
Programming paradigms for computational
science: three fundamental models

Miguel-Angel Sicilia, Elena Garćıa-Barriocanal, Salvador Sánchez-Alonso, and
Marçal Mora-Cantallops

Computer Science Department, University of Alcalá,
Polytechnic Building. Ctra. Barcelona km. 33.6

28871 Alcalá de Henares (Madrid), Spain
{msicilia, elena.garciab, salvador.sanchez, marcal.mora}@uah.es

Abstract. The widespread of data science programming languages and
libraries have raised new interest in teaching computational science cod-
ing in ways that leverage the capabilities of both single-computer and
cluster-based computation infrastructures. Some of the programming
patterns and idioms are converging, yet there are specialized uses and
cases that require learners to switch from one to another. In this paper,
we report on the experience in action research with more than ten co-
horts of mixed background students in postgraduate level data science
classes. We first discuss the key mental models found to be essential
to understanding solution design, and then review the three fundamen-
tal paradigms that students must face when coding data manipulation
and their interrelation. Finally, we discuss some insights on additional
elements found important in understanding the specificities of current
practice in data analysis tasks.

Keywords: Computational science · Education · Data science · Pro-
gramming · Mental models.

1 Introduction

Computational science requires programming skills that are to a large extent
determined by the languages, libraries, frameworks and applications used for the
various domains of scientific inquiry. These are not only related to the creation
of models themselves but to the broader scope of data manipulation, which
have been captured in the past as part of knowledge discovery and data mining
process frameworks [13]. The success of the concept of a data scientist [9][5]
as a professional role that deals with data-intensive problems and has a broad
and hybrid skill set has to some extent predated the idea of a computational
scientist. Arguably, data scientists that are in the domain of some particular
scientific discipline are computational scientists. This idea is reflected in the
EDISON framework for data science education [16], that includes a competence
area that incorporates scientific methods closer to experimental work as it is
done in the sciences than to applied data analytics in a business context.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_33

https://dx.doi.org/10.1007/978-3-030-22750-0_33

2 M.A. Sicilia et al.

In any case, teaching programming for computational science or data sci-
ence is a different endeavor than teaching general-purpose programming as it is
practiced in undergraduate degrees in the domain of computing. Typically, data
science study programs are offered to audiences with a diverse profile [6], and
it is expected in them that students with a background different from comput-
ing are able to effectively develop software that makes use of existing scientific
libraries and computing infrastructures, witouth them becoming software engi-
neers. Typical languages taught in data science include R, Python (using SciPy
libraries) and Julia, and less frequently nowadays, Octave, Matlab, SAS or oth-
ers. Some of them as Python are actually general-purpose languages that were
not originally devised with data anlysis as a goal. However, data wrangling and
libraries consuming data (as machine learning libraries) in them tend to follow
some particular idioms or paradigms that need not be the same as those used
in the language. An example is the difference of using NumPy arrays [21] and
Pandas dataframes [17] in Python, which is widely different to using regular
Python lists, both in logical and in internal representation aspects. There are
elements of efficiency and memory handling, typing and even style that make the
experience of data analysis in Python very different from programming Python
for other purposes, e.g. to develop a Web site.

Here we describe insights from the experience in teaching scientific program-
ming to non-computer science graduate students. Concretely, it reports on the
reflections of the experience in ten cohorts of students enrolled in programs
related to data science (namely: Data Science, Business Intelligence and Bussi-
ness Analytics and Big Data) that were taught programming for data science
in Python (and secondarily classic statistical analysis programming with R) at
the University of Alcalá in Madrid in the last five years. The results come from
the observation of common pitfalls and difficulties found when approaching the
grading of assignments, and from subsequent interviews focused on particular
problems in understanding. Incremental inquiry in cycles was done applying
action research principles, similar to those that have been applied to teaching
programming elsewhere [15]. We have come up with a number of mental models
and programming styles or paradigms that require separate attention and are
different in relevant aspects. Further, we report on a number of additional ele-
ments that were found important in an adequate understanding of the specifics
of programming in data science.

