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Abstract. One of the core missions of Michigan State University’s new
Department of Computational Mathematics, Science, and Engineering
is to provide education in computational modeling and data science to
MSU’s undergraduate and graduate students. In this paper, we describe
our creation of CMSE 201, “Introduction to Computational Modeling
and Data Analysis,” which is intended to be a standalone course teaching
students core concepts in data analysis, data visualization, and computa-
tional modeling. More broadly, we discuss the education-research-based
rationale behind the “flipped classroom” instructional model that we
have chosen to use in CMSE 201, which has also informed the design
of other courses taught in the department. We also explain the course’s
design principles and implementation.
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1 Introduction

In the last few decades, the use of data analysis and computational modeling
has become critical to success in a wide variety of careers and the need for
these skills is growing. As an example, McKinsey & Company recently released
a report arguing that the need for data scientists — that is, workers who can
successfully analyze, model, and interpret data, and use it to inform critical
business decisions — is going to grow rapidly.[8] A wide range of industries now
use computational modeling and data analytics to inform many aspects of their
day-to-day practices, encompassing a range of activities that include product
design, optimizing manufacturing processes, hiring decisions, and choosing ad-
vertising targets. The trend is clear, as are the implications for new employees
— being fluent in the tools used to work with data and computational models,
as well as being intelligent consumers of the products of these tools, will be a
critical and high-demand skillset. Unfortunately, many institutions are relatively
slow to provide students the type of computational training that addresses these
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needs, as indicated by the lack of programs aimed specifically at these areas.
And, while not necessarily representative of all Computer Science departments,
the courses offered by the Computer Science department at Michigan State Uni-
versity (MSU) are often heavily oversubscribed and typically do not encompass
the range of data analysis and modeling skills that employers desire.

In 2015, MSU formed the Department of Computational Mathematics, Sci-
ence, and Engineering (CMSE) to address the growing prevalence of computa-
tional and data science in academia and industry. The two core missions of the
department are to perform cutting-edge, computationally-focused research and
to provide a wide range of educational opportunities in computational and data
science to MSU’s undergraduate and graduate student populations. One partic-
ularly important population identified to be under-served in this regard by both
the faculty and university administration is undergraduates in the natural and
social sciences, as the primary avenues for computational training were computer
science courses that do not address the needs outlined above.

In this paper, we describe the creation of CMSE 201, “Introduction to Com-
putational Modeling and Data Analysis.” This was the first course created by
CMSE and is intended to provide a wide range of undergraduate students with
the analytical and technical skills necessary to effectively work with data and
computational models. In Section 2 we describe the design and implementation
of this course. In Section 3, we summarize and discuss the limitations of this
work as well as future plans, including challenges and opportunities.

2 Course Design and Implementation

2.1 Design Process

The broad goals of “Introduction to Computational Modeling and Data Anal-
ysis” (hereafter referred to as ‘ICM’) come from the process of creating the
Department of CMSE. Prior to the MSU faculty endorsing the proposal to cre-
ate a new department, a series of informal discussions were held with the deans,
department chairs, and interested faculty in most of the colleges on campus.
As a part of these meetings, faculty were asked “what sort of computational
skills would you like your undergraduate and graduate students to have?” Dis-
ciplinary jargon aside, the answers were remarkably uniform: faculty would like
students in their upper-division classes and in their research groups to be able
to take a dataset and manipulate, analyze, and visualize it to extract usable in-
formation from it. Similarly, they would like students to be able to create simple
models that capture the salient features of a system, and both quantitatively
and qualitatively compare those models with the data that they have analyzed.
The broad consensus among faculty was that there was not an existing under-
graduate course at MSU that met most or all of these goals. A similar set of
discussions took place with representatives from companies in a wide range of
industries at several conferences (these companies were primarily in the manu-
facturing and high-tech sectors, and had a significant presence in the Midwest).
These discussions had similar outcomes, though a much greater emphasis was
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put on the ability to communicate the process and outcomes of data analysis
and modeling to co-workers and supervisors (which is in line with more system-
atic surveys of the skills desired by employers).[12,13] The skills identified in
all of these discussions are the core of the high-level course learning objectives
described below.

