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Abstract. As the result of the intense research activity of the past
decade, Semantic Web technology has achieved a notable popularity and
maturity. This technology is leading the evolution of the Web via in-
teroperability by providing structured metadata. Because of the adop-
tion of rich data models on a large scale to support the representation
of complex relationships among concepts and automatic reasoning, the
computational performance of ontology-based systems can significantly
vary. In the evaluation of such a performance, a number of critical fac-
tors should be considered. Within this paper, we provide an empirical
framework that yields an extensive analysis of the computational perfor-
mance of ontology-based systems. The analysis can be seen as a decision
tool in managing the constraints of representational requirements versus
reasoning performance. Our approach adopts synthetic ontologies char-
acterised by an increasing level of complexity up to OWL 2 DL. The
benefits and the limitations of this approach are discussed in the paper.

Keywords: Semantic Web · Semantic Technology · Ontology · Compu-
tational performance.

1 Introduction

The Semantic Web [3] has achieved a notable popularity as a mature techno-
logical environment. In big part, this is due the intense research activity of the
last 15 years, and the efforts of W3C3 to promote a standardisation process
for the different languages and their underlining models. Semantic technologies
are leading the evolution of the Web via interoperability by providing structured
metadata. Because of the adoption of rich data models on a large scale to support
the representation of complex relationships among and standard reasoning, the

3 World Wide Web Consortium (W3C) - https://www.w3.org
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Fig. 1. Computational model.

computational performance of ontology-based systems may be hard to evaluate,
as it may change significantly depending on the application context. A number
of critical and key factors should be considered. Firstly, the Semantic Web tech-
nology provides a technological ecosystem composed of several languages. These
languages are characterised by an increasing complexity to support different data
modelling spaces. Secondly, applications may propose very different behaviours
and may consequently adopt the technology in different ways.

This paper provides a performance evaluation framework for ontology-based
systems supported by empirical measurements. The proposed framework takes
into account the perennially conspicuous trade-off between computational per-
formance and representational capabilities. Our analysis is limited to decidable
technology, including lightweight semantics based on RDF [5] reasoning, mod-
erate reasoning equivalent to OWL-Lite [2] reasoning and extended reasoning
corresponding to OWL-DL [2]. OWL ontologies are implemented in OWL 2.

2 Related Work

The analysis of the trade-off between computational performance and represen-
tation richness is a classic topic extensively reported in literature. A number of
OWL benchmarks are compared in [16], where also the specification of a set of
requirements for an ideal OWL benchmark is provided.

Similar approaches are followed also to compare different reasoners in other
contributions (e.g. [4][6][7][1]). An interesting comparison between two of the
most relevant computation techniques (tableau and hyper-tableau calculus) is
proposed in [13]. One of the most popular OWL benchmarks is LUBM [10], which
provides advanced analysis features to evaluate systems characterized by differ-
ent reasoning capabilities and storage mechanisms. It addresses generic OWL
data-spaces and approaches performance analysis by providing global metrics
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Fig. 2. Experiment phases and metrics associated.

Fig. 3. Synthetic object. Fig. 4. Synthetic property.

suitable to compare different systems. More recently, a competition based on a
testing framework agreed within the community has been arranged [14].

Our work differs from those mentioned as we provide an environment suit-
able to multi-dimensional analysis in which the performance of a given system
may be evaluated as the function of the ontology complexity and its scale (pop-
ulation). These two dimensions are addressed by generating synthetic ontologies
(Section 3.4) which enable fine-grained analysis. Our approach assures a generic
and an application-independent performance analysis that relies on the specifi-
cation of complexity ranges (Section 3) and on computational experimentation.
Furthermore, we aims at providing domain and architecture agnostic results by
introducing a number of simplifications (see Section 3.1). For instance, we don’t
take into account architectural (e.g. storage system) and network factors, as well
as we adopt a query-independent approach. Those simplifications allow a more
focused, direct and understandable analysis framework. Last but not the least,
our framework is extensible, meaning that further dimensions of analysis may
easily be addressed.
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Fig. 5. Load Time measured for some of the experiments performed.

3 Evaluation framework

Within our framework, we define three different levels of ontology complexity
(Fig. 1) as follows:

– Lightweight semantics. We associate lightweight semantics with a mini-
mal set of knowledge representation requirements and, therefore, with the
best computational performance. We assume RDF [5] structures and reason-
ing.

