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Abstract. We present a framework for the distributed approximation
of moments, enabling the evaluation of the uncertainty in a dynamical
system. The first and second moment, mean, and variance are computed
with up to third-order Taylor series expansion. The required derivatives
for the expansion are generated automatically by automatic differenti-
ation and propagated through an implicit time stepper. The computa-
tional kernels are the accumulation of the derivatives (Jacobian, Hessian,
tensor) and the covariance matrix. We apply distributed parallelism to
the Hessian or third-order tensor, and the user merely has to provide a
function for the differential equation, thus achieving similar ease of use as
Monte Carlo-based methods. We demonstrate our approach using with
benchmarks on Theta, a KNL-based system at the Argonne Leadership
Computing Facility.

1 Introduction

Mathematical models are an approximation of real life systems and their validity
resides in how well the outputs of the model agree with measured data. Often,
the input or parameters of the model are uncertain because data is unavailable
or inaccurate; for these cases, one typically performs an uncertainty quantifi-
cation (UQ) analysis to determine how much the outputs vary with the input
parameters of the model. The uncertainty in the outputs can be quantified as
a range of values, but also as a probability distribution function (pdf). Several
methods, for example Monte Carlo computation and polynomial chaos, try to
solve the problem of computing the probability distribution of the output given
parameters defined as pdf’s.

A field that has experienced renewed interest in these techniques is energy
systems engineering. The electrical power grid with the adoption of renewable
energy has tied its behavior to stochastic weather fluctuations requiring the use of
UQ techniques to predict its performance. However, the scale of these problems is
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such that conventional methods are not satisfactory from a computational point
of view. Monte Carlo methods can be thought of as the first-line tools for UQ;
with sufficient sampling they are able to quantify the uncertainty regardless of
the input distribution or the nonlinearities of the system. However, Monte Carlo
methods suffer from slow convergence, which has led to the search for alternative
approximations [8]. Recently, the method of moments sparked new interest as
one alternative [5].

The method of moments is an approximating technique that works with the
moments of probability distributions instead of their density functions. The main
idea is to use a Taylor expansion of the function and write the moments of the
output distribution as a polynomial function of the moments of the input distri-
bution. Depending on the characteristics of the function, only a few terms of the
Taylor expansion might be enough to achieve enough precision. As noted in [9],
one of the main issues with the method of moments is that although its accu-
racy increases with the degree of the Taylor polynomial, computing higher-order
derivatives poses serious technical challenges, leading to mostly linearization
techniques for acquiring sensititivies [3].

In this paper we present ADUPROP1, a framework developed at Argonne
National Laboratory that combines the automatic differentiation (Section 2),
method of moments (Section 3), uncertainty quantification, and distributed par-
allelism (Section 4) into an easy to use tool that is able to quantify uncertainty
of dynamical systems using the method of moments at an unprecedented scale.
We use automatic differentiation (AD) by overloading through a C++ template
library. This flexible technique allows a straightforward augmentation of C++
codes for computing higher-order derivatives. By exploiting the structure of this
approach, we implement a scheme that parallelizes both the accumulation of
the derivative information and the computation of the covariance based on the
derivative values.

2 Algorithmic Differentiation

Automatic differentiation [2] allows one to differentiate computer programs by
applying differential calculus at a program’s statement level. It uses compil-
ers or language-based approaches to transform an implementation of a mul-
tivariate vector function y = g(x),Rn 7→ Rm into Jacobian vector products
y(1) = J(x) · x(1) (tangent-linear model) or transposed Jacobian vector prod-
ucts x(1) = JT · y(1) (adjoint model), where x(1), y(1) denotes the tangents and
x(1), y(1) denotes the adjoints. The tangent-linear mode is equivalent to the
finite difference method with the additional advantage of providing derivative
information up to machine precision with no truncation or cancellation errors.

In this paper we solely rely on the tangent-linear or forward mode where the
transformed code computes the product of the Jacobian J at point x times a
directional derivative x(1), yielding the output tangent. The directional deriva-
tives, denoted with a superscript order of differentiation, are defined as a partial

1 https://gitlab.com/aduprop/aduprop
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derivative of y and x with respect to an auxiliary variable s. For readability
we use Spivaks notation for derivatives y(1) = ∂y

∂s = ∂y
∂x ·

∂x
∂s = Dg(x) · x(1) ∈ Rm.

