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Abstract. The present work is dedicated to studying the transfer of
natural gas in shale formations. The governing model was developed on
the basis of the model of dual-porosity dual-permeability (DPDP). The
mixed finite element method (MFEM) is employed to solve the govern-
ing equations numerically. Numerical example is presented and results
discussed such as production cumulative rate, pressure and apparent per-
meability.
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1 Introduction

Shale–gas resources represent around 30% of the world resources of the natural
gas and it has much promise as a relatively new clean energy since its combustion
produces much less CO2. However, the gas production from the shale formation
does not obey the conventional ways of gas/oil production from conventional
reservoirs. The shale-formations have very-low permeabilities compared to the
conventional formations. The production efficiency of the natural gas from shales
increases as the efficiency of the fracture network increases.

The model of flow in fractured porous media contains the effect of fluid
transfer from matrix blocks to fractures with dual-mechanism such as dual-
porosity dual-permeability. In the conventional models of fractured formations,
Darcy’s law is employed to describe the flow. However, Darcy’s law does not
give a suitable description of the flow in shales because the gas flow in the nano-
sized pores has slippage on the surface. One of the modeling directions for gas
transport in shale formations is to adopt the framework of flow in fractured
porous media. Using dual-continua mechanisms, an idealized model was built
by Warren and Root [1] to describe flow in fractured media. In this model,
the matrix field is divided as uniform cubes separated by fractures. The dual-
continuum models have been developed by several researchers (e.g. Bustin et al.
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[2]; and [4]) to model gas transport in shales. These models incorporated different
physics such as inertial, gas slippage, Knudsen diffusion, etc. Recently, El-Amin
et al. [5] used the dual-porosity dual- permeability model with geomechanical
effect. Ge et al. [6] presented a quantitative evaluation for organic related pores
in unconventional reservoir. A comprehensive review has been introduced on gas
transport in tight and shale formations was done by Salama et al. [7]. El-Amin
and coauthors [8–10] have extended the mathematical model of shale-gas flow
and developed some numerical or analytical solutions.

In the current work, we present a mixed finite element method (MFEM)
which is a locally conservative method [11] to solve the dual-porosity dual-
permeability (DPDP) shale-gas model. We presented some numerical tests to
show the efficiency of the numerical scheme.

2 Modeling and Formulation

In this section, we develop a DPDP model to simulate the natural gas flow in
porous media. The DPDP model consists of two mass balance equations, one for
flow in matrix blocks and another for flow in fractures. The flow is assumed to
be a single-phase and isothermal, and the gravity effect was neglected. The mass
balance equation has the form,

∂M

∂t
+5 · ρu = Q, (1)

such that t is the time; M is the mass-accumulation; ρ is the gas density; u is the
velocity; Q is the source-term. In the matrix blocks, there exist two mechanisms,
namely, free gas and absorbed gas. So, the mass accumulation term may be
written as,

Mfr = φρ, (2)

However, the mass accumulation term for the adsorption process on the matrix
surface is,

Mads = (1− φ)qa, (3)

such that qa is the volume of the adsorbed-gas on the shale-surface. The adsorp-
tion is described by the Langmuir isotherm,

qa =
ρsMwVLpm
Vstd(PL + pm)

(4)

where Vstd and VL are, respectively, mole volume under standard conditions and
the Langmuir volume. ρs is the rock density and Mw is the molar weight. PL
and pm are, respectively, Langmuir pressure and matrix pressure.

Using Eqs. (2)-(4), we get,

M = φρ+ (1− φ)qa, (5)

The mass density can be written as, ρg,d = pdMw

ZRT , d = m, f . R, T,m, V and
Z are the universal gas constant, temperature, mass, volume, and compressibility
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factor, respectively. Thus, Z = pV
RT , such that p is the pressure. The Peng-

