses step by
step implementation).
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