Letting x(1) go over the Cartesian basis vectors of the implementation J · x(1)

yields, column by column, the entire Jacobian J = Dg(x) ∈ Rm×n. Thus, for
the accumulation of the full Jacobian we need to rerun the tangent-linear code n
(number of columns) times. For higher-order derivative models we use the inner
product <> notation introduced in [6] where the tangent-linear model is written
as a projection of the Jacobian onto the tangent:

y = g(x), y(1) =< Dg(x), x(1) >= Dg(x) · x(1) . (1)

Note that in general an implementation transformed by an automatic differentia-
tion (AD) tool computes both g(x) and the Jacobian vector product. Reapplying
an AD tool to an already first-order differentiated code yields a second-order for-
ward over forward (FoF) code computing (2):

y = g(x), y(2) =< Dg(x), x(2) >
y(1) =< Dg(x), x(1) >, y(1,2) =< D2g(x), x(1), x(2) > + < Dg(x), x(1,2) > .

(2)
The superscript (2) denotes the second order of differentiation. Rerunning this
FoF model and letting x(1) and x(2) each go over the Cartesian basis vectors,
we obtain all the entries of the Hessian D2g ∈ Rm×n×n evaluated at x. Here
< D2g(x), x(1), x(2) > is the projection of x(1) onto the Hessian followed by
the projection of x(2); x(1,2) must be set to zero. (For a detailed definition of
Jacobian, Hessian and tensor projections, please refer to [6]). Following this logic,
we reapply the tangent-linear model to acquire third order derivatives using the
forward over forward over forward model (FoFoF):

y = g(x), y(3) =< Dg(x), x(3) >
y(2) =< Dg(x), x(2) >, y(2,3) =< D2g(x), x(2), x(3) > + < Dg(x), x(2,3) >
y(1) =< Dg(x), x(1) >, y(1,3) =< D2g(x), x(1), x(3) > + < Dg(x), x(1,3) > ,

and the last term capturing the third-order tensor D3:

y(1,2) =< D2g(x), x(1), x(2) > + < Dg(x), x(1,2) >,
y(1,2,3) =< D3g(x), x(1), x(2), x(3) > + < D2g(x), x(1,3), x(2) >

+ < D2g(x), x(1), x(2,3) > + < D2g(x), x(1,2), x(3) > + < Dg(x), x(1,2,3) > .
(3)

The original code using one variable x went up to two for the tangent-linear
model, four for the FoF model and eight for the FoFoF model. To accumulate
the third-order tensor D3g(x) ∈ Rm×n×n×n in y(1,2,3) we have to let x(1), x(2),
and x(3) go over the Cartesian basis vectors, thus requiring n3 reruns of the
model. The remaining tangents of x must be set to zero. These properties will
translate directly to the implementation described in Section 5.
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3 Method of Moments

What is the distribution of y if we let y = g(x) be a function of a random variable
x with known properties? Computing this analytically is often difficult; and,
in particular, obtaining the pdf of y is not possible in general. An alternative
approach is to consider the moments of the distributions. Depending on the
shape of the pdf, the first few moments of the pdf can be sufficient to capture
relevant behavior. More concretely, consider g(x) where x is a random variable
with density f(x). If g(x) is sufficiently smooth, given the mean value theorem,
we can write [7]

E [g(x)] =

∫ ∞
∞

g(x)f(x)dx ≈ g(µ)

∫ ∞
∞

f(x)dx = g(µ) , (4)

where µ = E [x]. Using a third order Taylor expansion for a function g(x) around
µ = E [x] and considering the expressions for the mean µg = E [g(x)] and covari-
ance

cgpg = E [(gp(x)− µp)(gq(x)− µq)] = E [gp(x)gq(x)]− E [gp(x)]E [gq(x)] , we
obtain

µg
p = g(µ) +

1

2

n∑
i,j=1

D2
ijgp · cij (5)

and

cgpq = 1
2!

∑n
i,j=1 (Djgp ·Digq + Djgq ·Digp) cij

+ 1
4!

∑n
i,j,k,l=1

(
Digp ·D3

jklgq + Djgp ·D3
iklgq + Dkgp ·D3

ijlgq

+Dlgp ·D3
ijkgq + D2

ijgp ·D2
klgq + D2

ikgp ·D2
jlgq

+ D2
ilgp ·D2

jkgq + D2
jkgp ·D2

ilgq + D2
jlgp ·D2

ikgq
+ D2

klgp ·D2
ijgq + D3

jklgp ·Digq + D3
iklgp ·Djgq

+D3
ijlgp ·Dkgq + D3

ijkgp ·Dlgq

)
cijkl

− 1
2!