The rest of this paper is structured as follows. Section 2 describes the as-
sumptions, background and overall setting of the educational programs that
have served as the basis for the discussion. Then, in Section 3 we deal with
the key mental models identified that students have to develop in order to effi-
ciently code in data science settings. Section 4 describes the three fundamental
programming paradigms or models identified that require significant cognitive
effort when moving from one to the other. In Section 5, we discuss additional
elements that have been found as important in providing students the adequate
context to understand the tasks at hand. Finally, conclusions and outlook are
provided in Section 6.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_33

https://dx.doi.org/10.1007/978-3-030-22750-0_33

Programming paradigms for computational science 3

2 Background and assumptions

We assume here that teaching data science can be considered as a broader con-
cept than that of teaching computational science, as the latter focuses on models
for the diverse scientific disciplines, while the former is more inclusive of com-
putational models not necesarily related to the enterprise of science. Actually,
there are some experiences reported on explicitly combining both concepts, e.g.
Giabbanelli et al. [11] report on a course combining computational models with
data science concepts. In other cases, both concepts are considered as overlap-
ping when discussing educational aspects, e.g. in [8]. It should also be noted that
data tasks as the application of machine learning are a current active area in
online question-answering sites [1] reflecting the importance of the topic.

The typical path for teaching data science starts with exposing the students
to introductory lessons on programming, typically using a high level language
as Python (as in [6] for example). This entails the usual sequence of intro-
ducing first variables, conditional and iterative control structures, then some
fundamental data structures: lists and dictionaries. However, data science envi-
ronments adhere to a paradigm sometimes called array-oriented programming in
which operations on scalars apply transparently to vectors, matrices, and higher-
dimensional arrays. This results in a degree of conciseness, as operations abstract
out the number of dimensions of the data, and for most common operations, it is
rare the need to use control structures. Instead, vectorized operations are applied
on the data, and there are facilities to select and transform data with operators.
Examples are boolean indexing in arrays or clauses that specialize in selecting
subsets of data and generalize the notion of slicing lists. In consequence, the
teaching of basic Python used in our approach does not emphsaize algorithm
design, but the use of a core of data structures and the application of functions.
Particularly, object oriented design (encapsulation, inheritance, etc.) is not in-
cluded in the teaching, and the understanding of object orientation is limited
to the syntax for sending messages to objects (i.e. invoking methods), which is
natural in languages as Python.

We assume here that the teaching is directed to a non-computer science
student, so that the emphasis is on using libraries and not on developing new
algorithms, parallel versions of them or optimized versions of some complex
user interfaces, which would require other kind of skills. Also, we assume that
database or data store access will be made transparent using some form of SQL-
like languages. It should be noted that these assumptions are rather strong and
somewhat controversial. For example, in the case of tasks as data acquisition
from APIs (application programmer interfaces as those exposed in RESTful in-
terfaces), data wrangling would require some extra abilities in some cases. In
any case, in this paper we focus on the core of the daily activities of a data sci-
entist that involve array and dataframe manipulation and application of library
functions, even though there is currently a degree of ambiguity on data science
team roles and the skills required for different profiles [18].

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_33

https://dx.doi.org/10.1007/978-3-030-22750-0_33

4 M.A. Sicilia et al.

3 Key mental models

Mental models are concise abstract representations that can help shape be-
haviour and set an approach to solving problems. It has been recognized that
mental models are required by novices to learn programming [7]. The assump-
tion of mental models is that we construct mental “small-scale models” of reality,
which can be used to anticipate events, to reason, and to underlie explanation.
These models are simplified and incomplete, but are helpful in our construction
of knowledge on a topic.

Most students attending data science classes already have a mental model
consisting of “table like structures” similar to those used in spreadsheets. Many
of them had some knowledge of the relational model and the SQL language so
that the ideas of tables is natural. However, there are other mental models that
have been found to be essential in our experience and that require dedicated
attention in educational programs, which are discussed in what follows.

3.1 Array programming: vectorization and broadcasting

Array programming revolves around the idea of having multidimensional arrays,
and operations are applied over those irrespective of their size or number of di-
mensions. The key concept is that of vectorized operations. Library functions for
example in SciPy are already vectorized, so that they can be applied to arrays of
any number of dimensions. Also, it is possible to automatically vectorize func-
tions. The following example is from SciPy, but similar alternatives are available
in other languages as R.

def _transform(x,y):

if (x>0.5*y and y<0.3):

return (sin(x-y))

elif (x<0.5*y):

return 0

elif (x>0.2*y):

return (2*sin(x+2*y))

else:

return (sin(y+x))

transform = np.vectorize(_transform, otypes=[np.float])

transform(a, b) // a, b can be of any number of dimensions

It should be noted that such vectorization does in general not provide any
performance advantage over using for loop iteration. However, vectorized op-
erations in libraries are typically optimized explicitly or implemented in lower
level languages as C or Fortran, so that they should always be preferred.

