Accelerating Wild Fire Simulator using GPU

C. Carrillo, T. Margalef, A. Espinosa, A. Cortés

Computer Architecture and Operating Systems Department
Universitat Autonoma de Barcelona, Spain.
{carles.carrillo, tomas.margalef, antoniomiguel.espinosa,
ana.cortes}Quab.cat

Abstract. In the last years, forest fire spread simulators have proven to
be very promising tools in the fight against these disasters. Due to the ne-
cessity to achieve realistic predictions of the fire behavior in a relatively
short time, execution time may be reduced. Moreover, several studies
have tried to apply the computational power of GPUs (Graphic Proces-
sors Units) to accelerate the simulation of the propagation of fires. Most
of these studies use forest fires simulators based on Cellular Automata
(CA). CA approaches are fast and its parallelization is relatively easy;
conversely, they suffer from precision lack. Elliptical wave propagation is
an alternative approach for performing more reliable simulations. Unfor-
tunately, its higher complexity makes their parallelization challenging.
Here we explore two different parallel strategies based on Elliptical wave
propagation forest fire simulators; the multicore architecture of CPU
(Central Processor Unit) and the computational power of GPUs to im-
prove execution times. The aim of this work is to assess the performance
of the simulation of the propagation of forest fires on a CPU and a GPU,
and finding out when the execution on GPU is more efficient than on
CPU. In this study, a fire simulator has been designed based on the ba-
sic model for one point evolution in the FARSITE simulator. As study
case, a synthetic fire with an initial circular perimeter has been used;
the wind, terrain and vegetation conditions have been maintained con-
stant throughout the simulation. Results highlighted that GPUs allow
obtaining more accurate results while reducing the execution time of the
simulations.

Keywords: Wild Fire Simulator, Fire front Propagation, GPU

1 Introduction

The impact and the damage caused by Forest Fires has been increasing signif-
icantly over the last years. In the last decades, several fire spread models have
been developed and implemented in computing simulators to help control centers
in taking the adequate decisions. However, wildfires are complex systems char-
acterized by a stochastic behaviour, with a large number of involved variables.
Accurate simulators tend to take longer execution times. So, their effectiveness
in real-time prediction is reduced. In order to improve the performance of fire
spread simulators, several strategies have been developed to reduce the execu-
tion time without altering the accuracy of the simulations. In this context, some

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-22750-0_46 |

https://dx.doi.org/10.1007/978-3-030-22750-0_46

studies apply multicore architectures by increasing computational power, raising
the number of CPUs, [3], [2], [I]. At the same time, the increase in the compu-
tational power of the Graphical Processing Units (GPUs) has turned them into
an ideal tool for the modelling of complex systems. Different works have been
carried out to apply the computational capacity of GPUs to accelerate the sim-
ulation of forest fire behavior [13], [I1], [5], [8], [9]. These works have focused on
the application on simulators based on Cellular Automata (CA). The main prob-
lem is that the simulators based on the CA approach have low intrinsic accuracy.
Simulators based on the Huygens principle, or Elliptical Wave Propagation, have
higher precision than those based on CA; however, their execution time is higher.
In the present work, we focused on FARSITE (Fire Area Simulator) [6], which
is a forest fire simulator based on the Elliptical Wave Propagation. Two different
parallelizations are proposed; on the one hand, we have extracted the FARSITE
simulation kernel and implemented it in OpenMP (Open Multi- Processing) [4],
which is a set of compiler directives, library routines, and environment variables
that can be used in any multicore CPU. On the other hand, we used CUDA
(Compute Unified Device Architecture) to execute the simulation kernel in GPU.
The aim of this work is to evaluate the performance of the two parallel strategies
and analyse when the execution of one is more efficient than the other. As a first
approach to the problem, a synthetic fire is used, which consists of a circular
front in flat terrain, with constant wind speed, wind direction and the vegeta-
tion conditions throughout the simulation. To be able to compare the different
executions (GPU and CPU) the simulations have been performed with different
time propagation, in order to analyze in which conditions the execution in the
CPU is more efficient than the execution in GPU. This paper is organized as
follows. In section [2]the principal characteristics of FARSITE are presented. Sec-
tion [3] details the methodology used. Section [d] presents the experimental results
and, finally, section [§] summarizes the main conclusions and future work.

