
Exploring the performance of fine-grained
synchronization and data exchange across
process boundaries on modern multi-core

architectures

Jiri Dokulil[0000−0001−5709−8553] and Siegfried Benkner[0000−0002−6520−2047]

Faculty of Computer Science, University of Vienna, Vienna, Austria
{jiri.dokulil,siegfried.benkner}@univie.ac.at

Abstract. Whether to use multiple threads in one process (MPI+X)
or multiple processes (pure MPI) has long been an important question
in HPC. Techniques like in situ analysis and visualization further com-
plicate matters, as it may be very difficult to couple the different com-
ponents in a way that would allow them to run in the same process.
Combined with the growing interest in task-based programming models,
which often rely on fine-grained tasks and synchronization, a question
arises: Is it possible to run two tightly coupled task-based applications
in two separate processes efficiently or do they have to be combined into
one application? Through a range of experiments on the latest Intel Xeon
Scalable (Skylake) and AMD EPYC (Zen) many-core architectures, we
have compared performance of fine-grained synchronization and data ex-
change between threads in the same process and threads in two different
processes. Our experiments show that although there may be a small
price to pay for having two processes, it is still possible to achieve very
good performance. The key factors are utilizing shared memory, selecting
the right thread affinity, and carefully selecting the way the processes are
synchronized.

Keywords: synchronization · data movement · collocated applications.

1 Introduction

The increasing heterogeneity of HPC architectures has inspired research into
different programming approaches. Task-based runtime systems are one example.
By abstracting the work into many small tasks with dependencies, the runtime
system is given the ability to better control where and when work is being
executed, compared to, for example, MPI where the work to be done by a process
running on a specific node is strictly prescribed by the application code.

With data movement being one of the major contributors to runtime and
power consumption of modern high performance systems, in situ techniques are
becoming an important way to improve efficiency of HPC systems. By processing
data where and when it is generated, we reduce the resources needed to transfer
and store the data.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_45

https://dx.doi.org/10.1007/978-3-030-22750-0_45


2 J. Dokulil, S. Benkner

In this paper, we explore how close we can get to this “best case” scenario
with two separate processes. We explore the effects of using shared memory
(provided by the operating system) and different synchronization mechanisms. It
turns out that even with two separate processes, it is possible to get comparable
performance to the single-process scenario. By correctly setting thread affinity
and synchronizing the two processes, it is possible to even re-use cached data.

Our main contribution is designing, implementing, and running a benchmark
aimed specifically at studying data transfers in the case of two collocated applica-
tions. Our findings can be used to aid the design of in situ analysis/visualization
applications and other systems that require tight coupling of different processes.
The experiments were performed on two different machines, using latest many-
core architectures from Intel (Skylake) and AMD (Zen). The four Intel Xeon
Scalable CPUs in one machine have a total of 80 cores, while the two AMD
EPYC processors in the other server have 64 cores together.

2 Local data exchange

We will use the terms producer and consumer to denote the two pieces of code
responsible for generating (producer) and reading (consumer) the data. Our
main concern is the time it takes the consumer to read the data.

The consumer code might immediately follow the producer code, ensuring it
runs right after the consumer on the same thread. Or, the consumer could be in
a different thread or even in a different process. Then, some synchronization is
required. The consumer needs access to the produced data, which is trivial in a
single process, where all threads have access to the same data. If the consumer
is in a different process, we can use services provided by the operating system
to give the consumer direct access to the producer’s memory with the data.

Ideally, we would want a CPU core to finish generating (and writing) the data
and then switch immediately to the consumer and start reading the data. One
way to achieve this is to set affinity of both the producer thread and the consumer
thread to the same CPU core. This can easily be done, even if they belong to
different processes. We can block the consumer thread on a synchronization
primitive (e.g., a semaphore). When the producer is finished, it unblocks the
consumer’s thread and suspends itself. This forces the scheduler of the operating
system to pick a next thread for execution. As the consumer thread is now active
and affinitized to the core, it is likely to be picked.

