
The performance prediction and improvement of
SPH with the interaction-list-sharing method on

PEZY-SCs

Natsuki Hosono1,2[0000−0002−6638−7223] and Mikito Furuichi1

1 Japan Agency for Marine-Earth Science and Technology, 3173-25, Showa-machi,
Kanazawa-ku, Yokohama, Kanagawa, 236-0001, Japan

2 RIKEN Center for Computational Science, 7-1-26 Minatojima-minami-machi,
Chuo-ku, Kobe, Hyogo 650-0047, Japan

Abstract. The demands for the optimization of particle-based methods
with short-range interaction forces such as those in smoothed particle
hydrodynamics (SPH) is increasing, especially for many-core architec-
tures. However, because particle-based methods require large amount
of memory access, it is challenging to obtain high efficiency for low-
byte/FLOP many-core architectures. Hence, an efficient technique, the
so-called “multiwalk” method, was developed in an N -body gravitational
field. The key of the multiwalk method is in sharing of the interaction
lists with multiple particles to offer an efficient use of the cache memory
in the double-loops operation for calculating the interactions and reduc-
ing the main memory access. However, such performance improvement
is not clear for the problems with short-range interaction forces such
as those in SPH. In this paper, we proposed a theoretical performance
model to examine the tradeoff relations between the memory and the
cost of floating point operations to optimise the SPH code. We also val-
idated the model with the wall-clock time spent on the PEZY-SCs (SC1
and SC2).

Keywords: MIMD processors · smoothed particle hydrodynamics

1 Introduction

Scientific computing is a common technique to solve complex problems which
are hard to carry out by laboratory experiments. One important example is that
of numerical hydrodynamics for solving fluid-motion problems. The smoothed
particle hydrodynamics (SPH) [1,2] is one of the most widely accepted particle-
based method which has advantages for problems with large deformations of
fluid surface.

One of the disadvantages of particle-based methods compared to mesh-based
methods is the calculation cost. When N particles are introduced into a system,
the construction cost of interaction lists for all particles would be O(N2) which
prevents us from performing large-scale and/or high-resolution numerical sim-
ulations. A common technique to speed up calculations is to use a many-core

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_40

https://dx.doi.org/10.1007/978-3-030-22750-0_40

device which is a peripheral unit to CPUs that has a number of microprocessors.
The use of many-core devices for SPH simulations poses an interesting challenge
in the high-performance computing [3,4]. However, it is not trivial to obtain high
efficiency of computation for particle-based methods with recent many-core de-
vices, because a native implementation shows intensive memory access cost com-
pared to that of floating point operations and easily suffers from the memory-
bandwidth problem especially in many-core devices with low-byte/FLOP.

One of the clever techniques to address the above-mentioned problem is the
“interaction-list-sharing” method that was first developed for the N -body grav-
itational field problem [5, 6]. Let us consider a “group” of particles (i-particles)
located close to each other such that they have very similar interaction lists. To
calculate the force acting on the i-particles, we need to “sweep” their interac-
tion lists. The simplest implementation of this step is to use a double-loop: the
loop sweeping particles in the interaction list inside the loop for the number of
i-particles in the group. During this process, the size of the data transfers from
the main memory can be reduced, because the data on the cache memory can
be reused multiple times for each i-particle in the group.

Because SPH is a particle-based method, the interaction-list-sharing method
can be applied. However, gravitational force is a long-range force; any pairs of
two particles interact with each other even if they are infinitely distant. On the
other hand, SPH involves a short-range force: a particle interacts only with its
surrounding particles. Consider Ni particles that share one “shared” interaction
list. When we increase Ni, the number of main memory accesses decrease and
the size of the shared interaction list increases. However, when we set a large
Ni two particles can be assigned to the same group despite them having largely
different interaction lists. Such a situation results in an increase of unnecessary
computational cost.

These tradeoff relations indicate that there should be a “desirable” value
of Ni that minimises the wall-clock time spent on a many-core device which
would depend on the choice of the SPH kernel and the computing device we
use. Hence, in this paper, we built a model to predict the optimal value of Ni

for the efficient computation on the many-core devices. Our performance model
depends on the bandwidth and FLOP/s of the device, and arithmetic intensity of
the SPH kernel. To validate the proposed model, we performed a benchmark test
utilising PEZY Computing’s PEZY-SC, which won the 1st place in GREEN500
of November 2018.