– Moderate reasoning. The most immediate extension for lightweight se-
mantics as previously defined is to provide more extended reasoning capa-
bilities, to uncover non-explicit relations among basic concepts. We asso-
ciate this level of complexity with OWL and, more concretely, with OWL-
Lite [2] complexity. Such a step forward introduces additional constructs
and abstractions (e.g. data and object property), structural relations (e.g.
class/sub-class and property/sub-property), constraints (e.g. class disjoint-
edness, functional property), relations among properties (e.g. inverse prop-
erties) and basic inference on properties (domain and range).
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Fig. 6. Normalized Load Time measured for some of the experiments performed.

– Extended reasoning capabilities. The highest level of complexity that
we consider within this work corresponds to OWL-DL [2], which assures
the maximum expressiveness maintaining computational completeness and
decidability. This level of complexity extends the previous one by providing
the capability to define inference rules according to a Description Logic. This
extension results in more advanced reasoning capabilities.

3.1 Assumptions and simplifications

A comprehensive study on the computational performance of ontology-based sys-
tems should consider several factors. For simplicity sake, we consider a simplified,
still in our opinion exhaustive, environment, adopting the following assumptions:

– Local storage (file system). The Semantic Web is a distributed environ-
ment by definition. In a Web context, data can be potentially retrieved from
multiple, eventually remote, sources. Moreover, target data could be stored
in files, normally accessible by URLs, as well as in common databases or even
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Fig. 7. Query Response Time for some of the experiments performed .

specialised data-stores (triple-stores). In this work, we consider uniquely lo-
cal storage in the file system. This allows an analysis independent from the
performance of the storage system.

– Query-independent evaluation. A study that takes into account the com-
plexity of the query would be very interesting. However, it would add a sig-
nificant complexity. To assure a query-independent evaluation, we consider
the generic SPARQL query below:

PREFIX onto: ourPrefix
SELECT ?x ?y
WHERE { ?x a ?y .

FILTER regex( str( ?x ), ourPrefix ) .
FILTER regex( str( ?y ), ourPrefix )

}

This query can be applied to both RDF and OWL environments and returns
all the elements that are member of some class. As will be later explained,
this allows to clearly identify the contribution of inference to the query out-
come.
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Fig. 8. Query Response for some of the experiments performed .

– Ontology size increases by increasing its population only (Abox).
We consider two main dimension of analysis: the ontology complexity and
the ontology size. The former, associated with the Tbox including inference
rules, is defined by a number of templates as a kind of static configuration.
The latter is associated with the Abox and is dynamically addressed.

– Agnostic approach to software components. We consider the semantic
engine (reasoner) as a black-box. That is, we have designed our framework
on the basis of macro-operations common to all common APIs in semantic
technology. For our experiments, without loss of generality, we only use Her-
miT [15]. Naturally, we can perform the same experiments using any other
semantic engines supporting RDF and OWL2 DL.

– Synthetic Ontology. In order to provide a fine-grained analysis, we opt for
an environment which produces synthetic ontologies according to common
approaches [12]. We believe the experimentation on real ontologies is not a
relevant factor within the scope of this work. However, as briefly discussed
later on, it may introduce some uncertainty in the analysis.
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Fig. 9. Normalized Query Response Time for some of the experiments performed .

3.2 From lightweight semantics to complex reasoning

We approach the computational performance evaluation of ontology-based sys-
tems according to a classic perspective, which takes into account two major
macro-operations: loading the information into the semantic engine and execut-
ing a query on the information available (Fig. 2).

Control mechanism for the input dataset. In order to control eventual
gaps between logical and physical representations (e.g. RDF and OWL imple-
mentations), we introduce a simple control mechanism for input datasets. The
convergence point (α) is defined as the function of a parameter, the convergence
threshold (β); for instance, α(β=1%) = 100000 means that, for a scale higher than
100000 atomic elements, the difference in size for the considered representations
is within the 1% of the smallest size. β is normally expressed as a percentage
of the shorter representation size and is normally supposed to be a small value.
Such a metric may be very relevant for experiments involving small datasets. In-
deed, it expresses the end of the transitory and the beginning of the stationary
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condition for a given experiment: while those experiments at a lower scale than
α (transitory) are affected by the difference in size of the considered represen-
tations, the experiments at an higher scale (stationary condition) are assumed
not affected by such overheads.

