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Abstract. We propose methods to eliminate redundant utility assessments in de-

cision analysis applications. We abstract a set of utility assessments such that the 

set is represented as a matrix of ternary numbers. To achieve efficiency, the ma-

trix is converted to a decimal vector for further processing. The resulting ap-

proach demonstrates excellent performance on random sets of utility assess-

ments. The method eliminates the redundant questions for the decision maker and 

can serve for consistency check. 

Keywords: Uncertainty, decision analysis, decision maker, multiattribute utility 

problem, redundant utility assessments. 

1 Introduction 

In multi-objective decisions under uncertainty, the decision maker’s trade-offs over the 

different attributes (e.g. increase output, but decrease expenses [1]) can be expressed 

through a multiattribute utility function (MUF). In complex decision problems, e.g. 

power plant siting [2-4], the construction of a MUF [5] becomes difficult with the num-

ber of attributes. For example, Keeney and Raiffa [6] discuss the siting of nuclear power 

facilities utilizing ten attributes while Keeney and Sicherman [7] model alternatives for 

generating electricity using 14 attributes. To simplify the assessment of a MUF from 

the decision maker [8], it can be decomposed into lower-order terms [9]. The lower-

order terms of MUF may contain redundancies. The elimination of possible redundancy 

in utility assessments saves time significantly for the decision maker.    

Although in different context, the task to eliminate redundant expressions in a pro-

gram may arise in compiler optimization. The example of a redundant expression here 

could be a computation that is performed twice. Different algorithms have been dis-

cussed to address this problem [10-12]. Redundancy is also met in biomedical science. 

In particular, if some biological functions (or terms) in the gene ontology (GO) hierar-

chy do not provide additional information, then they are redundant and must be ex-

cluded from the GO lists [13].  

In this paper, we consider the problem of determining the minimal set of utility 

assessments (lower-order terms) needed to construct a MUF from a given set of assess-

ments. We introduce a novel and efficient method for eliminating duplicate and redun-
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dant terms in a MUF. The efficiency of the method is achieved by transferring the com-

putational burden from a two-dimensional input (ternary matrix) to a decimal vector. 

The algorithm sorts the vector, eliminates possible duplicates and redundancies, and 

returns the unique set of utility assessments. The method can help to exclude redundant 

questions for the decision maker. It can also be used to check the consistency of the 

utility assessments, which are required for a construction of multiattribute utility func-

tions. 

2 Preliminaries 

Consider a decision problem with a set of n  attributes  1 2, ,..., ,nX X X X  where 

the domain of the attribute 
iX  is represented by instantiations: 0 *, , ,i i ix x x  such that 

the former two are the subsets of the latter and distinct. Namely, 0

ix  and *

ix  are the least 

and most preferred values of attribute ,iX  and 
ix  denotes all values. Let 

 1 2, ,..., mU U U U  be a given set of utility assessments, where 
jU  is a function of 

.X  The goal is to return U  without redundant assessments.  

For example, consider the five utility assessments presented in Figure 1(a). The 

first two terms, 0 0

1 2 3 4( , , , )U x x x x  and * 0

1 2 3 4( , , , ),U x x x x  are redundant due to the 

terms 0

1 2 3 4( , , , )U x x x x  and *

1 2 3 4( , , , ),U x x x x respectively. The fifth term is a dupli-

cate of *

1 2 3 4( , , , ).U x x x x  Therefore; a unique set of utility assessments will contain 

only two terms.  

To simplify the encoding and decoding of utility assessments, Abdildin and Abbas 

[14] introduced the ternary matrix of utility assessments, so that the given set can be 

encoded as a 5 4  ternary matrix M  as shown in Figure 1(b).  

Definition 1 [14]: The ternary matrix of utility assessments, ,M  is an m n  matrix 

storing integers 0, 1, and 2, representing respectively the least preferable value, the 

most preferable value, and all values of an attribute, where m  is the number of utility 

assessments, and n  is the number of attributes of the decision-making problem.  

 
0 0

1 2 3 4( , , , ),U x x x x  
* 0

1 2 3 4( , , , ),U x x x x
*

1 2 3 4( , , , ),U x x x x
0

1 2 3 4( , , , ),U x x x x
*

1 2 3 4( , , , ).U x x x x  

 

2     2     0     0 

1     2     2     0 

1     2     2     2 

2     2     0     2 

1     2     2     2 

Fig. 1. (a) Utility assessments; (b) Ternary matrix .M  

To eliminate duplicate and redundant terms from the ternary matrix M  in a brute-

force approach, every row of M  has to be compared with all other rows elementwise. 

