
Ternary-Decimal Exclusion Algorithm for Multiattribute

Utility Functions

Yerkin G. Abdildin[0000-0002-7074-4377]

Nazarbayev University, 53 Kabanbay Batyr Ave., Nur-Sultan, 010000, Kazakhstan

yerkin.abdildin@nu.edu.kz

Abstract. We propose methods to eliminate redundant utility assessments in de-

cision analysis applications. We abstract a set of utility assessments such that the

set is represented as a matrix of ternary numbers. To achieve efficiency, the ma-

trix is converted to a decimal vector for further processing. The resulting ap-

proach demonstrates excellent performance on random sets of utility assess-

ments. The method eliminates the redundant questions for the decision maker and

can serve for consistency check.

Keywords: Uncertainty, decision analysis, decision maker, multiattribute utility

problem, redundant utility assessments.

1 Introduction

In multi-objective decisions under uncertainty, the decision maker’s trade-offs over the

different attributes (e.g. increase output, but decrease expenses [1]) can be expressed

through a multiattribute utility function (MUF). In complex decision problems, e.g.

power plant siting [2-4], the construction of a MUF [5] becomes difficult with the num-

ber of attributes. For example, Keeney and Raiffa [6] discuss the siting of nuclear power

facilities utilizing ten attributes while Keeney and Sicherman [7] model alternatives for

generating electricity using 14 attributes. To simplify the assessment of a MUF from

the decision maker [8], it can be decomposed into lower-order terms [9]. The lower-

order terms of MUF may contain redundancies. The elimination of possible redundancy

in utility assessments saves time significantly for the decision maker.

Although in different context, the task to eliminate redundant expressions in a pro-

gram may arise in compiler optimization. The example of a redundant expression here

could be a computation that is performed twice. Different algorithms have been dis-

cussed to address this problem [10-12]. Redundancy is also met in biomedical science.

In particular, if some biological functions (or terms) in the gene ontology (GO) hierar-

chy do not provide additional information, then they are redundant and must be ex-

cluded from the GO lists [13].

In this paper, we consider the problem of determining the minimal set of utility

assessments (lower-order terms) needed to construct a MUF from a given set of assess-

ments. We introduce a novel and efficient method for eliminating duplicate and redun-

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_22

https://dx.doi.org/10.1007/978-3-030-22750-0_22

2

dant terms in a MUF. The efficiency of the method is achieved by transferring the com-

putational burden from a two-dimensional input (ternary matrix) to a decimal vector.

The algorithm sorts the vector, eliminates possible duplicates and redundancies, and

returns the unique set of utility assessments. The method can help to exclude redundant

questions for the decision maker. It can also be used to check the consistency of the

utility assessments, which are required for a construction of multiattribute utility func-

tions.

2 Preliminaries

Consider a decision problem with a set of n attributes 1 2, ,..., ,nX X X X where

the domain of the attribute
iX is represented by instantiations: 0 *, , ,i i ix x x such that

the former two are the subsets of the latter and distinct. Namely, 0

ix and *

ix are the least

and most preferred values of attribute ,iX and
ix denotes all values. Let

 1 2, ,..., mU U U U be a given set of utility assessments, where
jU is a function of

.X The goal is to return U without redundant assessments.

For example, consider the five utility assessments presented in Figure 1(a). The

first two terms, 0 0

1 2 3 4(, , ,)U x x x x and * 0

1 2 3 4(, , ,),U x x x x are redundant due to the

terms 0

1 2 3 4(, , ,)U x x x x and *

1 2 3 4(, , ,),U x x x x respectively. The fifth term is a dupli-

cate of *

1 2 3 4(, , ,).U x x x x Therefore; a unique set of utility assessments will contain

only two terms.

To simplify the encoding and decoding of utility assessments, Abdildin and Abbas

[14] introduced the ternary matrix of utility assessments, so that the given set can be

encoded as a 5 4 ternary matrix M as shown in Figure 1(b).

Definition 1 [14]: The ternary matrix of utility assessments, ,M is an m n matrix

storing integers 0, 1, and 2, representing respectively the least preferable value, the

most preferable value, and all values of an attribute, where m is the number of utility

assessments, and n is the number of attributes of the decision-making problem.