Broadcasting is an effect related to applying operations on arrays of different
sizes. Under some constraints, one of the arrays is broadcast, meaning that it
is repeated so that the sizes are compatible. This occurs trivially in expressions

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_33

https://dx.doi.org/10.1007/978-3-030-22750-0_33

Programming paradigms for computational science 5

as a*5 where a is an array, and the scalar is broadcast to the same size of the
array.

The understanding of vectorization and broadcasting is critical to all opera-
tions, as even the selection of elements is based on vectorized logical or relational
operators. This sets repetitive control structures (looping) as an exception that
is largely not needed for manipulating arrays and matrices (even though it is
still required for other tasks, as processing data from APIs or Web pages, but
that can be considered as different tasks).

The mental model is then that of functions that can be used with arrays of
any dimensions replacing looping, including implicit extension on dimensions.
This requires a change in the mental model of students in the case they have
experience in non-vectorized programming and tend to recur to loops as a default
strategy.

3.2 Memory hierarchy, paralelism and task models

The second important mental model requires basic knowledge of computer ar-
chitecture, in an abstract way. The fundamental model is that of a hierarchy of
memory, typically considering as levels: (a) internal registers in the processor,
(b) system RAM and (c) external storage as in disks. This nowadays gets an
additional level in that of (d) distributed storage, e.g. in a cluster of computers.
The latter is dealt here considering that the programming constructs are trans-
parent to the actual parallel computing infrastructure, instead of dealing with
concrete models as in the case of MPI reported elsewhere [10].

The levels can be clearly aligned by students with different volumes of data.
Typically, system RAM goes up to the size of several GB, while in disks there
is an scaling to near some TB, and then clusters can scale up. Years ago, the
complexity of moving from (b) to (c) or (d) required specific programming, but
this is becoming largely transparent in some cases thanks to so-called “Big Data”
technologies as Apache Spark and others.

The second, related level is that of paralelism, that is tied to the different
levels. Processor-level parallelism involves in-core acceleration, and it is specially
relevant to matrix computation, since it is at the core of GPU acceleration.
Other forms of paralelism involve in-memory (thread or processes) and then
distributed computing in a cluster. Programming models as those of Dask1 or
Apache Spark2 have made the last two levels transparent to a large extent, and
in-core paralelism is also independent of the code, as it will be described later.

The transition to (d) can be grasped by some basic understanding of the idea
of task graphs which are directed acyclic graphs of partial computation. These,
as the one in the example in Figure 1 generated with Dask3 for the fitting of
an estimator, are the basis for distributing computation across processees or
nodes. Here the mental models needs not be detailed (and as such students are

1 https://dask.org/
2 https://spark.apache.org/
3 https://jcrist.github.io/dask-sklearn-part-2.html

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_33

https://dx.doi.org/10.1007/978-3-030-22750-0_33

6 M.A. Sicilia et al.

just exposed to simple examples as distributed computations of averages), as
they concern internal details of the breakdown of computation. However, a basic
understanding of the idea that vectorized computations of arbitrary complexity
can be decomposed for distribution in different processing units in that way is
required to avoid naive unscientific beliefs about the underlying mechanisms.

Fig. 1. Examples Dask task graph.

3.3 Streams of data

Dealing with streams of data requires a change in the way of thinking, as data
becomes a continuous flow and the programs wait and react to the arrival of data.
This is opposite “data applied to functions” to the idea of “functions applied
to data” and thus requires separate treatment, typically introduced afterwards.
While streaming can be understood as processing in batches of windows [4],
the mental model has to focus on the asynchronous and infinite nature of data.
That is properly reflected on the use of the dataflow paradigm, and depictions as
“marble diagrams” as commonly used in discussions of reactive programming.
Figure 2 shows a depiction of an event stream and the temporal transformation
effect of a filter function4.

4 http://reactivex.io/documentation/operators/filter.html

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_33

https://dx.doi.org/10.1007/978-3-030-22750-0_33

Programming paradigms for computational science 7

Fig. 2. Example reactive “marble diagram”.