An additional goal of the design process was to create a course that exempli-
fied the best practices as set forth in the undergraduate research literature. Our
ability to do this was facilitated by several important factors. First, there are a
large number of MSU faculty members who participate in disciplinary-based ed-
ucation research and/or successfully implement its outcomes in their classrooms,
and thus there is strong support from both fellow faculty and university admin-
istration for the creation of such courses. Second, MSU has invested heavily in
the creation of “REAL” (Rooms for Engaged and Active Learning) classrooms?,
which are specifically designed to facilitate student and faculty engagement and
provide opportunities for innovative learning experiences. Finally, a key factor is
that the course was created from a “blank slate,” and was not a required course
in any major or minor at the time of its creation*. This ab initio property of
the course design meant that there were few institutional preconceptions about
what should be taught or how it should be done.

Informed by the goals described above, we spent the Fall 2015 semester de-
signing a new course and creating course content. Using the principles of back-
wards course design[18], we created both a high-level set of course learning goals
(Section 2.2) and a much more finely-grained set of intended learning and content
objectives (Section 2.4). We solicited feedback on these goals and objectives from
many faculty and students, and the goals were iteratively tuned and improved.
After solidifying our curriculum, we decided that we would evaluate student suc-
cess based on their ability to work with data and implement and modify models.
We decided on an assessment structure combining both formative assessment[2]
(pre-class assignments and in-class group problem-solving activities) and sum-
mative assessment (homework assignments, exams, and semester projects).

2.2 Learning Goals

The over-arching purpose of this ICM course is to help students develop practi-
cal technical skills and ways of thinking that allow them to effectively construct,
manipulate, visualize, and interpret datasets and computational models. These
skills are not only applicable to the physical, life, and social sciences, but are
rapidly becoming a necessity in these fields. In addition to developing technical
skills and new thought processes, the course strives to promote an understanding
of the social and scientific relevance of modern data analysis and computational
modeling, which can be critical in recruiting and retaining students from under-
represented groups in STEM][11].

3 https://tech.msu.edu/teaching/real/; see also Section 2.6
4 Although it is now a requirement in three degree programs and one minor, and a
selective or elective course in several other degrees and minors.
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As described in Section 2.1, this course targets students in the natural and
social sciences rather than computer science students. As such, the computer
programming skills that are needed within the course are motivated entirely
by the goals and applications mentioned previously. Students certainly learn
many of the same computer science topics (e.g., variables and arrays, loops,
functions, etc.), but they do so in service of building and running simulations
and analyzing data. Although this approach ensures that the students learn
the skills necessary to ask meaningful questions of and extract answers from
computational models and data, it places unavoidable limitations on the amount
of computer science topics that can be covered in a single semester. More complex
topics, like recursion and object-oriented programming, are left to a subsequent
course for those students that are motivated to dive deeper. Finally, to reach
a broad cross section of the student population, the only prerequisite for the
course is one semester of calculus, and the course content touches on a wide
variety of disciplines. We expect that our students have no prior programming
experience.

The broad goals of the course are as follows. By the end of the semester, we
intend that students who have successfully completed this class will be able to:

1. Gain insight into physical, biological, and social system through the use of
computational algorithms and tools.

Write programs to solve common problems in a variety of disciplines.
Identify salient features of a system that can be codified into a model.
Manipulate, analyze, and visualize datasets and use to evaluate models.
Understand basic numerical methods and use them to solve problems.
Synthesize results from a scientific computing problem and present it both
verbally and in writing.

S Gt LN

2.3 Theoretical underpinnings and pedagogical motivations

After developing the learning objectives for this course, the next steps were to
determine the overall course structure, decide on the types of evidence that we
would use to identify that learning was taking place, and sketch out specific as-
sessments and assignments that would be used. While there are many theoretical
frameworks that could be used to inform our design decisions, we decided to use
the principles articulated in the book “How Learning Works: Seven Research-
Based Principles for Smart Teaching.”[1] Our motivation for this choice is that
the principles articulated in How Learning Works are grounded in a theoretical
understanding of how people learn that is based on empirical evidence, and that
these principles can be practically implemented in courses intended for large
numbers of students and facilitated by instructors coming from variety of back-
grounds and skill levels with only a modest amount of training. In designing this
course, we have engaged most heavily with the following principles:

To develop mastery, students must acquire component skills, prac-
tice integrating them, and know when to apply what they have learned.
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In a given assignment, students are typically engaging with only a small num-
ber of new concepts in programming, modeling, or data analysis. The arc of
assignments focusing on a given topic (from pre-class, to in-class, to homework)
are scaffolded to first give students practice with each new concept individually,
and then integrate them with prior skills. For example, students learn to use
iteration by first learning to write for loops in the pre-class assignment that
perform simple tasks such as incrementing a variable. Then, in class they use
the same conceptual structure to do numerical integration using the Trapezoidal
Rule and, later, to evolve through time the position and velocity of a projectile
acting under the influence of gravity and air resistance. As part of homework as-
signments and later pre-class assignments, loops are built upon as part of more
complex modeling and data analysis tasks, often in scenarios where students
have to make critical decisions about their usage.