This paper is organized as follows. In Section 2, we briefly introduce the SPH
method and proposed performance-prediction model. In Section 3, we outline the
overall procedure of the interaction-list-sharing method for SPH. In Section 4,
we show the validated result. In Section 5, we conclude this study.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_40

https://dx.doi.org/10.1007/978-3-030-22750-0_40

2 Methods

In the standard SPH method, the equation of motion is formulated as follows

∆vi

∆t
= −

∑
j

mj

(
pi
ρ2i

+
pj
ρ2j

)
∇iW (|rj − ri|;hij), (1)

where v, t, m, p, ρ, r and h are the velocity, time, the mass, the pressure, the
density, the position, and the smoothing length that determines the size of an
SPH particle, respectively. The subscript i indicates the label for each particle.
hij is the arithmetic mean of h between particle i and j. Hereafter, we only focus
on the performance of Eq. (1) because its computational cost is dominant in the
general SPH solver.

The function W is the so-called “kernel function”. Herein, we used the Wend-
land C2 kernel:

W (r, h) =
21

2π

(
1− r

Hh

)4
+

(
1 + 4

r

Hh

)
, (2)

where (·)+ := max(·, 0). Note that H is a parameter that determines the cutoff
size of the kernel function.

Hereafter, a particle that receives moments from its surrounding particles
is referred to as i-particle, whereas the particles that give moments to an i-
particle are referred to as j-particle. To calculate Eq. (1), an i-particle must
have its pi, ρi, hi and ri, whereas a j-particle must have its mj , pj , ρj , hj and rj .
Assuming double precision, the sizes of an i-particle (Si) and a j-particle (Sj)
were specified as 8 × 6 = 48 and 8 × 7 = 56 bytes, respectively. The number of
arithmetic operations for one interaction (Narith) is 70, assuming that division
and square root are 8 times more expensive than the basic arithmetic operations.

For building the interaction lists, we employed a framework named Framework
for Developing Particle Simulator (FDPS [7]). FDPS takes full responsibil-
ity for the construction of interaction lists in parallel. The parts that the users
must take care of are the kernel code that works on a many-core device and
the communication between the host and the device. FDPS uses the tree method
to construct interaction lists, which allows us to reduce the computational cost
from O(N2) to O(N log8 N) [5,8,9]. After the constructions of interaction lists,
FDPS provides the array of i-particles and their interaction lists to the kernel
code written by the user. In the interaction-list-sharing method, FDPS makes an
aggregation of groups of i-particles and their interaction lists for sending to a
single many-core device. Then, the many-core device calculates interactions for
particles in several groups simultaneously.

To predict performance improvement using the interaction-list-sharing method,
we propose the following theoretical cost model. Consider the double-loop oper-
ations to update i-particles with j-particles. A particle in a group of Ni particles
shares potentially interacting Nj particles with other particles in the same group.
The number Nj depends on Ni and the kernel function’s cutoff radius H. The
cost for the loop operations (C) contains the memory cost to load Nj j-particles

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_40

https://dx.doi.org/10.1007/978-3-030-22750-0_40

(Cload), to store Ni i-particles (Cstore), the arithmetic cost for Ni ×Nj pairs of
interactions (Carith), and other costs (Cothers) (e.g., the kernel launching time).
Those are summarised as follows:

C = Cload + Cstore + Carith + Cothers, (3)

Cload =
NjSj

B
, Cstore =

NiSi

B
, Carith =

NiNjNarith

F
, (4)

where B and F are the memory-bandwidth and the FLOP/s of a device, respec-
tively. Hence, the cost to update a single particle deviated from the result with
Nj = 0 can be written as

C

Ni
− Si

B
=

1

B

(
Nj

Ni
Sj +

B

F
NjNarith

)
. (5)

Here we assumed that Cothers is negligible and can be excluded. This cost model
shows that the increase of Ni results in the decrease of the memory access ∝
Nj/Ni and the increase of the arithmetic costs (∝ Nj) to update a single particle.
Note that Nj is calculated by counting the number of j-particles inside the
spheres centred at each Ni particle position with a radius Hh. Eq. (5) indicates
that for a given particle-based method, the dependence of the cost to update
one particle can be characterized by the inverse of FLOP/byte (B/F). The size
of the parameter H is generally chosen between 2.1 and 3.1.