An important observation is that thinking on transformations on streams
fits the functional paradigm in that operations are typically expressed as purely
functional primitives. Further, this functional style can also be applied to non-
streaming data thanks to current unifying frameworks [3] as implemented in
Apache Beam5. For that reason, a model for streaming data can be considered
an extension of a data processing functional model in which new concerns are
added, e.g. that of windowing or temporal delays.

4 Fundamental paradigms

A programming paradigm is “an approach to programming a computer based
on a mathematical theory or a coherent set of principles”[20]. Each paradigm
supports a set of concepts that makes it the best for a certain kind of problem
or task. The consideration of the mental models described before is actually
orthogonal to the three key programming paradigms we have found as important
and are discussed in what follows. This is because all of them abstract out
memory hierarchy, are able to somewhat perform automatic paralelism across
differen levels of that hierarchy, and in some cases allow for dealing with both
streaming and non-streaming data in a declarative style. Further, all of them
make extensive use of vectorization as a basic primitive. Then, the difference
among them is the key building block used in the code, that is discussed in what
follows.

4.1 Lower level abstractions: functional array/bag processing

The first concept is that of working with homogeneous arrays of data, with one
or several dimensions. These can be thought of as arrays or bags (understood as
generic sequences of elements), and data science languages, due to vectorization
and broadcasting, can be taught in a functional style. In numpy, for example,
ufuncs have a functional common interface.

x = np.arange(1, 6)

np.add.reduce(x)

5 https://beam.apache.org/

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_33

https://dx.doi.org/10.1007/978-3-030-22750-0_33

8 M.A. Sicilia et al.

The problem with a full functional paradigm is that pure functions are by
definition stateless, and efficiency matters require exposing students to in-place
modification semantics. An expression such as a *= 2 corresponds to an in-
place operation, where all values of the array are modified. By contrast, a = a*2

means that a new array containing the values of a*2 is created. The same occurs
in Series in which the parameter inplace is for example used to change the
memory management. Also, slices (which can be seen as a filtering operation)
are by default views and not copies, again exposing memory management to
programming constructs.

A more complete functional paradigm at this level is provided in bag libraries
of Dask, a multiset library that is able to operate with data out of core and in
clusters. The following is an example processing Json data. It is equivalent to
Apache Spark RDD interface6.

result = (b.filter(lambda record: record[’age’] > 30)

.map(lambda record: record[’occupation’])

.frequencies(sort=True)

.topk(10, key=1))

As it can be seen, the functional paradigm is a viable alternative for most of
array computations in data science frameworks. This is a key practice as leads
to more concise code and fits better with other paradigms as dataflow that will
be discussed later. The main problem is that current main languages, Python
and R still require the student to be aware of buffering, in-memory operations
and views, since the languages are imperative and not functional, and writing
efficient code requires knowledge of those details.

4.2 Dataframe-centric manipulation

The second model introduces the mental model of a dataframe. This is essen-
tially a collection of one-dimensional series that share a common index (which
is represented typically at the “rows”), and are themselves indexed by name
(represented in the “columns”). That is a pervasive notion of data collections,
since for example, machine learning libraries assume a tabular representation of
this form, with rows as instances and columns as variables or features. However,
that notion of dataframe is actually used for holding different forms of data,
and the schema that is implicitly required by many machine learning libraries is
corresponding with the notion of “tidy data” [23].

Tidy data can be assimilated to normalized relational databases and it is a
concept that helps in differentiating the typical structure of a machine learning
problem from other types of data encoded in dataframes. As such, the teaching
of the dataframe paradigm could be split in several “forms”, that of tidy data
and others that are untidy and thus may require transformation.

The dataframe paradigm for tidy data then reduces to bag processing when
taking a simple column, or to something close to the notion of relational table

6 https://spark.apache.org/docs/latest/rdd-programming-guide.html

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_33

https://dx.doi.org/10.1007/978-3-030-22750-0_33

Programming paradigms for computational science 9

data otherwise. Actually, for students knowing SQL it proves useful to introduce
dataframe manipulation using an analogy to SQL first. For example, in pandas:
(a) boolean indexing can be assimilated to WHERE clauses, merge() for joins, and
groupby() to the corresponding GROUP BY SQL clause. Then, multi-indexes,
pivot tables and other advance or more flexible behaviour can be introduced as
additional features to what is available in SQL.