The brute-force approach can be implemented in different ways, the pseudo-code of the 

one utilized in this paper is given in the appendix. Another approach [14] is to compare 
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only parts of the rows called twos-complement. The twos-complement part represents 

the set of columns in a row containing ones and zeros, i.e. complements of twos. We 

now propose a novel and more efficient approach for eliminating redundant utility as-

sessments. 

3 Proposed Approach 

3.1 Main Idea 

The main idea of the ternary-decimal exclusion algorithm [15] can be described by 

small example when 2.n   In this case, the nine values of the ternary number, T, can 

vary from [0  0] to [2  2] (see Table 1).  

We can observe that: 

 If ternary number [2 2] exists in the input matrix (or 3 1 8nmax    in decimal), 

then all other numbers must be excluded from the ternary matrix. 

 If ternary number [2 1] (or 1 7max    in decimal) is present, then decimal num-

bers 1 and 4 can be eliminated (note, a modulo 3 division (%) returns the remainder 

1). Similarly, 6 covers 0 and 3, because, for example, 6 % 3 = 0. 

 The decimal 2 covers all numbers below it and 5 covers 3 and 4. 

 In addition, 2 and 5 divide the decimal numbers into three sub-intervals of equal 

length. 

Table 1. Coverage table for n = 2. 

Ternary 
number T 

for n = 2 

Decimal 
number D corre-

sponding to T 

Coverage: 
What can D eliminate? 

2   2 8 0 1 2 3 4 5 6 7 8 
2   1 7   1     4     7   
2   0 6 0     3     6     
1   2 5       3 4 5       
1   1 4         4         
1   0 3       3           
0   2 2 0 1 2             
0   1 1   1               
0   0 0 0                 

 

Therefore, we will convert the input ternary matrix ( , )M m n  into a decimal vector 

( ),V m  sort the vector, eliminate duplicate numbers, and then (recursively) eliminate 

redundancies using the observations discussed above. The recursion utilized in the pro-

posed approach improves the performance of the algorithm. It recursively divides the 

sorted vector into three sub-vectors using the right bounds: ( - ) / 3lb min max min     

and 2( - ) / 3 ,mb min max min     for the left and mid sub-vectors, respectively, where 

initially 0min   and 3 1.nmax    
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Note that the ternary numbers in Table 1 are unique and their number grows fast 

with .n    

Definition 2: For a decision problem with n  attributes, the cardinality of the ter-

nary matrix of utility assessments is the total number of possible unique ternary num-

bers that it can contain and is equal to 3 .n
  

So, the amount of unique ternary numbers (i.e. utility assessments) that can be 

formed from the rows of matrix ( , )M m n  is limited by its cardinality. The cardinality 

of the ternary matrix of utility assessments will be used later in our simulations. 

 

3.2 Pseudocodes 

The algorithm consists of the following steps. First, we convert the ternary matrix 

( , )M m n  to a decimal vector ( ).V m  Recall, a d -digit ternary number, ,T  can be con-

verted to a decimal as follows: 1 1 0

1 1 0    ...   ,d d

d dD t R t R t R t R

     where R  de-

notes radix (base 3), and dt  denotes the digits of .T  As an example, 102T   in decimal 

is 2 1 01 3  0 3  2 3 = 11.D        

Next, we sort the decimal vector ( )V m  and eliminate duplicates. One can use any 

efficient algorithm (see comparisons in [16]) to sort the decimal vector and then elimi-

nate the duplicates in linear time.  

Then, we recursively exclude redundancies from the vector. The pseudocode of the 

exclude_redundant subroutine is presented in Table 2. A modulo division is denoted 

by %, an empty vector by [], and elements of vector V  from 1 to idx by V(1:idx). The 

exclude_redundant procedure uses the search_bound subroutine (Table 3). 

Now, we convert the decimal vector to the ternary matrix. Recall, a decimal number 

D  can be converted to a ternary T  by continually dividing D  by three to have a quo-

tient and a remainder until the former is equal to zero. Then the remainder is read in a 

reverse order.  

Complex interdependence conditions in a decision problem may lead to specific re-

dundancies in utility assessments. The last step of the proposed algorithm, exclude_spe-
cific subroutine (Table 4), is needed to eliminate such redundancies.  
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Table 2. Pseudocode of the exclude_redundant subroutine. 