2 FARSITE Forest Spread Simulator

FARSITE is a simulator which spreads the front of the fire resolving Rothermel’s
equation [I2]. The Rothermel’s model is formulated in the following way:

R=Ro- (B + G0+ 0, (1)

where Ry represents the rate of spread in a particular point with no wind
and no slope, 7 is the normal direction to the fire perimeter on that particular
point, ¢, is the wind factor and 33 the slope factor. In the Elliptical Wave
Propagation, the perimeter of the fire is divided into series of points, [10]. To
obtain the evolution of the fire perimeter, an ellipse is generated for each point.
The shape of the ellipses is determined by the local characteristics at each point.
In this way, the new perimeter is obtained by joining the obtained ellipses, see
Figure

In FARSITE there are three different parameters which have a direct impact
on the resolution and, therefore, on the execution time [7], see Figure

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-22750-0_46 |

https://dx.doi.org/10.1007/978-3-030-22750-0_46

Distance
Resolution

’4"\ Perimeter

Resolution
(a) Elliptical wave propagation (b) Graphic representation of time step
from 1 to ts. (Black), Perimeter Resolution (Green)

and Distance Resolution (Red), [7].

Fig. 1. Forest Fires Spread Simulator.

— Time Step: The time step is the maximum amount of time that the condi-
tions at a given point are assumed constant so that the position of the fire
front can be projected.

— Perimeter Resolution: The perimeter resolution determines the maximum
distance between points used to define the fire perimeter. The perimeter
resolution controls the ability of a fire perimeter to respond to heterogeneities
occurring at a fine scale.

— Distance Resolution: The distance resolution is the maximum projected
spread distance from any perimeter point. This distance cannot be exceeded
in a time step before new local data are used to compute the spread rate.

The precision of FARSITE is directly proportional to the number of points in
which the fire front is split. The higher the number of points in the fire perimeter
(low Perimeter Resolution), the more detail can be reproduced the fire fronts
behaviour, consequently, the accuracy of the simulation will be better; therefore,
the execution time is longer.

3 Parallelization of Forest Fire Simulator

We extracted the FARSITE simulation kernel and re-implemented in parallel
into the FARSITE body. When the fire is propagated in serial, at each time
iteration the propagation of the points is done sequentially. Consequently, when
the number of points to expand increases, the execution time also increases pro-
portionally. So, simulations with high resolutions provide long execution times,
which limits their use in real situations. In the parallel implementations, the
point propagation was carried out in parallel. At each time iteration, each thread
computes the spread of a single point. When the evolution of all points is fin-
ished, the threads are synchronised, and the spread in the next time iteration is
performed. All calculations were performed in double precision.

In order to parallelize the code on CPU, we have re-written the simulation
kernel code thoroughly with OpenMP. For implementing the code on GPU ac-
celerators, the simulation kernel code has been re-written with CUDA. All data

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-22750-0_46 |

https://dx.doi.org/10.1007/978-3-030-22750-0_46

are copied at the beginning of the simulation from the Host to Device. However,
the perimeter data is copied from the Device to the Host at the final of each
time iteration. Each thread only computes the evolution of one single point. We
are interested in the evolution of the throughput in a series of simulations with
increasing the number of points; we look for the number of points on which the
execution in the GPU is faster than the CPU or when the number of propagated
points per second is higher in the GPU than in the CPU.

As a first approximation, a synthetic fire was used with an initial circular
perimeter. In this particular case, it has been considered a flat terrain, with
homogeneous vegetation and constant wind speed and wind direction during the
whole simulation.

