
1

Path-Finding with a Full-Vectorized GPU
Implementation of Evolutionary Algorithms in
an Online Crowd Model Simulation Framework

Anton Aguilar-Rivera

Barcelona Supercomputing Center, Barcelona, Spain
anton.aguilar@bsc.es

Abstract. This article introduces a path-finding method based on evo-
lutionary algorithms and a fully vectorized GPU implementation of it.
The algorithm runs on real-time and it can handle dynamic obstacles in
maps of arbitrary size. The experiments show the proposed approach out-
performs other traditional path-finding algorithms (e.g. A*). The conclu-
sions present further improvement possibilities to the proposed approach
like the application of multi-objective algorithms to represent full crowd
models.

1 Introduction

Crowd behavior has been widely studied in the literature [6], being crowd models
especially important to the digital entertainment industry, where animation of
large groups of characters are desired. Moreover, crowd models are also impor-
tant to architectonic design and emergency planning. For example, the number
and position of facility exits should be carefully selected to minimize evacuation
time in the case of an emergency [8].

Crowd simulation is a complex problem. Both map size and number of agents
are concerns when devising scalable simulators. Besides, a natural behavior of
agents is usually desirable, specially for visualization use. Also, researchers work-
ing with crowd simulations may be interested in the over-all effect of subtle
changes in the model, specially in social sciences studies [13].

In their survey, Ijaz, Sohail, and Hashish [6] made a classification of the
different types of crowd models. They can be classified by resolution in the fol-
lowing manner: Macroscopic, mesoscopic, and microscopic. Macroscopic models
describe the general motion of the crowd only. Mesoscopic models are based on
cellular automaton and provide better resolution; movement rules are applied to
the grid instead to agents. On the other hand, in microscopic models the crowd
is composed by individual agents who make their own decisions. As expected,
computational cost increases with an increase of resolution.

Microscopic models should provide information about the agent’s position,
speed, acceleration, intended stops, and others. Algfoor, Sunar, and Kolivand
[1] remark the importance of path-finding for crowd simulation problems. In
a microscopic setting, a path from each agent’s current position to their goals
should be defined. The problem can include dynamic obstacles as well. Besides,

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_17

https://dx.doi.org/10.1007/978-3-030-22750-0_17

agents are usually programmed to avoid collisions with each other. Realism level
and terrain texture are also possible restrictions to the path-finding problem.

This article is concerned with path-finding in the context of crowd simula-
tion. This means the proposed approach should be able to provide paths to a
large number of agents and be fast enough to be used for real-time visualization.
A zone-based hybrid approach is proposed to allow studying of psychological
factors and other subtle elements of the model. Also, this work intends explor-
ing an evolutionary computation approach to path-finding problems. Further
arguments in favor of the proposed approach are explained below.

1.1 Background

A general classification of solution approaches will be explained first to later
discuss the proposed method under the light of the current state-of-the-art. Ijaz
et al. [1] classify the crowd simulation approaches in the following categories:
Zone-based models, layer-based models, and sequential models. Each of these
categories may use a combination of methods.

Zone-based models divide the map and apply different resolution levels to
each part of it. This approach allows handling large maps efficiently. Although,
space restriction also restrict the possible solutions to the problem. Also, this
means the optimal path could change if the zones are defined in a different
manner.

Layer-based models apply both macro models and micro models simulta-
neously but they are applied in different layers. This allows to separate global
planning from local navigation. Techniques like cellular automaton are used to
model the global level, using simple rules to guide agents, while the refined move-
ment is computed in other layers. Their problem is psychological factors are not
included in the global level and the approach is still dependent of crowd density
because its application of microscopical models to individual agents.

Finally, sequential models apply both macro models and micro models, one
after another. The macroscopic model is applied until more refined movement is
needed. Then, the system switches to a microscopic model. Synchronization is
important while applying this approach. These models are better suited to cases
where crowd movement is stable.

