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Abstract. Process mining is gaining significant importance in the health-
care domain, where the quality of services depends on the suitable and
efficient execution of processes. A pivotal challenge for the application of
process mining in the healthcare domain comes from the growing impor-
tance of multi-centric studies, where privacy-preserving techniques are
strongly needed.
In this paper, building on top of the well-known Alpha algorithm, we in-
troduce a distributed process mining approach, that allows to overcome
problems related to privacy and data being spread around. The intro-
duced technique allows to perform process mining without sharing any
patients-related information, thus ensuring privacy and maximizing the
possibility of cooperation among hospitals.
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1 Introduction

Process Mining (PM) is an emerging topic aimed at building organizational
process representations from real data [3]; it allows, for instance, to identify bot-
tlenecks and undesired or unsuspected processes’ paths. Healthcare represents a
challenging domain for PM: there is a remarkable cultural gap between clinicians
and computer scientists stakeholders; each event can have different meanings de-
pending on the clinical perspective, the specific aim, the period of time or the
patient it refers to. Furthermore, the psychology of patients and their response
to therapies and drugs can be extremely unpredictable.

The medical sciences generate an ever increasing amount of medical evi-
dence and clinical variables potentially able to play a key role in controlling
diseases or in predicting toxicities. For this reasons, due to the rising number
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of covariates but the limited number of patients that can be enrolled for each
hospital or research center, the trend is to move towards multi-centric clinical
trials [7, 6]. A PM investigation exploiting multi-centric data sources would be
able to extract more evidence and trends, to highlight organizational differences
between participating centers, and to show different ways to cope with daily
clinical and administrative issues. The perspective of Process Mining applied on
different institutional data sources gives rise to problems related to data own-
ership and patients’ privacy. The former concerns the need to merge all the
data before beginning the investigation: which is something that can, for in-
stance, put a fraudulent data manager in the position to maliciously exploit his
or her role; the latter concerns one of the most pivotal constraint in managing
clinical data, which is to cope with heterogeneous laws and different, country-
dependent requirements. The best way to avoid any privacy-related issue, while
still exploiting multi-centric data, is to avoid sharing clinical data among differ-
ent hospitals, and perform analysis and training of algorithms by sharing only
few aggregate parameters among hospitals and guaranteeing the global conver-
gence (consensus) to an acceptable shared model. This paradigm is commonly
termed distributed learning [8, 5]. While a number of approaches have been pro-
posed to perform distributed machine learning, there is a lack of approaches
for performing distributed multi-centric PM, where patients’ privacy and data
ownership are ensured and protected.

In this paper, we introduce the idea of distributed process mining, by focus-
ing on one of the most well-known algorithms for process discovery: the Alpha
algorithm [1]. This algorithm represents a milestone in the history of process
discovery algorithms. Due to its simplicity it is widely adopted for describing
the basic dynamics of process discovery, and it provides an invaluable ground
for describing how distributed process mining can be performed.

2 Alpha Algorithm

The Alpha algorithm (AA) is one of the most well-known algorithms for process
discovery [1]. It is widely appreciated for its simplicity, and it provides a very
good ground for understanding how to move the first steps in process discovery.

A key concept on which the AA is based is the idea of the Footprint Matrix
(FM), which is a squared matrix containing the ordering relations between pairs
of events in the event log traces. In order to build this matrix, the following
Log-Based ordering relations have to be defined. Given an event log L composed
by a set of traces L = {σi}, the relation > allows to express if a symbol b follows
another symbol a: it is then possible to define that a > b if, in at least one trace
in L, in the list of terms t, a appears before b. Formally:

a > b⇔ ∃σi = (t1, t2, .., tn) ∧ j ∈ {1, .., n− 1} ⇒ tj = a ∧ tj+1 = b (1)

Using > it is possible to define three other relations: →, ] and ‖, as:
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Algorithm 1 The Alpha algorithm, given an event log L and a set of traces σ.

1: TL = {t ∈ T/∃σ∈Ltεσ}
2: TI = {t ∈ T/∃σ∈Lt = first(σ)}
3: TO = {t ∈ T/∃σ∈Lt = last(σ)}
4: XL = {(A,B)/A ⊆ TL ∩ A 6= ø ∧ B ⊆ TL ∧ A 6= ø ∧ ∀a∈A∀b∈Ba →L

b ∧ ∀a1,a2∈Aa1]La2 ∧ ∀b1,b2∈Bb1]Lb2}
5: YL = {(A,B) ∈ XL/∀(A′,B′)∈XL

A ⊆ A′ ∧B ⊆ B′ ⇒ (A,B) = (A′, B′)}
6: PL = {p(A,B )/(A,B) ∈ YL} ∪ {iL, oL}
7: FL = {(a, p(A,B ))/A,B ∈ Y ∧ a ∈ A} ∪ {(p(A,B ), b)/(A,B) ∈ Y ∧ b ∈ B} ∪
{(t, oL)/t ∈ TO}

8: α(L) = (PL, TL, FL)

a→ b⇔ a > b ∧NOT (b > a) (2)

a]b⇔ NOT (a > b) ∧NOT (b > a) (3)

a‖b⇔ a > b ∧ b > a (4)

For example, given the event log L = {< a, b, c, d >,< a, c, b, d >,< b, c >},
the following ordering relations can be specified:

– a→ b, because in the first trace b follows a but the opposite never happens
(in the second trace a is not after b).