4 Experimental Study and Results

All calculations reported here were performed using a single GPU and single
CPU; we measured the serial CPU performance using a single core, 2, 4 and
6 cores. As execution platform, we have used an Intel(R) Xeon(R) CPU E5-
2620 v3 @ 2.40GHz, with 6 cores and for the GPU simulations, a GeForce RTX
2080 Ti with 4352 CUDA cores was used. The tested propagation times were
1, 2, 5 and 10 hours. The Perimeter Resolution was modified in each execution
by increasing two thousand points at each simulation, so the extreme cases are
2,000 and 184,000 points. The higher the number of points, the higher resolution
employed for the simulation.

Figure [2] displays the number of points per second of the CPU implementa-
tions and the GPU implementation for the different propagation time. In Figure
2(a)| we can see that above 132,000 perimeter points, the GPU implementation
is more efficient than the Serial implementation. However, for this propagation
time, all the OpenMP implementations are faster than the GPU application. It
can observe that we are in front of a compute-bound problem, so the CPU is
quickly saturated in all cases (below 8,000 points), while the number of propa-
gated points per second grows linearly in the GPU implementation. For 1 hour
of propagation time, the OpenMP implementations compute more points per
second, which means that the OpenMP implementations are more efficient than
the GPU implementation. Moreover, we see that the maximum number of prop-
agated points per second decrease faster for all CPU implementations when the
propagation time increase than for the GPU. Figure shows the maximum
propagated points per second for all implementations. It can be seen how the
maximum of propagated points per second for each implementation decreases
when the time of propagation is increased.

Figure shows the number of points from which the efficiency of the
GPU is higher than the efficiency of the CPU. This number depends on the
propagation time of the fire. The longer the time propagation of the simulated
fire is, the less number of perimeter points is necessary so that the execution in
the GPU is faster than the CPU.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-22750-0_46 |

https://dx.doi.org/10.1007/978-3-030-22750-0_46

Point Propagation (1 hour) Point Propagation (2 hours)
250
= .
§ §200
£ E150
H H o
5 5 ez m A S ARSI ESTISRSISANIIESTISRIIES
100 -
N g
g g
g g
5 2 50
i H
- £
0
2 22 42 62 82 102 122 142 162 182 2 22 4 62 82 102 122 142 162 182
Thousands of Points per Execution Thousands of Points per Execution
——GPU =——SERIAL - Threads=2 === Threads=4 = = Threads=6 ——GPU ——SERIAL - Threads=2 ---Threads=4 - - Threads=6
(a) 1 hour of fire propagation. (b) 2 hour of fire propagation.
Point Propagation (5 hours) Point Propagation (10 hours)
250 250
i z
200 S 200
H H
5 F)
E1s0 E 150
s :
] H
2100)
£ £
g g
g g
3 50 g s0
g i
13 [t
0 o E—
2 22 42 62 82 102 122 142 162 182 2 22 42 62 82 102 122 142 162 182
Thousands of Points per Execution Thousands of Points per Execution
——GPU ——SERIAL -~ Threads=2 --- Threads=4 — - Threads=6 ——GPU ——SERIAL - Threads=2 --- Threads=4 — - Threads=6
(c) 5 hour of fire propagation. (d) 10 hour of fire propagation.

Fig. 2. Points per second depending on the number of perimeter points by the CPU
and GPU.

Table 1. Number of points from which the execution in the GPU is more efficient than
the CPU execution in Serial and with 2, 4, and 6 cores.

Propagation Number of Points

time Serial[2 Cores[4 Cores[6 Cores
1 hour 132,000

2 hours 66,000({112,000

5 hours 28,000| 44,000| 70,000| 74,000
10 hours 14,000| 22,000 34,000| 38,000

In Figure [] we can see the speed up of the GPU implementation against
OpenMP implementation with 6 threads when the fire front is split in 184,000
perimeter points. We saw that, when we simulated propagation time below two
hours, the execution in the CPU is faster when 6 threads are used. Nonetheless,
above this propagation time, the execution of the GPU implementation is the
fastest one.