In regards of path-finding techniques, Algfoor et al. [1] classify techniques in
two categories: Terrain-based methods and hierarchical techniques. The former
is further divided into regular or irregular grids. Regular grids differ in their
geometric shape (square, triangular, etc). They mention visibility graphs, mesh
navigation, and waypoints to be techniques to create irregular grids. Some ex-
amples of hierarchical techniques are probabilistic road maps, quadtrees, and
rapidly explored random trees.

The use of genetic algorithms (GA) for crowd simulation and path-finding
problems is mentioned in the literature. Most of the works using GAs have
limited their use to secondary parts of their respective solution approaches. For
example, Johansson and Helbing [8] have used GAs to define the number of
position of facility exits to minimize evacuation time. Vigueras, Lozano, Orduna,

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_17

https://dx.doi.org/10.1007/978-3-030-22750-0_17

and Grimaldo [18] presented a zone-based crowd simulation model where GAs
are used to determine map partitions. Zones were defined using Convex-hulls.
Junior, Musse, and Jung [9] proposed using neural networks to estimate crowd
density in subway stations. Optimization of the method was performed using
GAs, among other techniques. Zhong et al [20] used GAs to calibrate their
crowd simulation model. Bera and Manocha [2] also used GAs, this time to
allow a model to learn crowd movement patterns from data.

Direct application of GAs to solve path-finding problems seems to be lim-
ited in the literature, with less publications than the approach explained above.
Naderan-Tahan and Manzuri-Shalmani [11] presented a GA specifically designed
to solve path-finding problems. In their approach, each gene represented a point
in the map space, and assumed that points were joined by linear segments to
form the path. The chromosomes could have variable length. The first and the
last genes of the chromosome were always the initial point and the goal. Some
of this approach’s drawbacks are the initial population should be obtained using
other methods besides random initialization, which could bias the result towards
premature convergence. Besides, the reported times are too high to be applicable
to online visualization, although, their method was intended for robot navigation
instead.

Song, Wang, and Sheng [16] proposed improvements. They used Bézier curves
to define the paths instead of linear segments. The former approach is better
suited to provide smoother paths than the latter. Besides, the paths are fully-
derivable. In their approach, the map is divided by a fixed grid, where tile centers
become potential control points to Bézier curves (i.e. paths). The GA searches
for clear paths using these control points only. This feature simplifies the search,
but it limits path resolution; there could be cases where the available control
points are not enough to find a clear path for some complicated parts of the
map.

Their method solves the global path-finding problem (i.e. the full map) using
a one-level microscopic approach. Therefore, a global optimization process should
be applied for each agent. This will have an impact on performance in large
maps. On the other hand, their experiments show grids of 16 × 16 only and
execution times were not reported, therefore, the performance of the approach
is unknown. The reported setup suggests their approach was not intended for
online simulations. Although, the main focus of that article was the use of GAs
to path-finding problems instead of high performance.

This analysis seems indicate a novel implementation approach is necessary to
make GAs useful for online path-finding. The references where GAs are explicitly
used for path-finding are few because their execution times. Nevertheless the use
of hybrid computation technologies (e.g. GPUs) open new possibilities to the
application of GAs.

The combination of GPUs with machine learning techniques is a popular
trend. Neural networks and deep learning are some examples [4]. Although, the
evolutionary computation community has made efforts to accelerate their meth-
ods with GPUs and other distributed technologies [5]. The problem of evolution-

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_17

https://dx.doi.org/10.1007/978-3-030-22750-0_17

ary algorithms is they are inherently sequential, being necessary the population
of the last generation to compute the next one. Although, state-of-the-art im-
plementation have been reported in the literature.

For example, Pospichal, Jaros, and Schwarz [15] presented an implementation
for NVIDIA GPUs using CUDA. Nowotniak and Kucharski [12] reported a GPU-
based GA inspired on quantum systems. Wang and Sheng [19] introduced a
GPU GA for task planning. Jaros [7] reported a multi-GPU island-based genetic
algorithm for solving the knapsack problem.

