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Abstract

This paper presents a comparative analysis of algorithms belonging to manifold learning
and linear dimensionality reduction. Firstly, classical texture image descriptors, namely
Gray-Level Co-occurrence Matrix features, Haralick features, Histogram of Oriented Gra-
dients features and Local Binary Patterns are combined to characterize and discriminate
textures. For patches extracted from several texture images, a concatenation of the im-
age descriptors is performed. Using four algorithms to wit Principal Component Analysis
(PCA), Locally Linear Embedding (LLE), Isometric Feature Mapping (ISOMAP) and
Laplacian Eigenmaps (Lap. Eig.), dimensionality reduction is achieved. The resulting
learned features are then used to train four different classifiers: k-nearest neighbors, naive
Bayes, decision tree and multilayer perceptron. Finally, the non-parametric statistical
hypothesis test, Wilcoxon signed-rank test, is used to figure out whether or not manifold
learning algorithms perform better than PCA. Computational experiments were conducted
using the Outex and Salzburg datasets and the obtained results show that among twelve
comparisons that were carried out, PCA presented better results than ISOMAP, LLE and
Lap. Eig. in three comparisons. The remainder nine comparisons did not presented sig-
nificant differences, indicating that in the presence of huge collections of texture images
(bigger databases) the combination of image feature descriptors or patches extracted di-
rectly from raw image data and manifold learning techniques is potentially able to improve
texture classification.

1 Introduction

Texture analysis plays an important role in the computer vision area. It is responsible for
extracting meaningful information from texture images. Texture is considered as an essential
attribute, among all characteristics present in an image, which can be used as a rich source
of information in many application areas, such as object recognition, remote sensing, content-
based image retrieval and so on.

In the computational context, texture analysis can be defined as a set of techniques capable
of processing texture information in every perspective or in certain regions of interest (ROIs)
of an image. According to Materka, Strzelecki et al. [12], this set is basically composed of
four major categories, namely: feature extraction, texture classification, texture segmentation
and shape reconstruction from texture. Feature extraction is the first stage of texture analysis.
It is responsible for translating the correlation between visual patterns contained in an image
into quantitative values. The methods responsible of performing this function are known as
texture descriptors. The purpose of texture classification is to associate textured samples with
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two or more classes according to a given criteria of similarity [8, 21, 12]. Texture segmentation,
unlike classification, focuses on the delimitation of regions based on texture information. In
this case there is no need for prior knowledge of the characteristics of each surface meaning
that unsupervised grouping techniques can be used [22, 21, 12]. Shape reconstruction through
textures is directly linked to the recomposition of three-dimensional surfaces by means of texture
information [13, 22, 12, 21]. This work is confined mainly to texture classification which is
composed of two main processes, regarding feature extraction and classification of patterns.

Many methods of texture analysis have been developed over the years, each one exploring
a novel approach to extract the images texture information. For instance, we have classical
methods based on second-order statistics (such as Co-occurrence Matrices (GLCM)), Haralick,
Histogram of Oriented Gradients (HoG) and Local Binary Patterns (LBP). Over many years,
these four descriptors have gained a large amount of interest in many computer vision research-
ing groups. The features extracted using the aforementioned descriptors have proven to be
discriminative in classifying texture patterns.

By using those four descriptors to choose a subset of features that really represent a texture
image separately, some texture information can be lost which may result in decreased recognition
performance. According to this paper, in order to compensate for lost texture information and
to fill the gaps left by each descriptor separately, the features extracted by those four descriptors
are combined. Feature vector representing the patches are then taken through dimensionality
reduction methods which give an improvement in recognition performance. On the other hand,
we also propose to consider as feature vector a concatenation of 32x32 patches extracted directly
from an image raw data.

Finally, we use this effective combination of the features of those four descriptors and also
those ones extracted directly from an image raw data (after concatenating them and applying
dimensionality reduction algorithms) with four classifiers (KNN [10], Naive Bayes [23], Decision
Trees [14] and Multilayer Perceptron [5]) on Outex [19] and Salzburg [11] datasets. Finally, a
comparative analysis is achieved using the Wilcoxon test [24] to figure out if nonlinear dimen-
sionality reduction methods are better than the linear ones using the two proposed approaches.

The rest of this paper is organized as follows. We give a brief overview of PCA and man-
ifold learning methods in Sections 2 and 3 respectively. Section 4 is dedicated to present our
proposal. Computational experiments and results for this work are presented in Sections 5 and
6 respectively. Finally, we conclude the paper’s work in Section 7.