A dataframe-centric approach emphasizes thinking on state (collections of
tables) instead of on functions, even though the manipulations can be done ap-
plying vectorized functions. A typical interaction in an interactive environment
as a Jupyter Notebook is typically a sequence of operations that modify, create
views or provide data to libraries taking fragments of an in-memory dataframe.
Memory hierarchy and paralellism are becoming largely transparent, e.g. with
the abstraction of a Dask dataframe that provides an interface that is analo-
gous to that of a regular pandas dataframe, as shown in the example in which
compute() triggers the start of the computation of the expression t that is rep-
resented as a task graph.

import dask.dataframe as dd

df = dd.read_csv(’files/2018-*.*.csv’, parse_dates=[’timestamp’])

t = df.groupby(df.timestamp.dt.hour).value.mean()

t.compute()

However, the technicalities and details of those are still surfacing the pro-
gramming tasks. An example is the need to specify chunking parameters, that
determine how the underlying task graph divides the data for parallel processing.
Another example is the use of different schedulers, i.e. execution frameworks, as
can be appreciated in Dask’s documentation, e.g.: “The multiprocessing sched-
uler is an excellent choice when workflows are relatively linear, and so does not
involve significant inter-task data transfer as well as when inputs and outputs
are both small, like filenames and counts.”. This still requires a mental model of
the memory hierarchy and some operating system concepts.

4.3 Pipelines of data processing

The third model has the notion of a pipeline as the central processing element,
and data becomes the input-output of a computation expressed as a directed
graph of stateless operations that perform their task as data becomes available.
These dataflow languages are inherently parallel and can work well in large,
decentralized systems.

This paradigm requires a change in thinking from a dataframe-centric ap-
proach, since programs are activated by incoming data and do not follow the
idea of a typical von-Neumann architecture. Reactive programming is considered
a kind of dataflow that emphasizes the fact that the computation is continuous
and triggered by external events. The following is an example word count for a
stream of data using Apache Beam Python SDK.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_33

https://dx.doi.org/10.1007/978-3-030-22750-0_33

10 M.A. Sicilia et al.

counts = (lines

| ’split’ >> (beam.ParDo(WordExtractingDoFn())

.with_output_types(unicode))

| ’pair_with_one’ >> beam.Map(lambda x: (x, 1))

| beam.WindowInto(window.FixedWindows(15, 0))

| ’group’ >> beam.GroupByKey()

| ’count’ >> beam.Map(count_ones))

As it can be seen, the different stages are composed with pipes, and follow
well-known functional primitives. The new element that needs to be added is
that of windowing, which introduces concerns for data flowing with some delay.
This model can be used at the levels of array/bag processing as in the previous
example, but could also be mixed with dataframe style manipulation as in the
following Apache Spark example in Scala.

people.filter("age > 30")

.join(department, people("deptId") === department("id"))

.groupBy(department("name"), "gender")

.agg(avg(people("salary")), max(people("age")))

In both cases, the notion of pipeline is sufficient to introduce streaming ele-
ments into the previous paradigms seamlessly. These constructs are sufficient to
convey the mental model of a stream of data that can be bursty and is virtually
infinite, i.e. data that triggers computation.

5 Other relevant aspects

Here we describe additional contextual or related elements that are critical to
provide an understanding of some decisions students face when selecting execu-
tion frameworks or libraries in particular situations.

5.1 Optimization

Another key decision is that of understanding how immutable structures affect
optimization, and the implications of the functional paradigm in so. The two key
ideas that require specific instruction are that of static typing and optimization.
The idea that statically typed languages as C/C++ provide more information
to code optimizers is fundamental and difficult to grasp by students with no CS
background. However, it is required to understand why for example in Python,
the Cython super-language is used, or even direct call to C or Fortran libraries.
This is also key to understand approaches to provide hints for optimization. An
interesting example is that of the library numba that translates Python func-
tions to optimized machine code at runtime using the industry-standard LLVM
compiler library. A typical decoration of a function with numba is as follows.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_33

https://dx.doi.org/10.1007/978-3-030-22750-0_33

Programming paradigms for computational science 11

@vectorize([’float32(float32, float32, float32)’,

’float64(float64, float64, float64)’], target=’cuda’)

def cu_discriminant(a, b, c):

return math.sqrt(b ** 2 - 4 * a * c)

This provides a way of understanding the process of optimization that is
related to computer architecture, and links with the idea of parallelism at the
microprocessor level.