0 0

1 2 3 4(, , ,),U x x x x
* 0

1 2 3 4(, , ,),U x x x x
*

1 2 3 4(, , ,),U x x x x
0

1 2 3 4(, , ,),U x x x x
*

1 2 3 4(, , ,).U x x x x

2 2 0 0

1 2 2 0

1 2 2 2

2 2 0 2

1 2 2 2

Fig. 1. (a) Utility assessments; (b) Ternary matrix .M

To eliminate duplicate and redundant terms from the ternary matrix M in a brute-

force approach, every row of M has to be compared with all other rows elementwise.

The brute-force approach can be implemented in different ways, the pseudo-code of the

one utilized in this paper is given in the appendix. Another approach [14] is to compare

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_22

https://dx.doi.org/10.1007/978-3-030-22750-0_22

3

only parts of the rows called twos-complement. The twos-complement part represents

the set of columns in a row containing ones and zeros, i.e. complements of twos. We

now propose a novel and more efficient approach for eliminating redundant utility as-

sessments.

3 Proposed Approach

3.1 Main Idea

The main idea of the ternary-decimal exclusion algorithm [15] can be described by

small example when 2.n In this case, the nine values of the ternary number, T, can

vary from [0 0] to [2 2] (see Table 1).

We can observe that:

 If ternary number [2 2] exists in the input matrix (or 3 1 8nmax in decimal),

then all other numbers must be excluded from the ternary matrix.

 If ternary number [2 1] (or 1 7max in decimal) is present, then decimal num-

bers 1 and 4 can be eliminated (note, a modulo 3 division (%) returns the remainder

1). Similarly, 6 covers 0 and 3, because, for example, 6 % 3 = 0.

 The decimal 2 covers all numbers below it and 5 covers 3 and 4.

 In addition, 2 and 5 divide the decimal numbers into three sub-intervals of equal

length.

Table 1. Coverage table for n = 2.

Ternary
number T

for n = 2

Decimal
number D corre-

sponding to T

Coverage:
What can D eliminate?

2 2 8 0 1 2 3 4 5 6 7 8
2 1 7 1 4 7
2 0 6 0 3 6
1 2 5 3 4 5
1 1 4 4
1 0 3 3
0 2 2 0 1 2
0 1 1 1
0 0 0 0

Therefore, we will convert the input ternary matrix (,)M m n into a decimal vector

(),V m sort the vector, eliminate duplicate numbers, and then (recursively) eliminate

redundancies using the observations discussed above. The recursion utilized in the pro-

posed approach improves the performance of the algorithm. It recursively divides the

sorted vector into three sub-vectors using the right bounds: (-) / 3lb min max min

and 2(-) / 3 ,mb min max min for the left and mid sub-vectors, respectively, where

initially 0min and 3 1.nmax

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_22

https://dx.doi.org/10.1007/978-3-030-22750-0_22

4

Note that the ternary numbers in Table 1 are unique and their number grows fast

with .n

Definition 2: For a decision problem with n attributes, the cardinality of the ter-

nary matrix of utility assessments is the total number of possible unique ternary num-

bers that it can contain and is equal to 3 .n

So, the amount of unique ternary numbers (i.e. utility assessments) that can be

formed from the rows of matrix (,)M m n is limited by its cardinality. The cardinality

of the ternary matrix of utility assessments will be used later in our simulations.

3.2 Pseudocodes

The algorithm consists of the following steps. First, we convert the ternary matrix

(,)M m n to a decimal vector ().V m Recall, a d -digit ternary number, ,T can be con-

verted to a decimal as follows: 1 1 0

1 1 0 ... ,d d

d dD t R t R t R t R

 where R de-

notes radix (base 3), and dt denotes the digits of .T As an example, 102T in decimal

is 2 1 01 3 0 3 2 3 = 11.D

Next, we sort the decimal vector ()V m and eliminate duplicates. One can use any

efficient algorithm (see comparisons in [16]) to sort the decimal vector and then elimi-

nate the duplicates in linear time.

Then, we recursively exclude redundancies from the vector. The pseudocode of the

exclude_redundant subroutine is presented in Table 2. A modulo division is denoted

by %, an empty vector by [], and elements of vector V from 1 to idx by V(1:idx). The

exclude_redundant procedure uses the search_bound subroutine (Table 3).

Now, we convert the decimal vector to the ternary matrix. Recall, a decimal number

D can be converted to a ternary T by continually dividing D by three to have a quo-

tient and a remainder until the former is equal to zero. Then the remainder is read in a

reverse order.