To validate our performance predictions, we tested two PEZY-SC devices,
viz., PEZY-SC1 and PEZY-SC2 which are MIMD-type architectures. The band-
width and FLOP/s for SC1 are B = 150 GB/s and F = 1.50 TFlops, whereas
for SC2 they are B = 102 GB/s and F = 4.09 TFlops, respectively. Note that
PEZY-SC1 does not have floating operation units for division in double preci-
sion. Thus, for the PEZY-SC1, the approximate technique are used for square
root operations [10] with double precision. For division, we first calculate the di-
vision with single precision and then apply Newton-Rhapson method to convert
the result to double precision.

3 Results

In this section, we show the results of the validation tests. We put 106 SPH
particles in cubic lattice with periodic boundary condition so that all particles
have the same number of neighbour particles. All calculations are performed
with double precision.

Figure 1 shows the predicted wall-clock time by our model and its dependence
on Ni. We showed two cases; one is the high B/F = 0.5 case (K computer) and
another is the low B/F = 0.025 case (PEZY-SC2). With the cases of PEZY-
SC2 with H = 2.1 and 3.1, the curves show a gradual decrease of the wall-clock
time with the Ni increases until Ni ≃ 32 and then, the wall-clock time increase
for Ni > 64. This result suggests that the interaction-list-sharing method with
Nopt

i ≃ 32 is a reasonable choice, where Nopt
i is the optimal choice for Ni.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_40

https://dx.doi.org/10.1007/978-3-030-22750-0_40

10-3

10-2

10-1

100

20 21 22 23 24 25 26 27 28

w
al

l c
lo

ck
 ti

m
e

[s
ec

]

of i-particle

PEZY-SC2 H=2.1
PEZY-SC2 H=3.1
PEZY-SC2 H=6.1

K H=2.1

Fig. 1. Theoretical wall-clock time for PEZY-SC2 and K computer. The horizontal
axis indicates Ni. The black arrow at the top of the figure indicates Ni to minimise
predicted wall-clock time for the cases with H = 2.1 and 3.1. The green arrow also
indicates optimal Ni, but for H = 6.1. The solid black, red, and green curves represent
the predicted wall-clock time for the PEZY-SC2 for the cases withH = 2.1, 3.1, and 6.1,
respectively. The dashed blue curve represents the predicted result with K computer
and H = 2.1.

However, in the case of H = 6.1, the optimal choice becomes Nopt
i ≃ 64. Nopt

i

is found to increase with the kernel radius H (see two arrows in Fig. 1). The
region Ni < Nopt

i indicates that the efficiency of the device is limited by the
memory-bandwidth, whereas in the region Nopt

i < Ni, the efficiency is limited
by floating-point operations. Hence, Nopt

i increases as H increases.

Figure 1 also shows that the shape of the performance curve depends on
a computer architecture characterized by B/F . For example, the blue dashed
line shows the result with a high B/F = 0.5 architecture that predicts the
performance in a K computer. The implementation of the interaction-list-sharing
method does not result in a performance improvement because the predicted
wall-clock time monotonically increases against Ni. In the case of B/F = 0.5,
the wall-clock time is always limited by floating-point operations which means
that the interaction-list-sharing technique is not efficient. Hence, Nopt

i would
decrease as the B/F of a device increases.

The comparison between the predicted wall-clock time and the measured
value are shown below. The results of the benchmark tests for PEZY-SC2 are
shown in Fig. 2a. Our cost model characterized by B/F successfully captures

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_40

https://dx.doi.org/10.1007/978-3-030-22750-0_40

10-3

10-2

10-1

100

20 21 22 23 24 25 26 27 28

(a) PEZY-SC2

w
al

l c
lo

ck
 ti

m
e

[s
ec

]

of i-particle

Measured H=2.1
Measured H=3.1

Theoretical H=2.1
Theoretical H=3.1

10-3

10-2

10-1

100

20 21 22 23 24 25 26 27 28

(b) PEZY-SC1
w

al
l c

lo
ck

 ti
m

e
[s

ec
]

of i-particle

Measured H=2.1
Measured H=3.1

Theoretical H=2.1
Theoretical H=3.1

Fig. 2. The theoretical and measured wall-clock time for (a)PEZY-SC2 and (b)PEZY-
SC1. The horizontal axis indicates the size of a group Ni. The solid black and red lines
indicate the predicted wall-clock times for H = 2.1 and 3.1, respectively. The black and
red circles indicate the measured wall-clock times for H = 2.1 and 3.1, respectively.