How students organize knowledge influences how they learn and
apply what they know. As described in the example above, new concepts
are introduced in a scaffolded manner that assists students in making connec-
tions between new pieces of knowledge, and in productively integrating that new
knowledge with existing ideas. The ultimate goal here is to help students develop
a strong conceptual understanding of computational modeling and data analysis,
as well as the tools and techniques for doing so, that they can apply appropri-
ately in new situations. As an example of this scaffolding, students learned to
work with variables prior to learning the concept of loops and their implemen-
tation, and in following activities learn Boolean logic (which is combined with
simple loops to create more sophisticated control flow). After this, functions are
introduced, and students integrate functions into loops and Boolean logic as they
create increasingly complex models and data analysis workflows.

Goal-directed practice coupled with targeted feedback enhances
the quality of students’ learning. Each assignment addresses one or more
course learning or content objectives. In-class assignments are typically pursued
by students in small groups of 3-4 students, with instructional staff facilitating
a handful of groups. Group members are encouraged to ask each other questions
and the instructional staff regularly check in with all students to ensure that they
are on the right track and to help guide the students in the right direction when
necessary. Homework assignments and the semester project are accompanied by
written feedback, with careful attention paid to struggling students.

Students’ motivation determines, directs, and sustains what they
do to learn. Students enter into our course with a variety of motivations, and
are majoring or interested in a variety of topics. To that end, the topics of
assignments are chosen to apply to a wide range of applications and subject
areas, and to connect these areas together by the use of common numerical
algorithms. Furthermore, we choose applications that are motivated by authentic
scientific questions (e.g., disease spread) or social issues (e.g., racial segregation),
and when possible, both (e.g., climate change).

To become self-directed learners, students must learn to monitor
and adjust their approaches to learning. To this end, we structure assign-
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ments that are designed to encourage students to go beyond thinking about the
task that they are pursuing, but to think about what they are doing, why they
are doing it, and if they are doing it correctly. We do this by asking students to
justify the choices they have made and to explain how what they are doing fits
within the context of the course.

Taken together, these principles motivate the course structure (as described
in Sections 2.4 through 2.7) and the course assignments.

2.4 Content Objectives

Working from our learning objectives and theoretical framework, we then chose
the content of the course and its structure to achieve these objectives and to
facilitate students learning the broad array of skills described in Section 2.1. The
course progression is shown in Table 1, which includes a day-by-day breakdown
of course activities. Motivated by our learning objectives, we describe a given
day’s activity in terms of the modeling and/or data analysis concept(s) that are
developed during that class period, the context within which that is being taught
(i.e., application area), and the new programming practice(s) that are required
in order to be able to implement the modeling or data analysis concept.

The temporal progression shown in Table 1 demonstrates how students are
gradually introduced to new skills and concepts. We assume that students come
into the class with little or no programming experience, and thus early class
sessions introduce fundamental programming concepts such as variables, loops,
Boolean logic, and functions, and software-related tasks such as creating code
flowcharts and writing pseudo-code to represent programs. These programming
concepts are introduced using a modeling or data analysis concept that motivates
the need for them — for example, in Day 2 of class students learn to use vari-
ables in programs to solve order-of-magnitude estimation problems. Motivated
by the principles described in Section 2.3, we gradually introduce new skills and
concepts in a way that facilitates their integration with previous content, and
emphasize in class the ways that the new material builds on what has been
previously learned. Furthermore, students are given clearly-defined problems in
class, which they pursue in small groups with targeted instructor feedback. The
modeling and data analysis/visualization concepts are taught within a variety
of different contexts or application areas to both show the breadth of potential
application areas and to engage students’ personal interests.