3 Benchmark application design

We have implemented different experiments to try and compare different op-
tions for data exchange. They have several things in common. Each experiment
uses a single block of memory for the data. The size of the block can be config-
ured. Writing the data is simulated by treating the block as an array of integers
and writing 1 to each element. When the data is read, a sum of all elements
is produced, to prevent the compiler from optimizing the read away. The sum

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_45

https://dx.doi.org/10.1007/978-3-030-22750-0_45


Title Suppressed Due to Excessive Length 3

is performed in a way that makes it easy for the compiler to vectorize it. We
measure the time it takes the consumer to read the whole data. Where possible,
we also measure the time elapsed between the moment the producer finished
writing the data and the moment the consumer starts reading the data. This
gives us some estimate of the latency generated by the synchronization. Finally,
the experiments can be configured to have the producer and the consumer in-
validate their CPU cache before reading the data, to help us check whether the
caches are actually being used.

Based on the setup, the producer and consumer might reside in the same
thread (then the notification is a NOP and the second for-loop body is moved to
the first for-loop), two threads in the same process, or two different processes.

Single thread To obtain a baseline, we consider the scenario where a single
thread generates the data and then reads it. This is the closest coupling possible
and should provide the best performance, but it may be technically challenging
or impossible to use in practice.

File For comparison, we also tested the setup where the producer writes the
data to a file which is immediately read by the consumer. To minimize noise,
the producer and the consumer are in fact the same thread. The file is written,
closed, and immediately opened for reading.

Two threads, synchronization via atomics The next setup is closer to the
intended two-process layout, but it uses two threads in the same process. The two
threads are synchronized using atomic operations. When the producer finishes
writing the data, it atomically writes a flag (with release semantics) which the
consumer keeps checking atomically (with acquire semantics).

Two processes, synchronization via atomics The setup in this case is the same
as in the previous one, except that the threads belong to different processes
and use a shared memory region to exchange data and for the atomics-based
synchronization.

Two threads, synchronization via promises To test blocking synchronization,
we have used C++11 promises. One promise is used to notify the consumer that
the producer is finished and another promise is used to notify the producer that
the consumer has finished.

Two processes, synchronization via semaphore With two processes, the pro-
mises cannot be used, so a pair of standard named semaphores is used instead,
to achieve the same synchronization pattern.

4 Experimental evaluation

The experiments were performed on two different servers running Linux. One
server contains four Intel Xeon Scalable Gold 6138 processors (Skylake architec-
ture, 20 cores, AVX-512 support, 32 KB L1 data cache per core, 1 MB L2 cache
per core and 27.5 MB last level cache in total). The total number of physical
cores is 80, but all experiments were executed with Hyper-Threading enabled,
the machine supports 160 hardware threads (logical cores).

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_45

https://dx.doi.org/10.1007/978-3-030-22750-0_45


4 J. Dokulil, S. Benkner

0 8 16 24 32 40 48 56 64 72 80 88 96 104112120128136144152160
consumer core index

25

50

75

100

125

150

175

re
ad

 ti
m

e 
(

s)

atomics

dataset
1 process
2 processes

0 8 16 24 32 40 48 56 64 72 80 88 96 104112120128136144152160
consumer core index

promises/semaphores

dataset
1 process
2 processes

Fig. 1. Read time on the four socket Intel server.

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
consumer core index

50

100

150

re
ad

 ti
m

e 
(

s)

atomics
dataset
1 process
2 processes

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
consumer core index

promises/semaphores
dataset
1 process
2 processes

Fig. 2. Read time on the four socket AMD server.

The other server contains two AMD EPYC 7501 processors (Zen architecture,
32 cores, 32 KB L1 data cache per core, 512 KB L2 cache per core and 64 MB
last level cache in total). The total number of physical cores is 64 and there are
128 logical cores.

Unless stated otherwise, the performance figures are read times in microsec-
onds. The number of repetitions (the number of data blocks transferred per
one application execution) is 100. Each application configuration is executed 5
times. The graphs show the average value of these 5 executions and 95% confi-
dence intervals. Unless explicitly specified, the size of the data exchanged by the
producer and the consumer is 1 MB. The producer is always on core 0.

As a baseline, the read time of the single threaded variant is 20.3 µs on the
Intel server and 30.8 µs on the AMD server. If a file is used to exchange data,
the read time is 518.0 µs and 365.1 µs on the Intel and AMD servers respectively.