Therefore, the approach proposed in this work is an extension of the current
effort to use GAs for path-finding problems [11], [16]. This approach introduces
an GPU-based GA implementation for path-finding-problems. The implementa-
tion was designed with performance in mind, and the details of how this goal
is reached are explained in sections below. It is a dynamic zone-based model-
free method, where macroscopic and microscopic models are managed in layers.
The implementation is able to handle maps of any size and generate paths at
frame-rate time even when dynamic obstacles are present in the implementa-
tion. The implementation is tested against standard path-finding implementa-
tions and suitable experimental results are presented to show the performance
improvement of the proposed approach.

The rest of the article is organized in the following sections: section 2 in-
troduces the approach, covering both the path-finding algorithm and the GPU,
full-vectorized, GA implementation. Section 3.1 explains the experiments. Sec-
tion 3.2 presents the results. Section 4 is the discussion, and the conclusions
appear on section 5.

2 Proposed Approach

This article follows the trend of the references mentioned above [11], [16]. In
a similar manner, Bézier curves are used to describe paths because they can
be handled by GAs easily and because of their mathematical properties. Bézier
curves are defined in the following manner:

B(t) =

r∑
i=1

(
n

i

)
(1− t)r−itiPi. (1)

Where t is a parametric variable in the range [0, 1] and Pi are the control points.
An explicit version of Eq. 1 is

B(t) = (1 − t)rP0 +

(
r

1

)
(1 − t)r−1tP1 + · · · +

(
r

r − 1

)
(1 − t)tr−1Pr−1 + trPr. (2)

GAs encode these control points, allowing them handling complete curves us-
ing a few parameters only. Smooth transition between path segments can be
achieved when the derivatives of the curve are included in the optimization pro-
cess. Further detail can be found in the references [16].

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_17

https://dx.doi.org/10.1007/978-3-030-22750-0_17

2.1 GA-GPU Implementation

The implementation both considers the encoding of Bézier curves and a GA im-
plementation on GPU. This approach makes use of the Julia language [3]. The
implementation also uses ArrayFire [10], a parallel computing library that inter-
faces with either CUDA or OpenCL. The library frees the user from the usual
burdens of managing GPUs dedicated hardware. Although, high performance
with ArrayFire can only be achieved by using full-vectorized code. Therefore,
vectorization is a priority of the present approach.

The implementation proposes a traditional GA where selection, crossover,
mutation, and evaluation of individuals will be performed for a fixed number
of generations. The sequential nature of these operation avoids a generation-
wise, parallel implementation. Parallelization is performed at population level,
processing a large number of individuals simultaneously.

Coding Individuals are encoded using virtual genes [17]. Differing from the
references, This implementation uses 2 values to represent the control points, one
for the x coordinate and other for the y coordinate. The values of the coordinates
are random numbers in the range [0, 2b − 1], where b is the number of bits. In
our case b = log2(N), where N is the size of the map. The implementation is
intended to work with N ×N map tiles. The values of the current position and
goal position should be passed to the GPU and appended to the chromosomes to
perform further operations. We will call this variable gd from now on. Finally, we
assume the population has n individuals and m genes. Therefore, the population
is of size n×m.

Selection The vectorized implementation is better expressed in equations. This
operator is a variation of tournament selection. Let us define fs to be the vector
of fitness values of the population and fsp the vector of fitness values of the
shuffled population. Shuffling is performed using the Julia rand() command to
create a AFArray with values from 1 to N . Also, we have ix, which contains
the original indices of the individuals, and ixs are the shuffled indices. Assuming
minimization, we define the following variables:

∆1 = sgn (sgn(fsp − fs) + 1) , (3)

∆2 = sgn (sgn(fs − fsp) + 1) . (4)

Where sgn is the sign operator. The indices of the selected individuals are

ixn = ix. ∗∆1 + ixs. ∗∆2. (5)

Where the .∗ operator denotes element-wise multiplication. ∆1 is always 0 when
fs > fsp and the contrary is true for ∆2. In this way, it is easy to discriminate
the tournament winner. Individuals with index ixn will reach the next generation
and will be subject to further operations.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_17

https://dx.doi.org/10.1007/978-3-030-22750-0_17

Crossover Crossover operation involves 2 tasks. One is swapping the chromo-
some around the crossover gene, the other is applying inter-bit crossover to it.
The first part requires splitting the population into left, right, and center parts.
Let us assume cr, is a matrix of random values in the range [1,m] (Julia uses
1-based indexing) and cc is a matrix with the cumulative sum of cr, column-wise.
Then, the linearized crossover indices should be

xvec = vm + n. ∗ xr0,m−1
(6)