5 Conclusions and Future Work

The computational capabilities of GPUs make them ideal for the simulation of
any complex system. In our case, we have focused on the study of forest fire
propagation simulators based on the Elliptical Wave Propagation, in particular,
FARSITE. In this work, a synthetic fire has been used, with constant wind and

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOIJ10.1007/978-3-030-22750-0_46 |

https://dx.doi.org/10.1007/978-3-030-22750-0_46

Number of Pr d Point per Second Number of Points Vs. Propagation Time

Thousands of Points/Second

Propagation Time (hours) Propagation Time (hours)

—GPU —SERIAL -+ Threads=2 ---Threads=4 - - Threads=6 ——SERIAL - Threads=2 =---Threads=4 = - Threads=6

(a) Number maximum of points per second (b) Number of points from which the GPU
depending on the propagation time. is faster than the CPU.

Fig. 3. Execution performance of the different Forest Fire Spread implementations.

Speed Up
3,5
3
2,5 M

5 10
Propagation Time (hours)

Fig. 4. Speed Up of the GPU implementation versus OpenMP implementation with 6
threads when 184,000 perimeter points are used.

vegetation conditions throughout the simulation. The obtained results demon-
strated that the use of the GPU open a new way of approaching forest fire spread
simulation in the sense that we expect to get more accurate results and, at the
same time, faster and, therefore operationally simulation time.

According to the study carried out, for long fire propagation simulations,
the GPU implementation is more efficient than the OpenMP implementation.
Moreover, GPU is better than CPU when we face compute-bound. We also
highlighted that the number of propagated points per second by the GPU is
much higher than the number of spread points per second in the CPU in all
cases, so the efficiency of the GPU is higher than the CPU.

Future work will be oriented to increase the efficiency of the GPU implemen-
tation and use real fires to determine under in which conditions it is better to
do the propagation of the fire front in the GPU.

Acknowledgments

This research has been supported by MINECO-Spain under contract TIN2017-
84553-C2-1-R and by the Catalan government under grant 2017-SGR-313.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOIJ10.1007/978-3-030-22750-0_46 |

https://dx.doi.org/10.1007/978-3-030-22750-0_46

References

10.

11.

12.

13.

. Artés, T., Cencerrado, A., Cortés, A., Margalef, T.: Core allocation policies

on multicore platforms to accelerate forest fire spread predictions. In: Parallel
Processing and Applied Mathematics - 10th International Conference, PPAM
2013, Warsaw, Poland, September 8-11, 2013, Revised Selected Papers, Part
II. pp. 151-160 (2013). https://doi.org/10.1007/978-3-642-55195-614, http://dx.
doi.org/10.1007/978-3-642-55195-6_14

Brun, C., Margalef, T., Cortés, A., Sikora, A.: Enhancing multi-model forest
fire spread prediction by exploiting multi-core parallelism. The Journal of Su-
percomputing 70(2), 721-732 (2014). |https://doi.org/10.1007 /s11227-014-1168-z,
http://dx.doi.org/10.1007/s11227-014-1168-2

Cencerrado, A., Artés, T., Cortés, A., Margalef, T.: Relieving uncertainty in for-
est fire spread prediction by exploiting multicore architectures. In: Proceedings
of the International Conference on Computational Science, ICCS 2015, Com-
putational Science at the Gates of Nature, Reykjavik, Iceland, 1-3 June, 2015,
2014. pp. 1752-1761 (2015). |https://doi.org/10.1016/j.procs.2015.05.380, http:
//dx.doi.org/10.1016/j.procs.2015.05.380

Dagum, L., Menon, R.: Openmp: an industry standard api for shared-memory
programming. Computational Science & Engineering, IEEE 5(1), 46-55 (1998)