∑n
i,j,k,l=1

(
D2

ijgp ·D2
klgq

)
cijckl .

(6)

In the derivation of these formulas we assume a Gaussian distribution, which
results in the cancellation of the odd terms of the expansion.

4 Tensor Decomposition

In addition to combining the aforementioned methods and tools in a novel way
to compute the moments, our main contribution is the distributed parallelization
described in this section. The FoF model always computes one projection y(1,2) of
D2g ∈ Rm×n×n onto x(1), x(2) ∈ Rn (see Figure 1). Hence we cannot decompose
the Hessian along the entries of y(1,2). By parallelizing over the entries of x(1) or
x(2), we can restrict the Cartesian basis vectors (see Section 2) to the local indices
and thus distribute the Hessian accumulation over all processes. The same holds
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Fig. 1. Hessian D2g

true for the computation of the four-dimensional tensor D3g (3) where we can
parallelize over the entries of x(1), x(2), or x(3) and thus distribute the tensor
over all processes.

The computation of the mean in (5) is then parallelized in a straightforward
way over either the index i or j. Each process thus has a local copy of µ that needs
to be allreduced at the end of the summation. We parallelize the computation of
C over p or q and perform allgather to share C among all processes. Solving the
linear system for the time stepper has a runtime complexity of at most O

(
n3
)
,

or lower in case of sparsity in the inner Jacobian. Accumulating the tensor D3g
has a runtime complexity of O

(
n2
)
·cost(g). Thus, the total run-time complexity

for accumulating the tensor is O
(
n6/p

)
, where p is the number of processes. The

covariance computation in (6) yields the same complexity of O
(
n6/p

)
, which is

our global runtime complexity.

5 Implementation

ADUPROP (AD for Uncertainty Propagation) is a C++ implementation of the
propagation of moments. In particular, it implements the concepts of Section 3
in the context of differential equations. ADUPROP is a template-based code
that allows easy computation of higher-order derivatives. The library provides
vector, matrix, and tensor data structures using a template type T instead of
double. For our implementation of ADUPROP we chose the AD tool CoDiPack,
which is based on operator overloading. To create an n + 1 derivative type t3s

we recursively apply differentiation on an n order type.

1 typedef RealForwardGen <RealForwardGen <RealForwardGen <double

> > > t3s;

This maps exactly to the notation in Section 2. Accessing, for example, x.

gradient().gradient().value() of the third-order type t3s of a variable x is
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equivalent to accessing x(2,3). The variable type T in the implementation of f
allows us to instantiate the function using the types double, t1s, t2s, and t3s.

As an example, we implement UQ of a differential equation system with
ADUPROP. When the system is discretized (xk = φ(xk−1)), the procedure is
identical to the one described in Section 3. The default integration scheme that
we use is backward Euler. One of the main advantages of using AD is that we
can differentiate through functions, loops, or other complex functions in which
obtaining explicit derivatives might be practically challenging and tedious. The
integration loop is written as follows

1 pVector <T> xold(dim), yold(dim), y(dim), res(dim);

2 pMatrix <T> J(dim , dim), Jold(dim , dim);

3 xold = x;

4 sys ->residual_beuler <T>(x, xold , y);

5 do {

6 sys ->jac_beuler <T>(x, xold , J);

7 yold = y; Jold = J;

8 adlinsolve <T>(J, y);

9 res = Jold * y - yold;

10 x = x - y;

11 sys ->residual_beuler <T>(x, xold , y);

12 } while (y.norm() > eps);

The object sys, defined by the user, has to contain the residual function residual_beuler

and the Jacobian jac_beuler. The function adlinsolve provides an interface to
linear solvers. Currently we support BLAS and Eigen for dense and sparse linear
systems, respectively. For an order of differentiation k we differentiate Ax = b.
Let A(s) ∈ Rn×n, b(s) ∈ Rn, and x(s) ∈ Rn with s being some input dependency.