Complex interdependence conditions in a decision problem may lead to specific re-

dundancies in utility assessments. The last step of the proposed algorithm, exclude_spe-
cific subroutine (Table 4), is needed to eliminate such redundancies.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_22

https://dx.doi.org/10.1007/978-3-030-22750-0_22

5

Table 2. Pseudocode of the exclude_redundant subroutine.

Procedure exclude_redundant(V, min, max):

Input: A vector of m sorted unique nonnegative decimal integers, V[m], and the minimal

and maximal possible values of m in V[m].

Output: A new vector of sorted unique positive decimal integers, V.

 m ← length(V)

 if m < 2

 return V // base condition

 if (V(m) = max)

 return V ← max

 k ← 1

 if (V(m) = max - 1) AND (V(m – 1) = max - 2)

 while k < m - 1

 if (V(k) % 3) = 1 OR (V(k) % 3) = 0

 delete V(k)

elseif (V(m) = max - 1)

 while k < m

 if (V(k) % 3) = 1

 delete V(k)

elseif (V(m) = max - 2)

 while k < m

 if (V(k) % 3) = 0

 delete V(k)

 m ← length(V)

 lb ← floor(min + (max-min)/3) // left bound

 mb ← floor(min + 2*(max-min)/3) // mid bound

 idxL ← search_bound(V, 1, m, lb) // find elm ≤ lb to create Left sub-vector

 if idxL = 0

 L ← []

 elseif V(idxL) = lb

 L ← lb

 else

 L ← V(1 : idxL)

 idxM ← search_bound(V, idxL + 1, m, mb) // find elm ≤ mb to create Mid sub-vector

 if idxM = idxL

 M ← []

 elseif V(idxM) = mb

 M ← mb

 else

 M ← V(idxL + 1 : idxM)

 if m = idxM // create Right sub-vector

 R ← []

 else

 R ← V(idxM + 1 : m)

 [L] ← exclude_redundant(L, min, lb)

 [M] ← exclude_redundant(M, lb, mb)

 [R] ← exclude_redundant(R, mb, max)

 [V] ← [L M R] // merge L M R

 return V

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_22

https://dx.doi.org/10.1007/978-3-030-22750-0_22

6

Table 3. Pseudocode of the search_bound subroutine.

Table 4. Pseudocode of the exclude_specific subroutine.

3.3 An illustrative example

Let us consider a three-attribute decision problem in which attributes
1X and

2X are

utility independent [6] from attribute
3,X and attribute

3X is utility independent from

attributes
1X and

2.X These partial utility independence conditions imply that:

0

1 2 3 1 2 3(| ,) (| ,)U x x x U x x x

0

2 1 3 2 1 3(| ,) (| ,)U x x x U x x x

0 0

3 1 2 3 1 2(| ,) (| ,).U x x x U x x x
The multiattribute utility function (MUF) can be decomposed into lower-order terms

by expanding it through the attributes, which present some utility independence. For

Procedure search_bound(V, left, right, x):

Input: A sorted vector of unique nonnegative decimal integers, V, its first and end indices,

and number x to search.

Output: idx, an index of x if it exists in V, index of element lower than x, otherwise.

 if left > right

 idx ← right

 return idx

 else

 mid ← floor(left + (right - left)/2)

 if x < V(mid)

 idx ← search_bound(V, left, mid - 1, x)

 elseif x > V(mid)

 idx ← search_bound(V, mid + 1, right, x)

 else

 idx ← mid

 return idx

Procedure exclude_specific(M):

Input: Ternary matrix M.

Output: Matrix M without redundant rows.

 r ← 1

 while r < size(M, 1) + 1

 tc ← find(M(r, :) ≠ 2) // indices of 0s and 1s in row r

 i ← r + 1

 while i < size(M,1) + 1

 if isequal(M(r, tc), M(i, tc)) // compare elms of r and i by indices in tc

 M(i, :) ← [] // delete row i

 i ← i - 1

 i ← i + 1

 r ← r + 1

 return M

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_22

https://dx.doi.org/10.1007/978-3-030-22750-0_22

7

example, the expansion of a MUF [9,14] through the first attribute leads to the follow-

ing functional form:
* 0

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3(, ,) (, ,) (| ,) (, ,) (| ,),U x x x U x x x U x x x U x x x U x x x where

1 2 3 1 2 3(| ,) 1 (| ,).U x x x U x x x A further expansion of the MUF through the remain-

ing two attributes and incorporation of the partial utility independence conditions (see

details in [9,14]) will result in the functional form with multiple lower-order terms some

of which are duplicate or redundant.