2.5 Selecting and Training Instructional Staff

The instructional model used to support the learning and content objectives in
this course is relatively resource-intensive and requires instructional staff to be
carefully chosen and trained. We use a combination of PhD-level instructors,
graduate teaching assistants, and undergraduate learning assistants. PhD-level
instructors are assigned to the course based on interest and availability, and all
faculty in the Department of CMSE are expected to rotate through the course.
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Table 1. Course Content and Progression An overview of the most recent it-
eration of the ICM course. The first column highlights the main modeling or data
analysis concept explored in the pre-class/in-class activities. The second column pro-
vides the context in which the concept(s) was explored. The third column indicates
the programming practices that were most important for the successful completion of

the material.

Day‘Modeling/Data Analysis Concept

Context/Application

Programming Practices

1

Students are provided a course overview

2 ‘Ordcr of magnitude estimation

Varied (e.g. population density)

Variable definition and manipulation,
simple math

Mathematical representations
of physical systems

Kinematics, projectile motion

Defining lists, writing loops,
variable manipulation

4 Evaluating the state of physical systems

Kinematics, projectile motion

‘Writing loops, using boolean logic,
using if/else statements,
writing and using functions

. . . - . . Writi d using functions,
5 Computing costs and optimizing solutions Designing a ride share service " 1{15 anc using tunctions
combining functions
s _— . . Using Pyth dul
6 ‘Vlsuahzmg models Projectile motion and population growth (:g.lgr’nas}x ::1)1]21 ]l;];)t}.:ll(c)ilib)
. T Using the NumP; dul
7 Loading and visualizing data ‘Water levels of the Great Lakes sing the fumby mocu'e, .
loading/reading csv files, saving plots
s . Defining initial conditions,
Numerical integration . . . . X
8 . R Kinematics of extreme sports updating variables in loops,
(finite different method) N -
storing data in lists
9 Numerical integration Orbital Mechanics Defining functions, using the odeint function
) (using pre-existing solvers) : from the SciPy module
10 |Compartmental models Epidemiology, rumors, No programming this day

population dynamics

(instead: flow-charting and pseudo-coding)

Epidemiology, rumors,
population dynamics

Using odeint, modifying function parameters
and initial conditions

Creating, navigating, and manipulating arrays,

11 ‘Compm‘tmcmal models

12 |Agent-based models Forest fires and tipping points visualizing 2D arrays
- . Creating, navigating, and manipulating arrays,
13 |Agent-based models Schelling’s segregation model R s v
visualizing 1D arrays
. . . . Interacting with data using Pandas,
Data inspection, manipulation, . . .
14 . o Flint water crisis data applying boolean masks,
and visualization L . P
data slicing and visualization
. . . Manipulating data,
Data cleaning, transformation, . . anipu ating cata, .
15 . . Flint water crisis data computing statistical quantities,
and interpretation .
using Pandas
Using NumPy’s polyfit and polyld
16 |Finding trends (linear regression) Political approval ratings and SciPy’s curvefit to fit data,
visualizing model fits
. . . Using the lag_plot function f Pand
17 |Finding trends (auto-regression) ‘Weather forecasting SIng the \ag plob function trom “encas,
using fitting functions, visualizing data
18 ‘Ivfidterm exam took place on this day
. . . . Using random number generators,
19  |Stochastic models using random numbers ~ Brownian motion/random walks . Y
implementing if/elif/else statements
. Usi d bel tors,
20 |Monte Carlo methods The traveling salesperson problem lsmglralm O IUMBET generators,
visualizing data
p Markov chain Monte Carlo e . Using random number generators,
21 . R Fitting noisy data . ", . .
parameter estimation v evaluating conditionals, visualizing data
22 | Class time devoted to semester project work
. . . . . Loading data files, ipulati ariables,
23 |Manipulating and analyzing varied datasets Climate Change cading cata fiies, manipuiating variables,
visualizing data
24 ‘Comparing models to data Climate Change Writing loops, storing data, loading data files

Building compartmental models,
coupling models, and comparing to data

Climate Change

Manipulating and updating variables,
visualizing data, over-plotting models and data
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Graduate teaching assistants (TAs) are chosen based on their expertise, availabil-
ity, and interest in teaching with this instructional model. Undergraduate learn-
ing assistants (LAs) are students who took the course in a previous semester,
received a high course grade, and have an interest in teaching.

Each week, the instructional staff meets to debrief their teaching experience,
prepare for the coming week of material and, when time allows, discuss educa-
tional pedagogy. In the week preceding the start of the semester, all TAs and LAs
are required to attend a full-day training workshop that explains the structure of
the course, the motivations for the course design, common issues that may arise
in class, and methods for effectively managing student-instructor interactions.