4.1 Core selection

As we have already explained, both threads used in the experiment are affinitized
to a specific core. The producer always uses core 0. In most experiments, the
measured performance depends on the core selected for the consumer. In general,
there are four different cases: using the same core (0), using the sibling logical
core (1), using another core on the same CPU (2–40 or 2–32 for the Intel and
AMD machines respectively), and using a core on other CPUs. Figures 1 and 2
show performance for different combinations on the Intel and AMD servers.

On the AMD CPUs, the performance of 1 process and 2 processes is compa-
rable. When blocking synchronization is used, performance variability increases,
but the read performance is very similar. On the Intel CPUs, the results are a

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_45

https://dx.doi.org/10.1007/978-3-030-22750-0_45


Title Suppressed Due to Excessive Length 5

0 8 16 24 32 40 48 56 64 72 80 88 96 104112120128136144152160
consumer core index

0.00

0.25

0.50

0.75

1.00

1.25

1.50

la
te

nc
y 

(
s)

atomics
dataset
1 process
2 processes

0 8 16 24 32 40 48 56 64 72 80 88 96 104112120128136144152160
consumer core index

4

6

8

10

12

14

la
te

nc
y 

(
s)

promises/semaphores

dataset
1 process
2 processes

Fig. 3. The latency of synchronization between producer and consumer on the Intel
server.

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
consumer core index

0.0

2.5

5.0

7.5

10.0

12.5

la
te

nc
y 

(
s)

atomics
dataset
1 process
2 processes

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
consumer core index

promises/semaphores

dataset
1 process
2 processes

Fig. 4. The latency of synchronization between producer and consumer on the AMD
server.

bit more interesting, as 2 processes slightly outperform 1 process in many cases,
especially when communicating between different CPUs.

Another important factor to consider is latency. In our case, the time elapsed
between the producer finishes and the consumer starts. In this time, the producer
needs to send a signal to the consumer and the consumer thread needs to start
running. We want to keep it as small as possible in order to not waste resources
by having the consumer wait unnecessarily long. The measured performance is
shown in Figures 3 and 4.

4.2 Data size

Figures 5 and 6 show the effect of the different data sizes. We use core 0 for
producer and core 2 for consumer. Probably the most interesting observation is
that while the performance of using 1 or 2 processes is comparable, the latency

1K
B

2K
B

4K
B

8K
B

16
KB

32
KB

64
KB

12
8K

B
25

6K
B

51
2K

B
1M

B
2M

B
4M

B
8M

B
16

M
B

32
M

B
64

M
B

12
8M

B
25

6M
B

data size

5

10

15

20

25

re
ad

 p
er

fo
rm

an
ce

 (G
B/

s) dataset
1 process
2 processes

1K
B

2K
B

4K
B

8K
B

16
KB

32
KB

64
KB

12
8K

B
25

6K
B

51
2K

B
1M

B
2M

B
4M

B
8M

B
16

M
B

32
M

B
64

M
B

12
8M

B
25

6M
B

data size

0.5

1.0

1.5

2.0

la
te

nc
y 

(
s)

dataset
1 process
2 processes

Fig. 5. The effects of data size, on the Intel server.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_45

https://dx.doi.org/10.1007/978-3-030-22750-0_45


6 J. Dokulil, S. Benkner

1K
B

2K
B

4K
B

8K
B

16
KB

32
KB

64
KB

12
8K

B
25

6K
B

51
2K

B
1M

B
2M

B
4M

B
8M

B
16

M
B

32
M

B
64

M
B

12
8M

B
25

6M
B

data size

10

20

30

40

re
ad

 p
er

fo
rm

an
ce

 (G
B/

s) dataset
1 process
2 processes

1K
B

2K
B

4K
B

8K
B

16
KB

32
KB

64
KB

12
8K

B
25

6K
B

51
2K

B
1M

B
2M

B
4M

B
8M

B
16

M
B

32
M

B
64

M
B

12
8M

B
25

6M
B

data size

0.2

0.4

0.6

0.8

1.0

la
te

nc
y 

(
s)

dataset
1 process
2 processes

Fig. 6. The effects of data size, on the AMD EPYC server.