The utility terms arising from the decomposition of the MUF for this decision prob-

lem can be encoded as an input ternary matrix for our algorithm (see Figure 2). Here,

the input matrix is converted to a decimal vector (#1), the vector is sorted, and dupli-

cates are eliminated (#2), redundancies are excluded (#3), and the vector is converted

to a ternary matrix, which is then returned as an output (#4-5-Output). The output rep-

resents the five terms, which are required for construction of the multiattribute utility

function, namely, 0

1 2 3(, ,),U x x x * * *

1 2 3(, ,),U x x x * 0 *

1 2 3(, ,),U x x x 0 * *

1 2 3(, ,),U x x x
0 0

1 2 3(, ,).U x x x These utility terms should be assessed [8] from the decision maker.

Thus, the proposed algorithm eliminates redundant questions for the assessor.

 Input

1 1 1

2 2 0

1 2 0

0 0 2

1 1 0

0 0 2

1 0 1

1 0 0

0 1 1

2 2 0

0 2 0

0 1 0

0 2 0

0 0 1

0 0 0

 #1

13

24

15

2

12

2

10

9

4

24

6

3

6

1

0

 #2

24

15

13

12

10

9

6

4

3

2

1

0

 #3

24

13

10

4

2

 #4-5-Output

2 2 0

1 1 1

1 0 1

0 1 1

0 0 2

Fig. 2. Illustration of the proposed algorithm on a three-attribute decision problem.

4 Simulation Results

The simulation results demonstrate very good performance of the proposed algorithm

compared to the brute-force approach. The simulations were done in MATLAB R2017b

on a machine with 8GB of RAM and Intel(R) Core(TM) i5-6400 CPU @2.70GHz

2.71GHz under Windows 10 Enterprise. Figure 3 illustrates performance of the pro-

posed algorithm relative to the brute-force approach for different numbers of functions

(utility terms) and fixed number of attributes for 10,000 runs of randomly generated

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_22

https://dx.doi.org/10.1007/978-3-030-22750-0_22

8

input ternary matrices. The average running times of the brute-force approach were set

to unit. Comparing to the brute-force approach, the ternary-decimal exclusion algorithm

demonstrates excellent performance for various values of m for a fixed value of n.

Fig. 3. Performance of the ternary-decimal exclusion algorithm (TD) relative to the brute-force

approach (BF) for different numbers of functions.

The proposed algorithm also shows very good performance for different values of n

(see Figure 4). Note that the value of m is proportional to n in this test and is equal to

half of the cardinality of the ternary matrix. One limitation of the proposed approach is

the case when m is disproportionately very low for a given n. For example, if

(0.05(3)),nm floor then the efficiency of the proposed approach decreases. This

gives a motivation for future work.

Fig. 4. Performance of the ternary-decimal exclusion algorithm (TD) relative to the brute-force

approach (BF) for different numbers of attributes.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

100 600 1100 1600 2100

m functions

Performance comparison for n = 7

BF

TD

0.00

0.20

0.40

0.60

0.80

1.00

4 5 6 7 8 9

n attributes

Performance comparison for m = floor(0.5*(3n))

BF

TD

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_22

https://dx.doi.org/10.1007/978-3-030-22750-0_22

9

5 Conclusion and Future Work

For solving problems under uncertainty, the decision maker often must consider many

factors and use multiple criteria (i.e. attributes). The construction of a multiattribute

utility function, in this case, may require assessments of various lower-order utility

terms. The exclusion of utility terms, which are duplicate or redundant, can be quite

challenging in complex decision problems.

This paper introduced a novel method for excluding redundant terms in a multiat-

tribute utility function. The ternary-decimal exclusion algorithm demonstrated excel-

lent performance on random sets. Future work may extend the analysis and possibly

find better recurrence relations. The proposed algorithm can be used in decision support

systems and can serve as a consistency check for the utility assessments.