As the course has evolved, progressively more emphasis has been placed on
ensuring that all members of the instructional staff receive sufficient training,
including PhD-level instructors. As course enrollment continues to grow and our
demand for undergraduates LAs increases, we plan to develop a more formal-
ized TA and LA training program aimed at providing additional professional
development and requiring that the students enroll in a formal course to explore
educational pedagogies more deeply and present on their teaching experiences.

2.6 Course Technology and Logistics

In service of reaching our learning goals and implementing the described ped-
agogical techniques, we leverage a variety of digital and physical technologies.
There are also certain course logistics necessary to achieve the quality standards
that CMSE strives to uphold in its courses. Coordinating all of these aspects of
the course are nontrivial and we attempt to outline the key details here.

Students in this course use the Python programming language® due to its
ubiquity, overall ease of use as an introductory programming language, and the
wide range of available and relevant libraries and supplemental software pack-
ages. Specifically, we have students install the Anaconda® Python distribution
on their own laptop computers. Within this distribution, the main piece of soft-
ware that we use in the ICM course are Jupyter Notebooks. In fact, the Jupyter
Notebooks are a critical component of the course as they act as our student code
development environment. They allow raw code, the results of its execution, and
explanatory narrative to coexist in a single interactive document. The notebooks
can also render plots and print data query results inline, making them extremely
powerful for doing data analysis.

Jupyter Notebooks are also extremely powerful from a curriculum authoring
and pedagogical perspective. We design our instructional materials with embed-
ded YouTube videos of our mini-lectures and links to helpful resources all within
a single document. That document then serves as the template that students edit
and then submit for credit. This single-document structure means there is less
pressure on students to context-switch between lecture notes, video demonstra-
tions, and code playgrounds to try things out. Since notebooks support <iframe>

® https://www.python.org
5 https://www.anaconda.com
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cells, we can also embed a Google Form survey to solicit student feedback. Fur-
thermore, Jupyter Notebooks are used both in academia and in industry, so
students are working with the same professional-grade tools as experts.

Although students are expected to bring their own laptops to class, this
expectation cannot always be met. We have two solutions for this: First, a cart
containing laptops with the necessary software is brought to class every day for
student use in class. Second, we maintain a JupyterHub” instance that allows
students to remotely log on and use Jupyter notebooks from any device with
a modern web browser. Between these two solutions, virtually any computing
issue can be resolved with minimal impact on student and instructor class time.

Beyond the software that facilities the learning environment we strive for in
the ICM course, the physical classroom space is crucial for motivating collabora-
tive learning. To encourage productive collaboration, we offer as many sections of
the course as possible in MSU’s REAL classrooms, mentioned in Section 2.1 and
shown in Figure 1. These classrooms are constructed to discourage traditional
lectures as students sit at tables in groups of 4-6 such that they are face-to-face
with each other, rather than facing the instructor. These tables are equipped
power outlets, audio/video cables, and hi-definition televisions, so that students
can work on their laptops and share their screens to cooperatively code their
problem solutions. Furthermore, the classrooms are set up such that should the
instructor wish to share the work or progress of a particular group or individual,
they can broadcast that screen to the entire room. This affords the instructor
the opportunity to turn a localized learning moment into a classroom-wide dis-
cussion. The REAL classrooms also offer plentiful whiteboard space for student
teams to write out their algorithm ideas, model components, and data analysis
goals, an important part of the in-class activities outlined in Section 2.7.

Although the layout and technological enhancement of the REAL classrooms
help to promote a collaborative learning environment, we note that teaching this
course in classrooms like the REAL classrooms at MSU is not a requirement for
course success. As long as the classroom desks are mobile, they can be rearranged
into groups and the room can be supplemented with portable whiteboards. Al-
though slightly less ideal, this allows for a setup like that shown in Figure Ic,
which still encourages peer-to-peer interaction during class.