0 20 40 60 80 100 120 140 160
consumer core index

50

100

150

200

250

re
ad

 ti
m

e 
(

s)

Intel
dataset
cache
no cache

0 20 40 60 80 100 120
consumer core index

AMD
dataset
cache
no cache

Fig. 7. The effects of cache, on the two architectures.

increases more when larger data sets are exchanged between two processes. The
latency increase is probably due to the fact that the data of the consumer thread
is forced out of cache. However, as we use different physical cores, the cache
in question is the L3 cache. The latency increases the most as the data size
approaches the L3 cache size, but it can be seen earlier.

4.3 Cache reuse

Figure 7 compares performance with and without data caching. To examine the
no-cache behavior, extra work is performed by the producer and consumer to
ensure that the caches contain no useful data. A surprising results is that on
the Intel architecture, if the producer and consumer do not reside on the same
core, the read performance increases and it also becomes much more stable. We
believe this is caused by the fact that forcing the data into main memory is
beneficial for data pre-fetching. The data is read in a sequential manner from
the main memory, which is a best-case scenario for the hardware pre-fetcher.
With caching, as the size of the data is the same as the size of the L2 cache, the
data is most likely distributed across L2 and L3 caches, which also explains the
much larger performance variability between executions, which is clearly visible
from the confidence intervals in Figure 7.

5 Related work

Benchmark results and even various benchmarking software is widely available
[2, 4, 7]. Many micro-benchmarks are created in an ad-hoc manner as part of

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_45

https://dx.doi.org/10.1007/978-3-030-22750-0_45


Title Suppressed Due to Excessive Length 7

development of a larger system. Memory performance is widely studied in HPC
[6], including research focused on shared memory performance [3]. Our work
focuses on the specific problem of exchanging data between two processes, which
are closely coupled on a single node.

FastFlow [1] implements a system similar to our proposal for a single process,
although the low-level implementation details are significantly different. We lim-
ited ourselves to the simplest posible C++ and POSIX primitives to eliminate as
many variables as possible and explore the performance limits of the hardware
and the operating system.

6 Conclusion and future work

The experiments confirm that it is possible to get very good data exchange
performance even when two separate processes are used. In case of in situ visu-
alization/analysis, this means that it is possible to achieve very close coupling
of the simulation and visualization/analysis steps, even without actually com-
bining both into a single application. Still, care needs to be taken to achieve
good performance. In our future work, we will apply the results to our work on
dynamic runtime systems and collocated applications [5].

Acknowledgments The work was supported in part by the Austrian Science
Fund (FWF) project P 29783 Dynamic Runtime System for Future Parallel
Architectures.

References

1. Aldinucci, M., Danelutto, M., Kilpatrick, P., Meneghin, M., Torquati, M.: Acceler-
ating code on multi-cores with FastFlow. In: Euro-Par 2011 Parallel Processing. pp.
170–181. Springer Berlin Heidelberg (2011)

2. Bienia, C., Kumar, S., Singh, J.P., Li, K.: The PARSEC benchmark suite: Charac-
terization and architectural implications. In: Proceedings of the 17th International
Conference on Parallel Architectures and Compilation Techniques. pp. 72–81. PACT
’08, ACM, New York, NY, USA (2008)

3. Bolosky, W.J., Scott, M.L.: False sharing and its effect on shared memory perfor-
mance. In: Proceedings of the Fourth symposium on Experiences with distributed
and multiprocessor systems (1993)

4. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S., Skadron, K.: Ro-
dinia: A benchmark suite for heterogeneous computing. In: 2009 IEEE International
Symposium on Workload Characterization (IISWC). pp. 44–54 (Oct 2009)

5. Dokulil, J., Benkner, S.: Adaptive scheduling of collocated applications using a
task-based runtime system. In: 2018 30th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD). pp. 41–48 (2018)

6. McCalpin, J.D., et al.: Memory bandwidth and machine balance in current high
performance computers. IEEE computer society technical committee on computer
architecture (TCCA) newsletter 2(19–25) (1995)

7. Sakalis, C., Leonardsson, C., Kaxiras, S., Ros, A.: Splash-3: A properly synchronized
benchmark suite for contemporary research. In: 2016 IEEE International Sympo-
sium on Performance Analysis of Systems and Software (ISPASS) (2016)

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_45

https://dx.doi.org/10.1007/978-3-030-22750-0_45