3.3 Metrics

The experiment performed are modelled as an iterative process (Fig. 2). After
each iteration, the size of the input dataset is increased. Each iteration is com-
posed of two different phases: in the first, a file of size FS is loaded from the
storage systems into the main memory (loading phase); in the second, a query
on the available dataset is executed (query phase).

To assess the computational performance in each phase, we consider the three
following metrics:

– Load Time (LT) is the time needed to load the dataset from the storage
systems into the main memory.

– Query Response Time (QRT) is the execution time for a query. QRT
assumes the target dataset already loaded in the main memory.

– Query Results (QR) is the number of rows of the result set returned by
a given query.

In order to have a concise assessment of the performance, we define two
further normalized metrics based on the three defined above:

– Normalized Load Time (N-LT) is defined as LT/FS. Within our eval-
uation framework, N −LT concisely expresses loading performance because
the load time is considered as the function of the dataset size.

– Normalized Query Response Time (N-QRT) is defined as QRT/QR.
N − QRT reflects the query performance: it provides an understanding of
the query response time as the function of the query result set size.

For completeness, we also define a global metric, Response Time (RT), which
is the sum of the Load Time and of the Query Response Time (LT + QRT ).
However, In order to assure a consistent analysis, RT should be considered both
with and in the context of the normalized metrics previously discussed.

3.4 Synthetic patterns

As earlier mentioned, the scale of the ontologies adopted in the experiments is
enlarged by increasing its population (Abox). The synthetic object adopted to
populate the Abox is represented in Fig. 3: it is declared to be an instance of the
class Object and it is related to n static objects through an equivalent number
of properties.

We provide moderate reasoning by defining a number of Object Properties ac-
cording to the model depicted in Fig. 4. Each object property is a sub-property
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Fig. 10. Loading performance (average values).

of topObjectProperty. Its domain and range are defined according to RDF-S
specifications. For each object property, an additional property is defined and
declared as an inverse of the considered property, according to OWL specifica-
tions.

Finally, extended reasoning capabilities are provided by a set of DL state-
ments that define equivalent classes according to the pattern reported in eq. 1.
The DL statement is composed of two different sub-statements adopting the
operator some; those two sub-statements are related by the operator OR or
AND.

(Propi some ObjectPropi) AND|OR (Propi+1 some ObjectPropi+1) (1)
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Fig. 11. Query performance (average values).

4 Experimental performance evaluation

We adopt commonly accepted metrics from Protege [8] to measure the com-
plexity of the ontologies considered. The different configurations corresponding
to non-populated ontologies (Tbox) are reported in Table 1. We select three
different perspectives by considering axioms, classes and object properties. We
distinguish between logical and declaration axioms. We also report the number
of sub-classes and equivalent classes defined by DL statements. For properties,
we consider the number of inverse properties and the statements associated with
the object property domain and range.

Our experimentation consists of a number of empirical measurements for the
different ontologies by increasing the Abox size as in the configurations reported
in Table 2.
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Ontologies configuration (Tbox)

Axioms Classes Object Properties

Ont. Complexity Tot Log. Decl. Tot SubC Equiv. Inv. Dom. Ran.

Lightweight (≈ RDF) 21 1 0 1 0 0 0 0 0
Moderate (≈ OWL-Lite) 301 196 105 43 40 0 20 20 40
Extended (≈ OWL-DL) 362 236 126 64 60 20 20 20 40

Table 1. Ontology configuration.

Experiment Configuration

Conf. Elements File size(Mb) Step Samples x point β

1 0-500 up to 1 5 10 0.1

2 0-2500 up to 5 25 5 0.05

3 0-5000 up to 10 50 5 0.05

4 0-10000 up to 20 100 3 0.01

5 0-15000 up to 30 150 2 0.01

6 0-20000 up to 40 200 1 0.01

7 0-25000 up to 50 250 1 0.01

8 0-50000 up to 100 500 1 0.01
Table 2. Experiments configuration.