Where vm is a vector with consecutive values from 1 to m, and r0,m−1 is a vector
of random values in the range [0,m− 1]. Therefore, the cc value at the crossover
point should be xix = cc [xvec]. Let us now assume xmix is a matrix composed by
m copies of xix. The discrimination values md of the left, right, and center part
of the chromosome are

sgs = sgn (cc − xmix) . (7)

sgs will be 0 at the crossover point, the left part will be −1 and the right part
will be 1. We can create a mask for each part with the following equations:

mX = 1− |sgs| , (8)

mL = ‖0.5(−sgs + 1)‖ −mX (9)

mR = ‖0.5(sgs + 1)‖ −mX (10)

Where mL, mR, and mX are the masks for the left, right, and center parts,
respectively. ‖ ∗ ‖ denotes the round operation. gd can be multiplied by any of
these masks to extract the corresponding part of the chromosome for all the
individuals in the population simultaneously.

The second task is performing inter-bits crossover at the selected gene.
Valenzuela-Rendón [17] explains the needed integer value to extract the low
parts from the binary string representing the crossover gene from parents p1 and
p2 with virtual genes is

Xm (p1, p2) = p1mod2mc − p2mod2mc . (11)

Where mc is a random number between [1,m] (assuming 1-based indexing). The
post-crossover population is finally computed in the following manner:

gd = gd1. ∗mL + gd2 . ∗mR + (gd1 −Xm) . ∗mX (12)

Where gd1 and gd2 denote the original population and a scrambled copy of it.

Mutation Mutation follows the same approach used on crossover. This time,
2 masks are created to separate the mutation gene from the rest of the chromo-
some. In this case cm is a matrix of size n×m of random numbers in the range
[0, 1]. Then the mask would be

mm = sgn (sgn(cm − pm) + 1) (13)

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_17

https://dx.doi.org/10.1007/978-3-030-22750-0_17

Where pm is mutation probability. To obtain the mutated gene, we use the
following mask:

mm1
= 1−mm (14)

Finally, the post-mutation population is

gd = gd1 . ∗mm + gdr . ∗mm1 (15)

Where gd1 is the original population, and gdr is a matrix of random genes.

Evaluation The particular implementation is focused on finding clear paths,
although, other optimality criteria could be used as well. Evaluation is composed
by 2 tasks: Computation of Bézier curves and computation of the fitness function.

We need gd and the values of t to compute the curves. Eq.2 is used for an
efficient computation on the device (i.e. GPU). Let us assume td is a matrix of
size (r + 1) × (1/∆), where ∆ is the resolution of t. td holds the terms of Eq.2
for each value of vector t. t is defined from 0 to 1 with a step size ∆. Therefore
gd × td will compute the points of the curve.

In the actual implementation, the columns of td are duplicated to manage
separately the x coordinates from the y coordinates. This means td has the form

td =

(1− t0x)r (1− t0y)r . . . tr0x tr0y
(1− t1x)r (1− t1y)r . . . tr1x tr1y

...
... . . .

...
...

(1− t∆x)r (1− t∆y)r . . . tr∆x t
r
∆y

 (16)

To allow an effective multiplication a pair of masks are defined: stx and sty.
Where

stx =

1 0 . . . 1 0
...

...
...