5.2 Understanding costs

A typical problem in deciding the computational framework is that of the cost
of maintenance and use of the infrastructure. While using a single-computer
configuration, the costs are considered transparent, but the decision to switch to
a cluster requires an understanding of the total cost of ownership (TCO), which
is a complex topic and would require careful consideration of diverse factors
[22]. The pricing of cloud computing or on-premises equivalents have become
more complicated due to the widespread adoption of specialized hardware for
particular computing problems, as in the case of training deep learning models
[19].

All these hardware and infrastructure needs impact the decision on using
some libraries or others, and require that data science students to have some basic
knowledge of computer and network architecture. There are reports of using such
kind of infrastructures [12] but not about specific instructional designs. At least
a basic understanding of complexity notation and “big-O” classes of complexity
is required so that students can reason about decisions on choosing one or other
algorithm or approach.

5.3 Sequencing and context

Sequencing is fundamental to instructional desing, and it can be argued that the
three models may be introduced using different paths. We have experimented
an “array then dataframe then pipeline” approach as a layered approach that
presents constructs as compositions of the previously presented ones. A possible
alternative route is that of using a streaming-first approach, as it can be argued
that data-at-rest is a particular case of data-at-motion [4].

A related aspect is that of providing students with the adequate context. This
depends on the discipline or degree, as it should be different if the students are
in a bioinfirmatics degree than in a business analytics program. In our case, the
context falls in the latter, and required adapting cases and examples so that the
training is not disconnect from the rest of the program, as typically real-world
or realistic analytic cases come after the training focused on programming, data
acquision, cleaning and preparation. Our experience for our case shows that an
approach to profit-driven analytics (see for example a case of churn in [14]) is key
from the beginning. A case in which for example, a classifier needs to be selected
by considering the cost of the errors provides the context to link business or

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_33

https://dx.doi.org/10.1007/978-3-030-22750-0_33

12 M.A. Sicilia et al.

domain context to technical work. This can also be discussed by situating the
training in the framework of a process model as CRISP-DM.

6 Conclusions and outlook

Teaching programming for computational science using modern data science
frameworks requires a careful consideration on mental models, programming
paradigms and other aspects that affect the task of coding for data wrangling
or analytics.

We have discussed the findings on teaching computational science program-
ming to ten cohorts of students of data science-related programs, coming from di-
verse, non-computer science backgrounds. We followed an action research frame-
work, that included new elements and variations in different subsequent cohorts
and evaluated the effect of these new elements through examining outcomes
of assignments and interviewing students. The mental models discussed come
from direct experience in facing student difficulties when understanding code
and when translating the idea of code running on their laptop to similar code
running as a sequence of paralell tasks, possibly in a distributed setting on a
cluster.

We argue that there are three key fundamental programming models that
should be dealt with separately for a complete understanding and effectiveness
in leveraging current data analytics technology and libraries. We have discussed
their main implications and relations, and the approach to introduce them as
layers that add complexity. Essentially, array/bag models can be taught as purely
functional, before introducing the dataframe centric approach and then a pipeline
model that fits the additional constructs required to deal with streaming data. It
is possible to abstract out the primitives from the concrete language, library or
execution framework, which allows for a significant degree of transfer of learning,
that is made evident when students move, for example, from a local Python
environment to a distributed setting using Apache Spark.

The results discussed as subject to inherent limitations including type of pro-
gram (oriented to business analytics) and the characteristics of the participants.
However, we believe the discussion can be used as a basis for contrasting other
experiences and delineating research directions. Future work should deal with
specific understanding problems and the transition and effectiveness of the men-
tal models suggested here. Further, controlled experiments should delve into the
details of particular programming constructs, idioms or other forms of expres-
sion.

References

1. Ahmad, A., Feng, C., Ge, S., & Yousif, A. (2018). A survey on mining stack overflow:
question and answering (Q&A) community. Data Technologies and Applications,
52(2), 190-247.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_33

https://dx.doi.org/10.1007/978-3-030-22750-0_33

Programming paradigms for computational science 13

2. Ambler, A. L., Burnett, M. M. & Zimmerman, B. A. (1992). Operational versus
definitional: A perspective on programming paradigms. Computer, 25(9), 28-43.