– b‖c, because b→ c in the first and the third traces but b← c in the second.
– a]d because a and d never appear next to each other.

Given the specified ordering relations, the FM can then be built for the con-
sidered event log L. For the considered example, the FM would look as follows:

a b c d
a ] →→ ]
b← ] ‖ →
c ← ‖ ] →
d ] ←← ]

The Alpha algorithm is summarized in eight steps, shown in Algorithm 1.
For a detailed description of the algorithm, the interested reader is referred

to [2]. For the sake of conciseness, here we provide an overview of the main
steps of the Alpha algorithm. In a nutshell, the steps indicated in Algorithm 1
aims: (1) to build the set of symbols adopted in the traces; (2) and (3) to build,
respectively, the initial and final transitions; (4) by considering the Footprint
Matrix, it is possible to find the groups of symbols which are in a ] relation
among them and in a ← relation with all the subsequences (which, again, are in
a ] relation among them); (5) to reduce the set of the previous set of groups and
build the set of states; (6) to define the arcs between couples of items identified
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in the previous step; (7) to join the arcs with the states; (8) to compose the
result and return the structure of the Petri net. The Petri net summarizes the
process mined by the algorithm, and can then be exploited for the PM purposes.
It should be noted, however, that states in the Alpha algorithm are mapped into
nodes of the Petri net. While this can be confusing, this is due to the fact that
the notion of state of a Petri net refers to the position of the markings. The
interested reader is referred to [9] for an extensive description of Petri nets.

It can be observed that the Alpha algorithm needs only a multi-set of traces
comprising exclusively activity labels: the information about users, the data arti-
facts such as clinical files, or the indications about the premises where processes
are carried out, are completely unnecessary to the Alpha algorithm. In such
a setting, the reader may object that privacy would not be violated by freely
circulating traces (maybe pre-filtered in order to show only literals encoding ac-
tivity labels) and subsequently join them. At a closer look, however, it becomes
apparent that a traditional man-in-the-middle attack can violate the privacy of
patients. If the attacker has knowledge (even partial) about the way in which
activity labels are encoded, traces can be quickly converted into the correspond-
ing ordered sequence of clinical activities. At this point, patients can be matched
with sequences in cases where even a small subsequence of activities is known
to the attacker, effectively allowing the attacker to have a complete overview of
the health record of the patient.

3 Distributed Alpha Algorithm

It is easy to observe that the Alpha algorithm only requires the FM, TL, TI , and
TO sets to perform the process discovery task. Therefore, the event logs do not
need to be considered and shared during the computation.

The FM represents an aggregation of the original data, that is generally ef-
fectively hiding single patient’s pathways. In a canonical non-privacy-preserving
multi-centric study, a data manager is required to merge the different event logs
Li collected from each of the participating center i, into a single event log L,
and builds a single Footprint Matrix FM(L). The Alpha algorithm can then be
applied to compute the global Petri net PN . Here we introduce how to distribute
the Alpha algorithm computation.

Each center locally computes its own FM(Li) and sends it, instead of the
event log Li, to the master node. In this way, the master can only see an aggre-
gation of the data, and has no access to the individual traces. Subsequently, the
master adds the FM(Li) by a relation ⊕ in order to obtain:

FM(L1)⊕FM(L2)⊕...⊕FM(Ln) = FM(L) (5)

At this point, having FM(L), the master node can compute the Alpha al-
gorithm following the traditional approach shown in Algorithm 1. It is therefore
pivotal to define a relation ⊕ satisfying the property:

FM(La ∪ Lb) = FM(La)⊕FM(Lb) (6)
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To understand how this relation should work, in the following we will analyze
the behavior of each of the relations involved in the Footprint matrix, with
particular regards to matrices composition.
Relation →: The relation a → b, requires that the symbol a appears at least
once immediately before b, and that b never happens immediately before a. It
is easy to show that this relation is associative with respect to the composition
of event logs. Given two event logs Lj and Lk, if a →t1 b in Lj and a →t2 b in
Lk, it follows that a→t1∪t2 b in Lj

⋃
Lk, because the Condition 2 is preserved.