...
1 0 . . . 1 0

 , (17)

while sty would be

sty = |stx − 1| . (18)

These matrices have successive columns of ones and zeros to avoid multiplication
of the wrong values. Therefore, the values of the path will be

Bx(t) = (gd. ∗ stx) td, (19)

By(t) = (gd. ∗ sty) td. (20)

The fitness function to evaluate individuals is based on clearance. To compute
the metric we need the Euclidean distance between the origin and any other point
in the path. Let us call this variable dab. Also, we need to compute collisions

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_17

https://dx.doi.org/10.1007/978-3-030-22750-0_17

along the path. Let us assume Md is the map loaded on the device. We can use
linearized indices from Bx(t) and By(t) to handle it

Bxy(t) = Bx(t) +N (By(t)− 1) . (21)

Collisions will be simple the indexing

cd = Md [Bxy(t)] (22)

Using these variables, we can compute the fitness value in the following manner:

fd = (cd. ∗ dab)V1. (23)

Where V1 is a vector of ones used to perform the final multiplication step.

Initialization Data transfer between the host and the device should be used
carefully because it has a direct impact on performance. Relevant variables
should be created on GPU memory to avoid unnecessary overload. These vari-
ables are initialized before the run to save computation time. gd, fs, td, stx,
sty, V1 are all suitable candidates to initialization. Also, the algorithm returns
the best-so-far individual instead of the final population to avoid unnecessary
overhead time.

2.2 Path-finding Algorithm

Path-finding is divided in a static stage and a dynamic stage. Fig. 1 shows a
flowchart with the path-finding algorithm.

Static Field() refers to the static path-finding stage that is computed off-line
to save time. Breadth-first search is used to create a gradient field on the map.
This approach was preferred because it is able to provide paths to any number
of agents. Other methods could have been used as well.

Initialization() refers to the setup mentioned in section 2.1. The necessary
variables are loaded on the device beforehand to save time. Besides, these vari-
ables will be used constantly along the run, therefore, overhead is reduced dras-
tically by applying this step.

Static Path() deals with providing a static path to a particular agent. Given
the field, this step is straightforward. The static path is used to guide the agent
in a global scale. We say it is a macroscopic path in the sense it provides the
general path movement of the agent, which will be subject to corrections when
dynamic obstacles appear in the way.

The actual path-finding algorithm starts with the Move() function. This func-
tion moves the agent subject to different conditions, depending on the type of
simulation desired. While moving, the agent is constantly applying Is Goal()
and Is Obstacle() functions. Their names are self descriptive, but we can say
Is Obstacle() search for obstacles sg steps ahead in the path. The agent moves
freely as long as the path remains clear, until the goal is reached.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_17

https://dx.doi.org/10.1007/978-3-030-22750-0_17

The path-finding algorithm is called when an obstacle is on sight on the path.
Tiling() is a function that takes a piece of the map of size 2sg×2sg. The current
position of the agent becomes the local starting point and the closest path point
to the tile edges will become the local goal. Tile size should be large enough
to allow the necessary freedom to the agent to find an alternative path. Also,
dynamic tiling is necessary because we cannot guarantee the tile will contain a
clear path to the local goal because the static field was created without obstacles
information. Dynamic tiling overcomes this occurrence. Also, tiling centers the
obstacle to the tile to avoid obstructions with the edges. Dynamic tiling size
could be used to guarantee a path will be found. In the experiments, it was
found dynamic tiling was enough to prevent blockage.

Path-Finding() refers to the application of GAs to find clear paths at frame-
rate times for the given tile. Tiling is necessary to guarantee GPU’s memory
is not overwhelmed by large maps. The device capabilities allows to run large
populations (in the order of thousands) to speed-up the search. According with
GAs theory, larger populations contain a much larger schemata contents and
they have more probability to contain the optimal ones. Given speed is our main
concern, we need to work with the largest population possible. Also, the number
of generations is limited, because the sequential execution has direct impact on
performance. Also, the number of control points should be the lowest possible
to keep performance up and avoid the path to be unnecessarily complicated.
Although, if the GAs cannot find a clear path with the current number of control
points, this one is increased and the GA is run again. This will happen until a
clear path is found.

Finally, once the alternative path is found, the global path is updated with
the new segment. The agent will follow the new path until it finds a new obstacle
in sight or the goal is reached.