3. Akidau, T., Bradshaw, R., Chambers, C., et al. (2015). The dataflow model: a
practical approach to balancing correctness, latency, and cost in massive-scale, un-
bounded, out-of-order data processing. Proceedings of the VLDB Endowment, 8(12),
1792-1803.

4. Akidau, T., Chernyak, S., & Lax, R. (2018). Streaming Systems: The What, Where,
When, and How of Large-Scale Data Processing. O’Reilly Media, Inc.

5. Baškarada, S., & Koronios, A. (2017). Unicorn data scientist: the rarest of breeds.
Program, 51(1), 65-74.

6. Brunner, R. J. & Kim, E. J. (2016). Teaching data science. Procedia Computer
Science, 80, 1947-1956.

7. Cañas, J. J., Bajo, M. T., & Gonzalvo, P. (1994). Mental models and computer
programming. International Journal of Human-Computer Studies, 40(5), 795-811.

8. Chuprina, S., Alexandrov, V. & Alexandrov, N. (2016). Using ontology engineering
methods to improve computer science and data science skills. Procedia Computer
Science, 80, 1780-1790.

9. Davenport, T. H. & Patil, D. J. (2012). Data scientist. Harvard business review,
90(5), 70-76.

10. Eijkhout, V. (2016). Teaching MPI from mental models. In Proceedings of the
Workshop on Education for High Performance Computing (pp. 14-18). IEEE Press.

11. Giabbanelli, P. J. & Mago, V. K. (2016). Teaching computational modeling in the
data science era. Procedia Computer Science, 80, 1968-1977.

12. Ivica, C., Riley, J. T., & Shubert, C. (2009). StarHPC—Teaching parallel pro-
gramming within elastic compute cloud. In Proceedings of the 31st International
Conference on Information Technology Interfaces (pp. 353-356). IEEE.

13. Kurgan, L. A. & Musilek, P. (2006). A survey of Knowledge Discovery and Data
Mining process models. The Knowledge Engineering Review, 21(1), 1-24.

14. Maldonado, S., Flores, Á., Verbraken, T., Baesens, B., & Weber, R. (2015). Profit-
based feature selection using support vector machines–General framework and an
application for customer retention. Applied Soft Computing, 35, 740-748.

15. Malik, S. I. (2018). Improvements in introductory programming course: action
research insights and outcomes. Systemic Practice and Action Research, 1-20.
Springer.

16. Manieri, A., Brewer, S. et al. (2015). Data Science Professional uncovered: How
the EDISON Project will contribute to a widely accepted profile for Data Scientists.
In IEEE 7th International Conference on Cloud Computing Technology and Science
(CloudCom) (pp. 588-593). IEEE.

17. McKinney, W. (2010). Data structures for statistical computing in python. In Pro-
ceedings of the 9th Python in Science Conference (Vol. 445, pp. 51-56).

18. Saltz, J. S. & Grady, N. W. (2017). The ambiguity of data science team roles
and the need for a data science workforce framework. In 2017 IEEE International
Conference on Big Data (pp. 2355-2361). IEEE.

19. Sze, V., Chen, Y. H., Emer, J., Suleiman, A. & Zhang, Z. (2017). Hardware for
machine learning: Challenges and opportunities. In 2017 IEEE Custom Integrated
Circuits Conference (CICC) (pp. 1-8). IEEE.

20. Van Roy, P. (2009). Programming paradigms for dummies: What every program-
mer should know. New computational paradigms for computer music, 104, 616-621.

21. Van Der Walt, S., Colbert, S. C. & Varoquaux, G. (2011). The NumPy array: a
structure for efficient numerical computation. Computing in Science & Engineering,
13(2), 22.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_33

https://dx.doi.org/10.1007/978-3-030-22750-0_33

14 M.A. Sicilia et al.

22. Walterbusch, M., Martens, B. & Teuteberg, F. (2013). Evaluating cloud computing
services from a total cost of ownership perspective. Management Research Review,
36(6), 613-638.

23. Wickham, H. (2014). Tidy data. Journal of Statistical Software, 59(10), 1-23.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_33

https://dx.doi.org/10.1007/978-3-030-22750-0_33