For example, the experiment #1 considers files with logical elements in the
range 0− 500, namely files of a size up to 1Mb; the experiment starts with a file
of the minimum size (5 elements in this case); the file is increased of a step of 5;
each measure reported is the average over 10 independent samples; β is 0.1. We
adopt a software engine based on Hermit[15, 9] as a reasoner and OWL-BGP4[11]
as SPARQL wrapper. The framework is developed in Java. All the experiments
reported in the paper have been executed on a common laptop (1.8GHz Intel
Core i5, 8GB 1600MHz DDR3, macOS Sierra). For each experiment as defined
in Table 2, the measurements are executed sequentially without re-booting.

The Load Time (LT) measured for some of the experiments performed is
reported in Fig. 5. Likewise, the Normalized Load Time (N-LT) is shown in
Fig. 6. Similarly we report the metrics for query performance evaluation: Fig. 7, 8
and 9 show respectively the Query Response Time (QRT), the Query Response
(QR) and the Normalized Query Response Time (N-QRT).

As previously explained, normalised metrics take into account both the size
of the dataset imported and the size of the result set. Therefore, the metrics
provide a concise measure of loading and query performance, allowing compari-
son among the different languages. We design our experiments to minimize the
impact of size variations for the input datasets (Section 3.2). Indeed, LT and
N-LT present a similar pattern. Average values for all experiments are reported
in Fig. 10. Looking exclusively at loading performance, RDF clearly outperforms
OWL. That is because the reasoner adopted implements hyper-tableau calculus.
A minor difference between OWL-Lite and OWL-DL is also detected.

4 OWL-BGP - https://github.com/iliannakollia/owl-bgp
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Looking at query performance, average values for QRT and N-QRT are re-
ported in Fig. 11. QRT highlights variations in performance across the different
models considered throughout the range of experiments. The pattern detected
for N-QRT is quite interesting as it clearly shows the computation performance
of hyper-tableau calculus in normalized conditions. Indeed, according to this nor-
malized metric that takes into account the contribution of inference in terms of
query output, at a significant scale there is no difference of performance among
the three levels of complexity.

5 Main limitations and uncertainty

The simplifications introduced in the framework (Section 3.1) have allowed a
systematic, fine-grained and relatively simple analysis in stable and normalized
conditions. On the other hand, such an approach may introduce a number of
possible uncertainty factors to the key question on performance evaluation of
real ontology-based systems.

The very first factor of uncertainty is the use of synthetic ontologies. They
are designed around a number of typical design patterns. Real ontologies may
include those patterns or a part of them, as well as they may propose completely
different ones. Additionally, the distributed approach to modern systems may
introduce key trade-offs beyond network factors, such as between cloud and edge
computing along a wide range of hybrid solutions (e.g. fog computing). Similar
considerations affect key architectural components, such as the storage system.
Indeed, the design of the whole architecture needs to be considered depending
on the data consistency model (e.g. weak and strong consistency).

6 Conclusions and Future Work

In this paper, we define a performance evaluation framework for ontology-based
systems in which ontology complexity and ontology size are considered as the
main dimensions for performance analysis. In essence, our framework can be used
to ensure the right mix of responses to the constraints imposed by the trade-
off between reasoning computation and knowledge expressiveness requirements
(ranging from lightweight semantics, moderate reasoning and extended reasoning
capabilities respectively).

We introduced a number of simplifying assumptions (discussed in Section
3.1) to enable a relatively simple environment for the analysis of computa-
tional performance. We believe however that our metrics reflect relatively re-
alistic working conditions. They combine simplicity and coverage leading to a
direct and viable analysis. We have performed a number of experiments at a
relatively low scale, involving files up to 100Mb. Without loss of generality, we
fixed the semantic engine across all experiments and opted for uniform use of
a single reasoned. Comparing various reasoners has been undertaken elsewhere.
We thus focused on the definition of a framework which allows generic and ef-
fective performance analysis by considering increasing capabilities in terms of
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representation and reasoning. With the increasing prominence of IoT and AI
based applications, the trade off between complexity in representation and per-
formance is a more pressing concern for many innovations. This is particularly
true for distributed settings. Hence, in future work, we will consider distributed
environments, namely data sets imported by different remote sites and perfor-
mance analysis as the function of the ontology Tbox.
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