 

 

Procedure  exclude_redundant(V, min, max): 

Input:        A vector of m sorted unique nonnegative decimal integers, V[m], and the minimal 

and maximal possible values of m in V[m]. 

Output:      A new vector of sorted unique positive decimal integers, V.      

    m ← length(V) 

    if m < 2  

        return V     // base condition     

    if (V(m) = max)  

        return V ← max 

    k ← 1 

    if (V(m) = max - 1) AND (V(m – 1) = max - 2) 

        while k < m - 1  

            if (V(k) % 3) = 1 OR (V(k) % 3) = 0  

                delete V(k) 

elseif (V(m) = max - 1) 

    while k < m  

        if (V(k) % 3) = 1 

            delete V(k) 

elseif (V(m) = max - 2)  

    while k < m 

        if (V(k) % 3) = 0  

            delete V(k) 

    m ← length(V)     

    lb ← floor(min + (max-min)/3)          // left bound 

    mb ← floor(min + 2*(max-min)/3)    // mid bound       

    idxL ← search_bound(V, 1, m, lb)     // find elm ≤ lb to create Left sub-vector 

    if idxL = 0  

        L ←  []  

    elseif V(idxL) = lb 

        L ← lb 

    else 

        L ← V(1 : idxL)        

    idxM ← search_bound(V, idxL + 1, m, mb)  // find elm  ≤  mb to create Mid sub-vector 

    if idxM = idxL 

        M ←  [] 

    elseif V(idxM) = mb  

        M ← mb 

    else 

        M ← V(idxL + 1 : idxM)  

    if m = idxM     // create Right sub-vector 

        R ←  [] 

    else 

        R ← V(idxM + 1 : m)     

    [L] ← exclude_redundant(L, min, lb) 

    [M] ← exclude_redundant(M, lb, mb) 

    [R] ← exclude_redundant(R, mb, max) 

    [V] ← [L M R]     // merge L M R 

    return V 
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Table 3. Pseudocode of the search_bound subroutine. 

 

Table 4. Pseudocode of the exclude_specific subroutine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 An illustrative example 

Let us consider a three-attribute decision problem in which attributes 
1X  and 

2X  are 

utility independent [6] from attribute 
3,X  and attribute 

3X  is utility independent from 

attributes 
1X  and 

2.X  These partial utility independence conditions imply that: 

 
0

1 2 3 1 2 3( | , ) ( | , )U x x x U x x x  

 
0

2 1 3 2 1 3( | , ) ( | , )U x x x U x x x  

 
0 0

3 1 2 3 1 2( | , ) ( | , ).U x x x U x x x  
The multiattribute utility function (MUF) can be decomposed into lower-order terms 

by expanding it through the attributes, which present some utility independence. For 

Procedure  search_bound(V, left, right, x): 

Input:        A sorted vector of unique nonnegative decimal integers, V, its first and end indices, 

and number x to search. 

Output:       idx, an index of x if it exists in V, index of element lower than x, otherwise.    

    if left > right 

        idx ← right 

        return idx 

    else 

        mid ← floor(left + (right - left)/2) 

        if x < V(mid) 

            idx ← search_bound(V, left, mid - 1, x)  

        elseif x > V(mid) 

            idx ← search_bound(V, mid + 1, right, x)  

        else 

            idx ← mid 

            return idx      

Procedure exclude_specific(M): 

Input:        Ternary matrix M. 

Output:     Matrix M without redundant rows.   

    r ← 1                               

    while r < size(M, 1) + 1 

        tc ← find(M(r, :) ≠ 2)  // indices of 0s and 1s in row r 

        i ← r + 1                       

        while i < size(M,1) + 1              

            if isequal(M(r, tc), M(i, tc))  // compare elms of r and i by indices in tc                   

                M(i, :) ← []  // delete row i                   

                i ← i - 1             

            i ← i + 1  

        r ← r + 1 

    return M 
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example, the expansion of a MUF [9,14] through the first attribute leads to the follow-

ing functional form: 
* 0

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3( , , ) ( , , ) ( | , ) ( , , ) ( | , ),U x x x U x x x U x x x U x x x U x x x  where 

1 2 3 1 2 3( | , ) 1 ( | , ).U x x x U x x x   A further expansion of the MUF through the remain-

ing two attributes and incorporation of the partial utility independence conditions (see 

details in [9,14]) will result in the functional form with multiple lower-order terms some 

of which are duplicate or redundant.  