Again, (b) if a →t1 b and a]t1b the condition holds, because it requires at least
one occurrence. In the case (c) of a →t1 b and a‖t1b the situation is different,
because a‖t1b introduces an occurrence of b > a, so the new relation between a
and b becomes a‖t1b (see Equation 4). The last situation is a→t1 b and a←t2 b
where evidently the result is a‖t1b, because of 4. The case of ← is trivial.
Relation ]. The relation a]b requires (see Equation 3) that a and b never occur
adjacently in the traces. This means that in composing ] with ←, → or ‖, the
result becomes respectively ←, → or ‖.
Relation ‖. Once two symbols are in relation of ‖ for Lj , the new evidence
of the existence of a ← or → relation in Lk, does not change the more general
relation ‖ in Lj

⋃
Lk between the two symbols. The same holds for ], so the

composition of ‖ and ] returns ‖.
Missing Symbols. It is expected that not all the symbols in Lj appear also
in Lk, and vice versa. In this case the only definition which holds is 2, and the
corresponding symbols can be paired with ].
The relations ⊕ and ⊕ We can define the relation ⊕ to join the contribute
of different event logs Lj and Lk according to the following rules:

⊕ ] →← ‖
] ] →← ‖
→→→ ‖ ‖
← ← ‖ ← ‖
‖ ‖ ‖ ‖ ‖

In particular: ] is a neutral element for the relation ⊕; ‖ is an absorbing
element for the relation ⊕.

Because the relation ⊕ works only with pairs of symbols, to operate with
Footprint matrices we can define ⊕ as:

FM(LT ) = FM(LA)⊕FM(LB)

where the i, j element of FM(LT ) is equal to FM(LA)i,j ⊕ FM(LB)i,j and
FM(LA) and FM(LB) have the same symbols ordered in the same rows/columns.

In other words, ⊕ operates on matrices applying ⊕ to each corresponding ele-
ment of the two given input matrices. In the case of missing values, for example
if FM(LB) does not have the symbol z which appear in FM(LA), the column
and the row of z should be added in FM(LB) in order to calculate FM ′(LB)
which have, in the same position of FM(LA), the missing event related to the
other with ].
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Example 1. In order to give a practical example, let us consider the case of two
event logs: Lj = {< a, b, c, d >,< a, c, b, d >} and Lk = {< b, c >}. Starting
from the two logs, we are interested in generating the FM of L = Lj∪k.

By applying the relations defined in Equations 2, 3, and 4, for Lj and Lk, the
corresponding Footprint matrices FM(Lj) and FM(Lk) would be, respectively:

FM(Lj)
a b c d

a ] →→ ]
b← ] ‖ →
c ← ‖ ] →
d ] ] ←←

FM(Lk)
b c

b ] →
c ← ]

It is easy to notice that FM(Lk) is smaller then FM(Lj), due to missing
symbols in the corresponding event log Lk. In order to obtain matrices of the same
shape and size, FM ′(Lk) has to be calculated, by filling the rows and columns
corresponding to missing symbols with the ] relation, following the discussion
provided in Section 3. As the matrix FM(Lj) already includes all the symbols
contained in any of the event logs, there is no need to manipulate it. It is now
possible to calculate FM = FM(Lj)⊕FM ′(Lk). The resulting matrix would then
be as follows.

FM(Lj)
a b c d

a ] →→ ]
b← ] ‖ →
c ← ‖ ] →
d ] ←← ]

⊕

FM ′(Lk)
a b c d

a ] ] ] ]
b ] ] → ]
c ] ← ] ]
d ] ] ] ]

=

FM(L)
a b c d

a ] →→ ]
b← ] ‖ →
c ← ‖ ] →
d ] ←← ]

�

Having defined how different FMs can be composed via the appropriate re-
lation, we are now in the position to describe the distributed Alpha algorithm.
The distributed Alpha algorithm, inspired by the distributed paradigm proposed
by Boyd et al. [4], includes the following steps:

1. Each center calculates the local Footprint matrix FMLi and the sets TLi ,
TIi , TOi

(as discussed in Section 2);
2. the generated structures < FMLi , TLi , TIi , TOi > are sent to the master;
3. the master node builds the sets:

– TL =
⋃

i=1,..,n TLi

– TI =
⋃

i=1,..,n TIi
– TO =

⋃
i=1,..,n TOi

4. starting from FMLi
, the master node calculates the corresponding FM ′Li

.
This is the correctly ordered FM, where missing columns/rows –corresponding
to missing events in a local event log– are filled with ], according to what
has been shown in the corresponding section.
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5. the overall FM is generated by composing all the FM ′Li
via the relation ⊕;

6. the master applies the Alpha algorithm on the structure< FM,TL, TI , TO >;

This flow ensures the patient’s privacy preservation and allows to apply the
Alpha algorithm considering the entire set of available traces.

4 Conclusion

The complex causal relations between involved variables and values, and the
objective difficulty of enrolling large cohorts of patients for a single medical cen-
ter, lead to a growing need to merge data from different centers and perform
multi-centric clinical analysis. A PM investigation exploiting multi-centric data
sources would be in the best position to highlight organizational differences be-
tween different centers, and to show different ways to cope with daily clinical
and administrative issues.

In this work, we introduced the first approach to perform multi-centric pro-
cess mining. Building on top of the well-known Alpha algorithm, we designed a
privacy-preserving technique that allows to perform distributed process mining
while preserving patients’ data privacy. The proposed approach is guaranteed to
converge to the same model that would have been generated by merging all the
different data sets, and has been empirically tested on a large set of event logs.
Future work will focus on extending our approach to different algorithms, and
to investigate different aspects of process mining, such as conformance checking
and enhancements.
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