. D’Ambrosio, D., Gregorio, S.D., Filippone, G., Rongo, R., Spataro, W., Trun-

fio, G.A.: A multi-gpu approach to fast wildfire hazard mapping. In: Simula-
tion and Modeling Methodologies, Technologies and Applications - International
Conference, SIMULTECH 2012 Rome, Italy, July 28-31, 2012 Revised Selected
Papers. pp. 183-195 (2012). https://doi.org/10.1007/978-3-319-03581-91 3} https:
//doi.org/10.1007/978-3-319-03581-9_13

Finney, M.A.: Farsite: Fire area simulator—model development and evaluation.
FResearch Paper RMRS-RP-4 Revised 236, Research Paper RMRS—-RP—4 Revised
(1998)

Farsite tutorial website (2007), http://fire.org/downloads/farsite/WebHelp/
using_farsite_help.htm

Gregorio, S.D., Filippone, G., Spataro, W., Trunfio, G.A.: Accelerating wild-
fire susceptibility mapping through GPGPU. J. Parallel Distrib. Comput. 73(8),
1183-1194 (2013). https://doi.org/10.1016/j.jpdc.2013.03.014, https://doi.org/
10.1016/3 . jpdc.2013.03.014

Hoang, R.V.: Wildfire Simulation on the GPU. Ph.D. thesis, university of Nevada
(2008)

Knight, I., Coleman, J.: A fire perimeter expansion algorithm-based on huygens
wavelet propagation. International Journal of Wildland Fire 3 (01 1993)

Ntinas, V.G., Moutafis, B.E., Trunfio, G.A., Sirakoulis, G.C.: Parallel fuzzy cellular
automata for data-driven simulation of wildfire spreading. J. Comput. Science 21,
469-485 (2017). https://doi.org/10.1016/j.jocs.2016.08.003, https://doi.org/10.
1016/3.jocs.2016.08.003

Rothermel; R.: A mathematical model for predicting fire spread in wildland fuels.
Technical Report INT-GTR-115. (Ogden, UT) (1972)

Sousa, F.A., dos Reis, R.J.N., Pereira, J.C.F.: Simulation of surface fire
fronts using firelib and gpus. Environmental Modelling and Software 38, 167—
177 (2012). https://doi.org/10.1016 /j.envsoft.2012.06.006, https://doi.org/10.
1016/j.envsoft.2012.06.006

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-22750-0_46 |

https://doi.org/10.1007/978-3-642-55195-6_14
http://dx.doi.org/10.1007/978-3-642-55195-6_14
http://dx.doi.org/10.1007/978-3-642-55195-6_14
https://doi.org/10.1007/s11227-014-1168-z
http://dx.doi.org/10.1007/s11227-014-1168-z
https://doi.org/10.1016/j.procs.2015.05.380
http://dx.doi.org/10.1016/j.procs.2015.05.380
http://dx.doi.org/10.1016/j.procs.2015.05.380
https://doi.org/10.1007/978-3-319-03581-9_13
https://doi.org/10.1007/978-3-319-03581-9_13
https://doi.org/10.1007/978-3-319-03581-9_13
http://fire.org/downloads/farsite/WebHelp/using_farsite_help.htm
http://fire.org/downloads/farsite/WebHelp/using_farsite_help.htm
https://doi.org/10.1016/j.jpdc.2013.03.014
https://doi.org/10.1016/j.jpdc.2013.03.014
https://doi.org/10.1016/j.jpdc.2013.03.014
https://doi.org/10.1016/j.jocs.2016.08.003
https://doi.org/10.1016/j.jocs.2016.08.003
https://doi.org/10.1016/j.jocs.2016.08.003
https://doi.org/10.1016/j.envsoft.2012.06.006
https://doi.org/10.1016/j.envsoft.2012.06.006
https://doi.org/10.1016/j.envsoft.2012.06.006
https://dx.doi.org/10.1007/978-3-030-22750-0_46