Start

Static Field()

Initialization()

Static Path()

Move()

Is Goal()

Is Obstacle()

End

Tiling()

Path-Finding()

Update Path()

no

yes

no

yes

Fig. 1. Path-Finding Algorithm

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_17

https://dx.doi.org/10.1007/978-3-030-22750-0_17

3 Experiments

Experiments were conducted to test the performance of the proposed approach.
In this case, we used Voronoi maps [14], which were algorithmically created for
the experiments. Maps have a size of 2048 × 2048, while tile size is 2sg = 32.
Initial and goal points were randomly selected, but they were chosen in a way the
goal is reachable from the initial point. Also, we assume obstacles are previously
inflated, therefore, there is no potential collision risk involved if paths stick to
them.

The approach assumes the necessary time for agents to move along the path
is much longer than the time needed to generate alternative paths, therefore, we
can assume the algorithm works with snapshots of the world. The path-finding
algorithm is activated when Is Obstacle() function returns true.

3.1 Experiments Description

The experiments tested 100 different maps where the system should provide
paths to agents. Dynamic obstacles appear randomly in the path, and the agent
system should provide an alternative path for each obstacle. The approach is
compared against traditional path-finding methods: Breadth-first search, Dijk-
stra algorithm, and A*. All the algorithms were run against the same path-
finding problems, and the same obstacles. The average running time per obsta-
cle is computed from each method. The experiments were run on a computer
equipped with an Intel Core i7-7700HQ CPU @ 2.80GHz 8 processor, 7,7 GiB
of RAM, and NVIDIA GeForce GTX 1050/PCIe/SSE2 GPU.

3.2 Experiments Results

The results are shown in figure 3. They present the average time it takes the
algorithms to find an alternative path when an obstacle has been detected. The
number of obstacles is random, but it is adjusted to have more or less one obstacle
per tile size. The average time is obtained dividing the total computation time
by the number of obstacles solved. The results are presented on frames/obstacle,
where a frame is 1/60s. We can assume the movement of agents and obstacles
is much more slower to be measured on frames, but a faster algorithm will be
able to serve a larger number of agents. Fig. 3 shows the comparison between
A* and the proposed approach. The experiments using breadth-first search and
Dijkstra’s algorithm are not shown because they are order of magnitude slower
than A*. This happens because the number of revised nodes by A* is much
more less than the nodes revised by the other algorithms (Fig. 2). This result
was expected. On the other hand, we can see the average of the distribution of
GA’s running time is much more lower than the average of A*. Fig. The median
of GA is less than 1 frame, while the median of A* is around 80 frames per
obstacle. Both box plots show a few outliers, where we can assume particular
conditions caused a delay for the algorithms.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_17

https://dx.doi.org/10.1007/978-3-030-22750-0_17

Fig. 2. Average number of nodes explored by search algorithms.

Fig. 3. Average execution time to solve path-finding with dynamic obstacles. Results
shown in frames/obstacle, (one frame = 1/60s)

4 Discussion of Results

Fig. 4 shows examples of paths found by different algorithms. We can see
breadth-first tends to find paths that are relatively far away from the obsta-
cle, this occurs due the particular manner this algorithm expands the frontier.
On the other hand, A* has a tendency to stick to obstacles to minimize the de-
viation form the optimal path. In the case of GAs, paths are conditioned to the
particular tile used by the algorithm. This happens because both the path and
the control points must be located inside the tile, causing the rest of the map to
be off-limits to the algorithm. There is a possibility a better path could be found
if we change the tile size or position. Therefore, an optimal global path could be
rather different from the paths computed using a global approach. Nevertheless,
optimizing the whole map could be impossible because of hardware limitations
(e.g. GPU memory).

We can observe a slightly erratic movement on the paths generated using
Dijkstra’s algorithm. We have to say this algorithm is designed to find the less
cost path in weighted graphs, which is not the case of this problem. Therefore,
cost does not provide guidance to the path-finding process. Finally, we observe
the GA has a tendency to generate smoother curves than other algorithms be-
cause of the nature of Bézier curves. By the moment, clearance (i.e Eq. 23)
is the only fitness metric considered. Of course, we can include minimum dis-
tance, smoothness of curves, deviations from a constant speed or acceleration,

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_17

https://dx.doi.org/10.1007/978-3-030-22750-0_17

etc. The integral inclusion of all these metrics could probably be achieved with
multi-objective evolutionary algorithms.