Robinson equation of state has been used to calculate Z,

Z3 − (1−B)Z2 + (A− 3B3 − 2B)Z − (AB −B2 −B3) = 0 (6)

where A = aT p
R2T 2 , B = bT p

RT . a and b are coefficients depend on the critical

properties, i.e., aT = 0.45724
R2T 2

c

pc
, bT = 0.0778RTc

pc
. pc, is the pressure at the

critical point, and Tc is the temperature at the critical point.
The slippage effect takes place in the case of gas flow in tight reservoirs,

therefore, the permeability developed to its apparent version, thus,

Km,app = Km(1 +
bm
pm

), (7)

where Km is the intrinsic permeability, bm is the Klinkenberg effect.
From all the above formulations, the DPDP model may be written as,

f1(pm)
∂pm
∂t
−∇ ·

[
ρmKm

µ

(
1 +

bm
pm

)
∇pm

]
= −S(pm, pf ), (8)

f2
∂pf
∂t
−∇ ·

[
ρfKf

µ
∇pf

]
= S(pm, pf )−Q(pf ), (9)

where f1(pm) = Mwφm

RT + MwVLρs
Vstd

PL(1−φm)
(PL+pm)2 and f2 =

Mwφf

RT .

The transfer matrix-fracture term is given by,

S(pm, pf ) =
σρKm

µ
(pm − pf ) ,

The Peaceman’s model is used to describe the production-source term as [12],

Q(pf ) =
θKfρ[p̄f − pwf ]

µ ln re
rw

,

where re = rc
√

(∆x)2 + (∆y)2 is the drainage radius, rc is a constant and rw is
the well radius. If θ = 2π, well will be in field center. If θ = π/2, the well will be

in the corner. σ is the crossflow coefficient and given by, σ = 4
(

1
L2

x
+ 1

L2
y

+ 1
L2

z

)
.

Lx, Ly and Lz are, respectively, fracture spacing of x, y and z. bm and bf are
constants [4],

bm =

√
8πRT

Mw

1

rw

(
2

α
− 0.995

)
µ, bf =

√
πRTφf
MwKf

µ

The Knudsen diffusion has the form, Dkf =
√

πRTKfφf

Mw
. Kf , φf and µ are the

fractures permeability, the fractures porosity, and µ is the gas viscosity. α is a
constant.
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3 Mixed Finite Element Method

Assume that Ωm ⊂ Rd, d ∈ {1, 2, 3} is the matrix polygonal/polyhedral matrix
Lipschitz domain; andΩf ⊂ Rd, d ∈ {1, 2, 3} is the fracture polygonal/polyhedral

Lipschitz domain. Also, assume that, L2(Ω) ≡
(
L2(Ω)

)d
), such that L2(Ω) is

the standard space with the boundaries, ∂Ωm = ΓmD ∪ΓmN and ∂Ωf = Γ fD ∪Γ
f
N .

The governing equations can be rewritten as,

f1(pm)
∂pm
∂t

+∇ · um = −S(pm, pf ) in Ωm × (0, T ), (10)

Dm(pm)−1um = −∇pm in Ωm × (0, T ), (11)

f2
∂pf
∂t

+∇ · uf = S(pm, pf )−Q(pf ) in Ωf × (0, T ), (12)

Df (pf )−1uf = −∇pf in Ωf × (0, T ), (13)

In order to avoid discontinuity, both of the functions Dm(pm)−1 and Df (pf )−1

are moved to the left hand side. Similarly, we can rewrite the initial and boundary
conditions of the matrix and fracture domains, as follows,

pm(·, 0) = pf (·, 0) = p0 in Ωm ∪Ωf , pf (·, t) = pw on Γ fD × (0, T ), (14)

um · n = 0 on ΓmN ∪ Γ
f
N × (0, T ), uf · n = 0 on Γ fN × (0, T ), (15)

such that, Dm(pm) = ρmKm

µ

(
1 + bm

pm

)
,and Df (pf ) =

ρfKf

µ .