the trends of the predicted performance curve and predicts the improvement by
using the interaction-list-sharing method. For example, the numerical experi-
ment with H = 2.1 shows the 75% cost reduction when using Ni = 32 compared
to Ni = 1, whereas our model predicts the 61% cost reduction with Ni = 32
compared to Ni = 1. Conversely, the observed cost in the numerical experiment
is approximately 2 times larger than the theoretical cost due to approx. 50%
efficiency of computation against theoretical peak performances.

Figure 2b shows a result of performance analysis with PEZY-SC1. The shape
of the prediction curve is characterized by B/F ; thus, our model predicts a
smaller Nopt

i than that of PEZY-SC2. The measured wall-clock time shows that
Nopt

i for PEZY-SC1 is 4, which is consistent with our prediction.

4 Conclusion

This paper examined the impact of the interaction-list-sharing method for SPH
simulation. To predict the performance improvement quantitatively, a theoreti-
cal cost model was proposed. Through a series of benchmark tests, the proposed
model was validated as a scaled performance model successfully suggesting the
optimal interaction-list-sharing sizes for problems with a different interaction
range H in various many-core architectures, including the MIMD-type architec-
ture. While it appears not to be useful for high B/F machines, the interaction-

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_40

https://dx.doi.org/10.1007/978-3-030-22750-0_40

list-sharing method can be a powerful optimization technique for accelerating
particle simulations with short-range interactions especially for low B/F many-
core architectures that are widely used in the modern devices.

In this paper, we focus on the optimization of the SPH method; however,
the proposed approach to evaluate the performance improvement can be applied
to other short-range methods. If we have a typical byte size of a particle, the
number of arithmetic operations and the number of j-particles, then the optimal
choice of Ni and the computational performance for a given many-core device
can be predicted. Hence, we conclude that our prediction model can have a broad
utility.

Acknowledgment

We used the super computer Shoubu system B at RIKEN. This work was sup-
ported by Post-K Issue 3 “System for Integrated Simulation of Earthquake and
Tsunami Hazard and Disaster”.

References

1. R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics - Theory
and application to non-spherical stars. Monthly Notices of the Royal Astronomical
Society, 181:375–389, November 1977.

2. L. B. Lucy. A numerical approach to the testing of the fission hypothesis. The
Astrophysical Journal, 82:1013–1024, December 1977.

3. D. Nishiura and H. Sakaguchi. Parallel-vector algorithms for particle simulations
on shared-memory multiprocessors. Journal of Computational Physics, 230(5):1923
– 1938, 2011.

4. D. Nishiura, M. Furuichi, and H. Sakaguchi. Computational performance of a
smoothed particle hydrodynamics simulation for shared-memory parallel comput-
ing. Computer Physics Communications, 194:18 – 32, 2015.

5. J. E. Barnes. A modified tree code: Don’t laugh; It runs. Journal of Computational
Physics, 87:161–170, March 1990.

6. T. Hamada, T. Narumi, R. Yokota, K. Yasuoka, K. Nitadori, and M. Taiji. 42 tflops
hierarchical n-body simulations on gpus with applications in both astrophysics and
turbulence. In Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, pages 1–12, Nov 2009.

7. M. Iwasawa, A. Tanikawa, N. Hosono, K. Nitadori, T. Muranushi, and J. Makino.
Fdps: A novel framework for developing high-performance particle simulation codes
for distributed-memory systems. In Proceedings of the 5th International Workshop
on Domain-Specific Languages and High-Level Frameworks for High Performance
Computing, WOLFHPC ’15, pages 1:1–1:10, New York, NY, USA, 2015. ACM.

8. J. Barnes and P. Hut. A hierarchical O(N log N) force-calculation algorithm.
Nature, 324:446–449, December 1986.

9. L. Hernquist and N. Katz. TREESPH - A unification of SPH with the hierarchical
tree method. The Astrophysical Journal Supplement, 70:419–446, June 1989.

10. D. Kushner. The wizardry of id [video games]. IEEE Spectrum, 39(8):42–47, Aug
2002.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_40

https://dx.doi.org/10.1007/978-3-030-22750-0_40