During class students work in small groups for discussion, brainstorming,
pseudo-coding, and other related activities, but occasionally fragment into pairs
when writing code. Group members are expected to be mutually supportive,
and are responsible for their own learning and each others’ learning. They do
so by sharing their ideas and reasoning, asking each other questions, and an-
swering questions posted to them. A positive group environment is created in
two ways. First, groups are deliberately constructed — instructors assign stu-
dents to groups in such a way that groups have similar overall capabilities on
average, that group members have a wide variety of majors, and that students
from under-represented groups are not overwhelmed by those from the majority
group. Groups are re-formed a handful of times per semester, with the instruc-

" https://jupyterhub.readthedocs.io/en /stable/
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Fig.1. (A) A rendering of one of MSU’s Rooms for Engaged and Active Learning
(REAL classroom). The room is designed to foster group work and minimize lecturing.
(B) One of the REAL classroom student stations for group work. Students have space
for their laptop, power access, and the ability to connect to one of the small screens at
the end of the table. The instructor can display content on the large television screen
above the tables to be viewed by all students. Students use the whiteboards for tasks
like pseudo-coding, flowcharting, brainstorming. (C) One possible alternative setup
for classrooms that do not offer the same design advantage of the REAL classroom.
This setup achieves much of the same goals for encouraging student interaction and is
sufficient for a successful offering of the ICM course.

tional staff taking student personalities and abilities into account. Second, stu-
dents are given clear instructions regarding the goals of the group and receive
periodic feedback on how they and their group is performing.

Finally, the size of the course sections and structure of the instructional
staff to date as follows. For the semesters discussed in this paper, course sec-
tions have included anywhere from 24 to 48 students. We strive to maintain a
student-instructor ratio of no greater than 16:1, as going to larger ratios puts
unrealistic expectations on our ability to provide sufficient facilitation of student
learning.[5,10] For our current average section size of 36 students, we staff each
section with one PhD-level instructor (typically a CMSE faculty member), one
graduate teaching assistant (TA) from the CMSE doctoral program, and one un-
dergraduate learning assistant (LA). We maintain our desired student-instructor
ratio in larger sections by adding additional LAs.

2.7 A Typical Week of Class

A typical week in ICM has the following structure. Individual sections of the
course meet for 110 minutes twice a week. Prior to a given class, students are
required to do a pre-class assignment distributed as a Jupyter Notebook. This
assignment is short, due the evening before class, and typically includes narrative
text and/or one or more short videos that introduce them to that day’s new top-
ics. After the students watch the videos, they immediately use what they have
learned in a series of short programming problems and/or free response ques-
tions. Finally, they fill out an embedded Google Form survey that asks them to

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOIJ10.1007/978-3-030-22750-0_30 |



https://dx.doi.org/10.1007/978-3-030-22750-0_30

Teaching Computational Modeling, Data Analysis, and Programming 11

list any questions that they have about the material — as well as broader ques-
tions/issues they may have regarding the class — and then turn in the notebook
via the course management system. The content of the Google Form is immedi-
ately available to the instructional staff in an easy-to-digest format which allows
them to see what students are struggling with or have questions about. These
pre-class assignments act as a mechanism for formative assessment and they are
assigned grades based on completion rather than on correctness.

Class begins with a classroom-wide discussion of the pre-class assignment.
This discussion may include a brief presentation by the instructor or a walk-
through of particular pieces of the assignment. This affords the instructor the
opportunity to address any questions or confusion that students may have indi-
cated in the pre-class assignment, which helps put each student on equal footing
prior to starting the day’s activity. After this discussion, students download the
in-class assignment from the course management system (another Jupyter note-
book) and begin working on it in small groups. The assignments involve student
discussion, calculations, programming, data analysis, and comparing of models
to data, all of which is facilitated by the instructional staff. There are usually
one or two “check points” during each class that are intended to get students to
think critically about the outputs of their data analysis and/or modeling, and
often result in whole-class discussions. These assignments also prompt the stu-
dents to use the available whiteboards to write “pseudo-code,” flow-chart their
algorithms, or outline their data analysis methods. At the end of each class, stu-
dents fill out a Google Form survey to give feedback and ask clarifying questions,
and then upload a copy of their Jupyter notebook to the course management
system. Grading is based on completion and good-faith effort rather than on
correctness.

2.8 Summative Assessment

In addition to the various forms of formative assessments we described previously,
we also build multiple mechanisms for summative assignment into the course.
These take on the form of homework assignments, exams, and semester projects.

After students have explored a topic in class, they receive a homework assign-
ment that builds on that topic, but typically focusing on a different application
area. Students are encouraged to discuss the homework with each other, but
are required to do the work themselves and turn in the homework individually.
This homework is a summative evaluation graded on correctness. In addition to
testing students’ ability to perform data analysis and implement models, some
homework assignments also have an interpretive or descriptive component. These
questions provide us with opportunities to explore student understanding around
topics that might be overly challenging to code.