The utility terms arising from the decomposition of the MUF for this decision prob-

lem can be encoded as an input ternary matrix for our algorithm (see Figure 2). Here, 

the input matrix is converted to a decimal vector (#1), the vector is sorted, and dupli-

cates are eliminated (#2), redundancies are excluded (#3), and the vector is converted 

to a ternary matrix, which is then returned as an output (#4-5-Output). The output rep-

resents the five terms, which are required for construction of the multiattribute utility 

function, namely, 0

1 2 3( , , ),U x x x * * *

1 2 3( , , ),U x x x * 0 *

1 2 3( , , ),U x x x 0 * *

1 2 3( , , ),U x x x
0 0

1 2 3( , , ).U x x x  These utility terms should be assessed [8] from the decision maker. 

Thus, the proposed algorithm eliminates redundant questions for the assessor. 

 

              Input 

1     1     1 

2     2     0 

1     2     0 

0     0     2 

1     1     0 

0     0     2 

1     0     1 

1     0     0 

0     1     1 

2     2     0 

0     2     0 

0     1     0 

0     2     0 

0     0     1 

0     0     0 

          #1 

13    

24    

15     

2 

12     

2 

10     

9 

4 

24     

6 

3 

6 

1 

0 

         #2 

24    

15    

13    

12    

10     

9 

6 

4 

3 

2 

1 

0 

         #3 

24 

13 

10 

4 

2                           

  #4-5-Output 

2     2     0 

1     1     1 

1     0     1 

0     1     1 

0     0     2 

Fig. 2. Illustration of the proposed algorithm on a three-attribute decision problem.  

4 Simulation Results 

The simulation results demonstrate very good performance of the proposed algorithm 

compared to the brute-force approach. The simulations were done in MATLAB R2017b 

on a machine with 8GB of RAM and Intel(R) Core(TM) i5-6400 CPU @2.70GHz 

2.71GHz under Windows 10 Enterprise. Figure 3 illustrates performance of the pro-

posed algorithm relative to the brute-force approach for different numbers of functions 

(utility terms) and fixed number of attributes for 10,000 runs of randomly generated 
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input ternary matrices. The average running times of the brute-force approach were set 

to unit. Comparing to the brute-force approach, the ternary-decimal exclusion algorithm 

demonstrates excellent performance for various values of m for a fixed value of n.  

 

 

 

Fig. 3. Performance of the ternary-decimal exclusion algorithm (TD) relative to the brute-force 

approach (BF) for different numbers of functions. 

 

The proposed algorithm also shows very good performance for different values of n 

(see Figure 4). Note that the value of m is proportional to n in this test and is equal to 

half of the cardinality of the ternary matrix. One limitation of the proposed approach is 

the case when m is disproportionately very low for a given n. For example, if 

(0.05(3 )),nm floor   then the efficiency of the proposed approach decreases. This 

gives a motivation for future work.    

 

 

Fig. 4. Performance of the ternary-decimal exclusion algorithm (TD) relative to the brute-force 

approach (BF) for different numbers of attributes. 
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5 Conclusion and Future Work 

For solving problems under uncertainty, the decision maker often must consider many 

factors and use multiple criteria (i.e. attributes). The construction of a multiattribute 

utility function, in this case, may require assessments of various lower-order utility 

terms. The exclusion of utility terms, which are duplicate or redundant, can be quite 

challenging in complex decision problems.  

This paper introduced a novel method for excluding redundant terms in a multiat-

tribute utility function. The ternary-decimal exclusion algorithm demonstrated excel-

lent performance on random sets. Future work may extend the analysis and possibly 

find better recurrence relations. The proposed algorithm can be used in decision support 

systems and can serve as a consistency check for the utility assessments. 
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Appendix 

Table 5. Pseudocode of the brute-force approach. 

 

 

Algorithm  brute-force(M): 

Input:        Ternary matrix M. 

Output:     Matrix M without redundant rows.      

    r ← 1               

    while r < size(M, 1) + 1     

        i  ← 1           

        while i < size(M, 1) + 1 

            if i ≠ r  

                if M(r, :) ≥ M(i, :)  // if all elms of row r ≥ the corresponding elms of row i 

                    redundant ← true  // then row i can be redundant due to row r 

                    for j ← 1:size(M, 2) 

                        if M(r, j) > M(i, j) AND M(r, j) = 1 

                            redundant ← false                                

                            break  

                    if redundant = true 

                        M(i, :) ← []  // delete row i                   

                        if i < r           

                            r ← r - 1                           

                        i ← i - 1                                                

            i ← i + 1  

        r ← r + 1  

    return M 
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