In regards to outliers, it was found there were cases where the GA ran out
of time and it could not find a clear path. This happened when the particular
tile was specially complicated. The initial number of control points is 1 and it
was increased when the GA failed to find a clear route. It was found sometimes
even 5 control points were necessary to find a clear path. We wish to keep the
number of control points the minimum possible because of two main reasons: One
is to minimize execution time. Also, a Bézier curve has a tendency to become
unnecessarily complicated with a large number of control points. Having a way
to estimate the necessary control points beforehand will have a positive impact
on performance.

In relation to the classification explained in section 1.1, the proposed ap-
proach is inherently zone-based because it uses tiling to solve the path-finding
problem with dynamic obstacles. Also we can say the method is layered when
we consider the global path-finding to be on the macroscopic level and obstacles
avoidance belong to the microscopic level. Also it is a terrain-based technique
where octagonal nodes are used to allow both straight and diagonal motion.

a) b)

c) d)

Fig. 4. Example of application of path-finding algorithms: a) Breadth-first search, b)
Dijkstra’s algorithm, c) A*, d) GAs. The small white square is a dynamic obstacle.

5 Conclusions

This article presented a novel approach to path-finding problems using evolu-
tionary algorithms. The approach is intended to be applied to crowd simulation
applications, where online path-finding is desired. The main problem for the
application of evolutionary algorithms was the required speed to serve a large
number of agents online. The article presented an evolutionary algorithm based

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_17

https://dx.doi.org/10.1007/978-3-030-22750-0_17

on Bézier curves to handle the path-finding problem, and a vectorized GPU im-
plementation that allows managing large populations at frame-rate times. The
experiments showed the proposed approach is faster than traditional path-finding
methods, being A* the most remarkable one.

There are many possibilities of future work for the proposed approach. For
example, a multi-objective version of the algorithm can be devised to simulta-
neously include minimum distance, clearance, and social forces. The advantage
of this approach is it will generate a Pareto front of optimal solutions, providing
with variety to the simulations. This will happen because the agent will have the
possibility of choosing one of the solutions based on its own preference, allowing
the inclusion of “personality” to them.

The current method is subject to further improvement. It was explained
above how execution of GA was affected by the fact the number of control
points should be gradually incremented until the algorithm can generate flexible
enough paths to traverse the tile. A method could be devised to estimate this
value beforehand, and a good estimation will have a positive impact on perfor-
mance. The integration of this improvement with a multi-objective version of
the algorithm will be able to online full crowd modeling. Also, the algorithm
can be compared against other custom path-finding methods and be subject of
further improvement.

The current implementation was made using the ArrayFire library. Probably
a lower level implementation could be desirable (e.g. using CUDA). This vec-
torized approach has the advantage porting should be straightforward, because
most of the operations used are matrix operations: A task GPUs are specially
useful. Also, other approaches to path-finding could be combined with evolu-
tionary algorithms to find novel approaches. This implies the exploration of
sequential approaches, hierarchical techniques, and others.

6 Acknowledgments

– The author thanks Consejo Nacional para la Ciencia y Tecnoloǵıa (CONA-
CyT) for the postdoctoral fellowship at Barcelona Supercomputing Center.

References

1. Zeyad Abd Algfoor, Mohd Shahrizal Sunar, and Hoshang Kolivand. A comprehen-
sive study on pathfinding techniques for robotics and video games. International
Journal of Computer Games Technology, 2015:7, 2015.

2. Aniket Bera and Dinesh Manocha. Reach-realtime crowd tracking using a hybrid
motion model. In Robotics and Automation (ICRA), 2015 IEEE International
Conference on, pages 740–747. IEEE, 2015.

3. Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh
approach to numerical computing. SIAM review, 59(1):65–98, 2017.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_17

https://dx.doi.org/10.1007/978-3-030-22750-0_17

4. Henggang Cui, Hao Zhang, Gregory R Ganger, Phillip B Gibbons, and Eric P Xing.
Geeps: Scalable deep learning on distributed gpus with a gpu-specialized parameter
server. In Proceedings of the Eleventh European Conference on Computer Systems,
page 4. ACM, 2016.