Beyond the homework assignments, we have explored a variety of exam for-
mats over the evolution of the ICM course. The most effective format involves
giving students Jupyter notebooks that are similar in format to their normal
in-class activities with a handful of questions aimed at probing key topics from
the course. The questions asked might require: finding a solution to a set of
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equations to model a time-dependent physical system; loading, manipulating,
and visualizing data; using random numbers to carry about numerical integra-
tion; or explaining what an agent-based model is, how it can be used to model a
real system, and how one might setup the model using code. The exams reach a
similar level of complexity as the tasks students normally complete in class, but
for these exams they have to work individually. Students are allowed to use the
internet to look up documentation for the code they are using or troubleshoot
bugs they may run into. Students report that the exams are challenging, but
fair and reasonably well-aligned with the course content and design. Averaged
across sections, ~80% of students achieve an exam grade of 70% or higher.

The final piece of summative assessment that we use in the ICM course are
the semester projects. These projects provide the students with the opportunity
to pursue a topic that they are personally interested in and showcase the skills
and knowledge they have acquired over the course of the semester.

3 Summary and Discussion

This paper presents the design process, structure, content progression, and as-
sessments mechanisms from the first six semesters of teaching and refining our
ICM course. In the four years since the development of this course began in
earnest, the Department of CMSE has grown substantially, as has student and
faculty interest in the course. This presents both challenges and opportunities.

The primary challenge that we have encountered is rapidly growing demand
for this course. Academic advisors and faculty are strongly recommending the
course to students from a variety of majors, and enrollment has increased ev-
ery semester, limited only by course capacity. Since the first offering, course
sections have grown in size, with the most recent semester having a maximum
section size of 72 students. These large sections are staffed by a faculty instruc-
tor, a graduate teaching assistant, and two undergraduate learning assistants. A
similarly-structured introductory MSU physics course[9] suggests that is possi-
ble to scale up to on the order of 100 students per section without sacrificing the
student-centered nature of the course and its associated learning gains, some-
thing we will likely have to pursue.

In addition to growing demand from students, undergraduate minors and
degree programs are now incorporating the ICM course into their requirements as
a prelude to adding computational modeling and data analysis throughout their
curriculum. Beyond the capacity increases required to support these programs,
it will be critical to reassess the ICM learning goals and detailed curriculum to
ensure that it continues to meet the Department’s goals, as well as communicate
this information to programs requiring the course.

The rapid growth in demand requires the development of a training curricu-
lum for all instructional staff that focuses on methods for facilitating student-
centered learning and the development of a more formalized undergraduate learn-
ing assistant program.[15] Undergraduate learning assistants are often compa-
rably effective to teaching assistants[4] and may even help to institutionalize
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course reform and teaching practices.[6] For faculty-level instructors, training in
research-based pedagogy is critical as most CMSE faculty are young, with little
to no teaching experience and their experience has primarily been in traditional,
lecture-style courses. Training faculty in the research-based teaching methods
employed in this course is also crucial to its sustainability and continuity.

The success of ICM has led to inter-college discussions about the creation
of other courses with complementary goals. For example, faculty in MSU’s
College of Communication Arts and Sciences are interested in developing a
course focused more on data analysis/data science, the emerging field of “data
journalism”[7], and the role that reliance on Big Data and algorithms can play
in policy and broadly in society (e.g.,[14]). The student population for this type
of course would be quite different - journalism, marketing, humanities, and so-
cial science majors rather than STEM majors - which implies different course
prerequisites and different learning goals.

The creation of this course (and its second-semester counterpart) creates a
range of research opportunities. Critically, while a set of measurable concepts in
programming has been defined in the computer science education research com-
munity (see, e.g.,[17]), a similar inventory of concepts and a related assessment
tool does not exist with regards to computational modeling and data analy-
sis. Such a tool is critical for evaluating individual student assignments and
in measuring the impact of curricular changes. Furthermore, the effect of the
combination of computer science and modeling/analysis tasks on student learn-
ing has received almost no attention, outside of the physics education research
community[3,16]. Finally, there is a rich vein of possible work relating to student
affect and student identity. Most students who enter the ICM course have al-
ready declared their major, and are unlikely to self-identify as computational or
data scientists. Exploring the impact of the ICM course on their self-identity and
feelings about their major, particularly as they progress through their degree,
may prove to be important for student recruitment and retention.
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