Now, let us define the two Raviart–Thomas space (RTr) subspaces on the
partition Th: Vh ⊂ H(Ω; div) and Wh ⊂ L2(Ω) such that r-th order (r ≥ 0).
The MFE weak formulations are:(

f1(phm)
∂phm
∂t

, ϕ

)
+
(
∇ · uhm, ϕ

)
+
(
S(phm, p

h
f ), ϕ

)
= 0 (16)

(Dm(phm)−1uhm, ω) = (phm,∇ · ω), (17)(
f2
∂phf
∂t

, ϕ

)
+
(
∇ · uhf , ϕ

)
−
(
S(phm, p

h
f ), ϕ

)
= −(Q(phf ), ϕ), (18)

(
Df (phf )−1uhf , ω

)
=
(
phf ,∇ · ω

)
− 〈Pw, ω〉ΓD

f
, (19)

for any ϕ ∈Wh and ω ∈ Vh. phm, p
h
f ∈Wh and uhm, u

h
f ∈ Vh.
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4 Numerical Algorithm

The MFE approximations with a quadrature rule has been employed to get
an explicit flux. The backward Euler method is used to discretize the time-
derivative with a number of NT time-steps, ∆tn = tn+1 − tn, such that n+ 1 is
the current time, and n is the previous one, and the total time-interval is [0, T ].
The discretized MFEM equations are given as,

(f1
h,n p

h,n+1
m − ph,nm

∆t
, ϕ) + (∇ · uh,n+1

m , ϕ) + (S(ph,n+1
m , ph,nf ), ϕ) = 0 (20)

(Dm(ph,nm )−1uh,n+1
m , ω) = (ph,n+1

m ,∇ · ω), (21)

(f2
h,n

ph,n+1
f − ph,nf

∆t
, ϕ) + (∇·uh,n+1

f , ϕ)− (S(ph,n+1
m , ph,n+1

f ), ϕ) = −(Qh,n+1
f , ϕ)

(22)

(Df (ph,nf )−1uh,n+1
f , ω) = (ph,n+1

f ,∇ · ω)− 〈pw, ω〉ΓD
f
, (23)

Give ph,nm and ph,nf , the following scheme are used to find pressures and velocities
as,

1. Calculate the thermodynamic variables explicitly.
2. Find ph,n+1

m and uh,n+1
m by solving (20)-(21).

3. Find ph,n+1
f and uh,n+1

f by solving (22)-(23).

5 Results and Discussions

Numerical test has been presented to show the efficiency of the current scheme.
Table 1 shows the physical parameters of the problem under consideration. A
20×20 m domain has been used for computations. Fig. 1 shows the distributions
of matrix/fracture pressures and velocity. Also, the same figure shows the ap-
parent permeability. From this figure, one notice that both matrix and fractures
pressures decrease gradually close to the production well. Also, the apparent per-
meabilities are reduced. Moreover, It is clear that the apparent permeabilities
decrease gradually as it goes farther from the well. It also can be observed that
the high the apparent permeability the closer to the production-well. This may
be due to the reverse relationship with the pressure. The gas production rate and
cumulative production at different values of the slippage factor bm are plotted
against the production time in Fig. 2. This figure indicates that the slippage
factor has a significant effect on the gas production rate.

6 Conclussions

This work presents a mixed finite element method (MFEM) to solve the DPDP
model of natural gas transport in shales. Results such as apparent permeability,
pressure and production cumulative rate are discussed. In the future work, more
realistic scenarios and solution properties of the MFEM scheme will be provided.
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Table 1. physical parameters.

Parameter Value Unit Description

Km 1.00E-04 md Matrix permeability
Kf 10 md Fracture permeability
φm 0.05 – Matrix porosity
φf 0.001 – Fracture porosity
R 8.314 m3Pa/mol K Gas constant
T 373 K Temperature
Z 1 – Compressibility factor
p0 5 MPa Initial reservoir pressure
pw 3 MPa Bottom hole pressure
Mw 0.016 kg/mol Molecular weight of CH4

Vstd 0.0224 m3/mol Standard gas volume
PL 6 MPa Langmuir pressure
VL 2.83E-03 m3/kg Langmuir volume
ρs 2550 kg/m3 Shale rock density
µ 1.02E-05 Pa s Initial gas viscosity
rw 0.1 m Wellbore radius
Lx, Ly, Lz 0.2 m Fracture spacing
α 0.8 – Constant

Fig. 1. Distribution of pressure and velocity of matrix and fractures (upper left and
right) and apparent permeability of the matrix and fractures (lower left and right).
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Fig. 2. Gas production rate and cumulative production at different values of bm.
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