5. Yue-Jiao Gong, Wei-Neng Chen, Zhi-Hui Zhan, Jun Zhang, Yun Li, Qingfu Zhang,
and Jing-Jing Li. Distributed evolutionary algorithms and their models: A survey
of the state-of-the-art. Applied Soft Computing, 34:286–300, 2015.

6. Kiran Ijaz, Shaleeza Sohail, and Sonia Hashish. A survey of latest approaches for
crowd simulation and modeling using hybrid techniques. In 17th UKSIMAMSS
International Conference on Modelling and Simulation, pages 111–116, 2015.

7. Jiri Jaros. Multi-gpu island-based genetic algorithm for solving the knapsack prob-
lem. In Evolutionary Computation (CEC), 2012 IEEE Congress on, pages 1–8.
IEEE, 2012.

8. A Johansson and Dirk Helbing. Pedestrian flow optimization with a genetic algo-
rithm based on boolean grids. In Pedestrian and evacuation dynamics 2005, pages
267–272. Springer, 2007.

9. Julio Cezar Silveira Jacques Junior, Soraia Raupp Musse, and Claudio Rosito
Jung. Crowd analysis using computer vision techniques. IEEE Signal Processing
Magazine, 27(5):66–77, 2010.

10. James Malcolm, Pavan Yalamanchili, Chris McClanahan, Vishwanath Venu-
gopalakrishnan, Krunal Patel, and John Melonakos. Arrayfire: a gpu acceleration
platform. In Modeling and Simulation for Defense Systems and Applications VII,
volume 8403, page 84030A. International Society for Optics and Photonics, 2012.

11. Mahmood Naderan-Tahan and Mohammad Taghi Manzuri-Shalmani. Efficient and
safe path planning for a mobile robot using genetic algorithm. In Evolutionary
Computation, 2009. CEC’09. IEEE Congress on, pages 2091–2097. IEEE, 2009.

12. Robert Nowotniak and Jacek Kucharski. Gpu-based tuning of quantum-inspired
genetic algorithm for a combinatorial optimization problem. Bulletin of the Polish
Academy of Sciences: Technical Sciences, 60(2):323–330, 2012.

13. Xiaoshan Pan, Charles S Han, Ken Dauber, and Kincho H Law. A multi-agent
based framework for the simulation of human and social behaviors during emer-
gency evacuations. Ai & Society, 22(2):113–132, 2007.

14. Evanthia Papadopoulou and Maksym Zavershynskyi. The higher-order voronoi
diagram of line segments. Algorithmica, 74(1):415–439, 2016.

15. Petr Pospichal, Jiri Jaros, and Josef Schwarz. Parallel genetic algorithm on the
cuda architecture. In European conference on the applications of evolutionary com-
putation, pages 442–451. Springer, 2010.

16. Baoye Song, Zidong Wang, and Li Sheng. A new genetic algorithm approach to
smooth path planning for mobile robots. Assembly Automation, 36(2):138–145,
2016.

17. Manuel Valenzuela-Rendón. The virtual gene genetic algorithm. In Genetic and
Evolutionary Computation Conference, pages 1457–1468. Springer, 2003.

18. Guillermo Vigueras, Miguel Lozano, Juan Manuel Orduna, and Francisco
Grimaldo. A comparative study of partitioning methods for crowd simulations.
Applied Soft Computing, 10(1):225–235, 2010.

19. Kai Wang, Zhen Shen, et al. A gpu-based parallel genetic algorithm for generating
daily activity plans. IEEE Trans. Intelligent Transportation Systems, 13(3):1474–
1480, 2012.

20. Jinghui Zhong, Nan Hu, Wentong Cai, Michael Lees, and Linbo Luo. Density-based
evolutionary framework for crowd model calibration. Journal of Computational
Science, 6:11–22, 2015.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_17

https://dx.doi.org/10.1007/978-3-030-22750-0_17