We define ∂kA
∂sk

= Ak,
∂kb
∂sk

= bk, and ∂kx
∂sk

= xk. With Ax = b, we have

ck ·A · x(k) = b(k) − c0 ·A(k) · x− c1 ·A(k−1)x(1) − . . .− ck−1 ·A(1) · x(k−1). (7)

In summary, we have to solve 2, 4, and 8 linear systems for first-, second-,
and third-order derivatives, respectively. With these three basic blocks in place,
a time stepper, residual function, Jacobian, and linear system, we can compute
the Jacobian, Hessian, and third order derivative tensor using the logic described
in Section 2.

6 Scalability

A prototype sequential implementation of this method in Julia was tested on
power system dynamics in [5]. To assess the scaling and computational capabil-
ities of ADUPROP, we resort to a well-known dampened nonlinear dynamical
system used in the weather simulation community and elsewhere [4, ?,?]:

ẋi = xi−1 (xi+1 − xi−2)− xi + F, i = 1, . . . , n > 3 . (8)

This system is known to show chaotic behavior when the forcing term F ≥ 8,
having an equilibrium (F, . . . , F ) that becomes unstable for all n ≥ 4. The system
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transitions from a damped, constant-valued system to a traveling wave with a
periodic attractor, and eventually to chaotic behavior, all adjustable through the
selection of F .

The scalability study was done on Theta at the Argonne Leadership Com-
puting Facility. Theta is composed of 1.3 GHz Intel Xeon Phi 7230 SKU nodes
with 64 cores each. Our goal was to achieve strong scaling on a single node with
up to 64 MPI processes. Our focus is on the strong scaling of the covariance
computation using Hessians and third-order derivative tensors. We use the same
F = 4.4 forcing but increase the dimension to N = 64 for third-order derivatives
and N = 512 for second-order derivatives. The time horizon is irrelevant to the
scaling, since there is no parallelization in time. With the timestep set to 1 we
achieved the strong-scaling results in Figure 2. The black line serves as a ref-
erence point for linear scaling. We show that our implementation scales nearly
linearly with up to 64 cores, with both second- and third-order derivatives. As
anticipated by our complexity analysis in Section 4, the covariance computation
dominates the runtime with second-order derivatives, whereas with third-order
derivatives both the tensor accumulation and covariance computation are much
closer.

Each KNL node has 64 cores, limiting the strong scaling to one row or pro-
jection of the derivative tensor. Our code is able to run beyond a single node,
but the runtime cost of computing the derivative tensor becomes too high. In the
future we will investigate low-rank approximations to compress the derivative
tensor and decrease its computational cost [1].

We validate the approximation of the variance propagation in Figure 3 with
dimension N = 10 and in a nonlinear regime with F = 5. The higher-order
derivatives allow us to better capture the effects of nonlinearity in power systems
[5]. The numerical aspects of this research will be subject of future research.

7 Conclusion

This paper describes a distributed parallel framework for using the method of
moments backed with AD. The extension to third-order derivatives and the par-
allelization over the derivative and covariance accumulation is unprecedented at
this scale and speed. The distribution of the Hessian and tensor is chosen such
that AD and the covariance computation benefit from the parallelism. Nonethe-
less, the computational cost grows at a factor of O

(
N6
)
, N being the dimension,

times the original simulation evaluation using third-order derivatives. This factor
is reduced to O

(
N4
)

while using only the Hessian. In both cases we have shown
the scalability on the current Intel KNL architecture. As opposed to Monte
Carlo, this algorithm provides an analytical propagation workflow that showed
promising results in [5]. To scale beyond a single KNL node, future research will
focus on exploiting Hessian, tensor and covariance matrix structure in order to
apply sampling methods. This approach has shown promising results in machine
learning [10] and we plan to integrate this approach in our software. While being
highly problem dependent, it has the potential to significantly reduce the com-
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(a) Second order derivatives N = 512, F = 4.4

(b) Third order derivatives N = 64, F = 4.4

Fig. 2. Strong Scaling

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_19

https://dx.doi.org/10.1007/978-3-030-22750-0_19


Distributed Approximation of Moments 9

(a) 1st order (b) 2nd order

(c) 3rd order (d) Monte Carlo

Fig. 3. Approximation of the variance propagation from timestep 1,500 to 3,000
(h=0.001) for N = 10 F = 5 using first-order, second-order and third-order derivatives
in addition to fully converged Monte Carlo at 1,000 samples.
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plexity of the covariance computation. In particular, at higher dimensions, this
method of propagating uncertainties may become a valuable alternative to the
Monte Carlo-based sampling methods.
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