References

1. Abdildin, Y. G., Abbas, A. E.: Canonical Multiattribute Utility Functions: Enumeration,

Verification, and Application. Procedia Computer Science, 18, 2288–2297 (2013).

https://doi.org/10.1016/j.procs.2013.05.400

2. Gros, J.: Power Plant Siting: a Paretian Environmental Approach. Nuclear Engineering and

Design, 34, 281-292 (1975). https://doi.org/10.1016/0029-5493(75)90125-9

3. Gros, J., Avenhaus, R., Linnerooth, J., Pahner, P.D., Otway, H.J.: A systems analysis ap-

proach to nuclear facility siting. Behavioral Science, 21 (2), 116-127 (1976).

http://dx.doi.org/10.1002/bs.3830210206

4. Solomon, B.D., Haynes, K.E.: A survey and critique of multiobjective power plant siting

decision rules. Socio-Economic Planning Sciences, 18 (2), 71-79 (1984). https://EconPa-

pers.repec.org/RePEc:eee:soceps:v:18:y:1984:i:2:p:71-79

5. Abbas A.E.: Constructing multiattribute utility functions for decision analysis. In:

Hasenbein J, editor. INFORMS tutorials in Operations research 62-98. Hanover, Maryland

(2010). https://doi.org/10.1287/educ.1100.0070

6. Keeney, R.L., Raiffa. H.: Decisions with Multiple Objectives: Preferences and Value

tradeoffs, Wiley, New York (1976).

7. Keeney, R.L., Sicherman, A.: Illustrative Comparison of One Utility's Coal and Nuclear

Choices. Operations Research, 31 (1), 50-83 (1983). https://doi.org/10.1287/opre.31.1.50

8. Abdildin, Y.G., Abbas, A.E.: Analysis of decision alternatives of the deep borehole filter

restoration problem. Energy, 114, 1306–1321 (2016). http://dx.doi.org/10.1016/j.en-

ergy.2016.08.034

9. Abbas, A.E.: General decompositions of multiattribute utility functions with partial utility

independence. Journal of Multicriteria Decision Analysis, 17, 37-59 (2010).

https://doi.org/10.1002/mcda.452

10. Knoop, J., Ruthing, O., Steffen, B.: Lazy code motion. ACM SIGPLAN Notices, 27 (7),

224-234 (1992). https://doi.org/10.1145/143095.143136

11. Morel, E., Renvoise, C.: Global optimization by suppression of partial redundancies. Com-

munication of the ACM, 22 (2), 96-103 (1979). https://doi.org/10.1145/359060.359069

12. Paleri, V.K., Srikant, Y.N., Shankar, P.: Partial redundancy elimination: a simple, pragmatic,

and provably correct algorithm. Science of Computer Programming, 48, 1-20 (2003).

https://doi.org/10.1016/S0167-6423(02)00083-7

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_22

https://doi.org/10.1287/educ.1100.0070
https://dx.doi.org/10.1007/978-3-030-22750-0_22

10

13. Jantzen, S.G., Sutherland, B.J.G., Minkley, D.R., Koop, B.F.: GO Trimming: Systematically

reducing redundancy in large Gene Ontology datasets. BMC Research Notes, 4 (267), 1-9

(2011). https://doi.org/10.1186/1756-0500-4-267

14. Abdildin, Y.G., Abbas, A.E.: An Algorithm for Excluding Redundant Assessments in a Mul-

tiattribute Utility Problem. Procedia Computer Science, 9, 802–811 (2012).

http://dx.doi.org/10.1016/j.procs.2012.04.086

15. Abdildin, Y. G.: Multiattribute utility functions for the deep borehole filter restoration prob-

lem. Ph.D. dissertation, University of Illinois at Urbana-Champaign (2014). http://hdl.han-

dle.net/2142/50440, www.ideals.illinois.edu

16. Biggar, P., Nash, N., Williams, K., Gregg, D.: An experimental study of sorting and branch

prediction. ACM Journal of Experimental Algorithmics, 12, Article 1.8, 1-39 (2008).

https://doi.org/10.1145/1227161.1370599

Appendix

Table 5. Pseudocode of the brute-force approach.

Algorithm brute-force(M):

Input: Ternary matrix M.

Output: Matrix M without redundant rows.

 r ← 1

 while r < size(M, 1) + 1

 i ← 1

 while i < size(M, 1) + 1

 if i ≠ r

 if M(r, :) ≥ M(i, :) // if all elms of row r ≥ the corresponding elms of row i

 redundant ← true // then row i can be redundant due to row r

 for j ← 1:size(M, 2)

 if M(r, j) > M(i, j) AND M(r, j) = 1

 redundant ← false

 break

 if redundant = true

 M(i, :) ← [] // delete row i

 if i < r

 r ← r - 1

 i ← i - 1

 i ← i + 1

 r ← r + 1

 return M

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_22

http://dx.doi.org/10.1016/j.procs.2012.04.086
http://www.ideals.illinois.edu/
https://doi.org/10.1145/1227161.1370599
https://dx.doi.org/10.1007/978-3-030-22750-0_22