2 Principal Component Analysis

High-dimensional datasets (i.e datasets with many features) may present difficulty in visualiza-
tion process, may require high computational performance or may contain noise. To overcome
these issues, there exist methods related with linear dimensionality reduction with the pur-
pose of shrinking datasets by transformation and/or selection of features, while minimizing
information loss. In this section, we will focus particularly on PCA [9].

It is common that some datasets follow certain distributions that are majorly embedded
in a few orthogonal components, where a component is the result of a linear combination of
the original features. PCA is a statistical technique that aims at transforming a n-dimensional
dataset X to a m-dimensional dataset Y , where, obviously, m ≤ n. Moreover, the dimensions
of Y are captured in the direction in which the variance of samples in X is maximum and
should necessarily be orthogonal components, commonly known as principal components [9].
In Figure 1, the orange and purple arrows are the principal components of the synthetic dataset
K, with 1000 samples and 2 features ( 2 principal components). In addition, the Algorithm 1
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Figure 1: The principal components of dataset K (orange and purple arrows).

summarizes in a few simple steps the idea behind PCA method.

Data: a dataset D with n samples and f features and m as being the number of
dimensions desired for the reduced dataset [17, 15].

Result: the matrix consisting of the principal components
1. Find X = HD, where H is the centering matrix defined as H = In − 1

n11T , where In
and 1 are, respectively, the identity matrix of order n and the column vector of 1′s.

2. Calculate the covariance matrix
∑
X .

3. Use singular value decomposition to find the eigenvalues
∑

= {σi} and eigenvector
V = {vi} of

∑
X .

4. Sort the eigenvalues by their absolute value in descending order and select the first m
ones and their respective eigenvectors.

Algorithm 1: Simple idea behind PCA Algorithm

3 Manifold Learning

Manifold learning is a popular approach to nonlinear dimensionality reduction. Algorithms for
this task are based on the idea that the dimensionality of many datasets is only artificially
high; though each data point consists of perhaps thousands of features, it may be described as
a function of only a few underlying parameters. That is, the data points are actually samples
from a low-dimensional manifold that is embedded in a high-dimensional space. Manifold
learning algorithms attempt to uncover these parameters in order to find a low-dimensional
representation of the data. Manifold learning algorithms include methods such as ISOMAP,
LLE, Lap. Eig. that we are going to present briefly in this section.
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3.1 ISOMAP

Firstly, ISOMAP has been suggested by Tenenbaum, de Silva and Langfor [20] and was one of
the first algorithms introduced for manifold learning. It can be thought of as an extension of
Multidimensional Scaling (or simply MDS). ISOMAP algorithm can be summarized in three
big steps:

1. Construct the weighted graph G from the distances pairwise for all points in the input and
find the graph G′ by applying the nearest-neighbor algorithm on the graph G.

2. Compute the shortest path graph G′′ between all pairs of nodes from graph G′. This might
be done by the all-pairs Dijkstra’s [6] or by the Floyd Warshall algorithm [1].

3. Use G′′ to construct the p-dimensional embedding using the MDS algorithm. In other
words, the MDS method can now be used to construct a representation in sub-spaces of
the Rn.

3.1.1 Multidimensional Scaling (MDS)

Isomap algorithm finds points whose Euclidean distances equal the geodesic distances that were
calculated in steps 1 and 2. In fact, such points exist and are unique, since the manifold is
isometrically embedded. Multidimensional Scaling [7] is a classical technique that may be used
to find such points. The main goal of the MDS algorithm can be formalized as follows: Let
{xi, yi} be the input dataset for i = 1, 2, ..., n where xi denotes the feature vector that represents
the ith sample and yi denotes the class or category to which the vector belongs, being generally
an integer greater than zero. Given a Euclidean pairwise distances matrix, retrieve which are
the coordinates of xr ∈ Rk, r = 1, 2, ..., n, where k is defined by the user (plan, space 3D, etc...).
A distance matrix is given by D =

{
d2rs
}
, r, s = 1, 2, ..., n where d2rs is a distance between xr

and xs vectors. Its expression is given by

d2rs = ‖xr − xs‖2.

Now, let B be the matrix of inner products defined as B = {brs}, where brs = xTr xs. Based
on these configurations, the MDS method seeks to address two main problems:

i) From the distance matrix D find a matrix B.

ii) From B retrieve the coordinates xr ∈ Rp where p is the rank of B.

To address the first problem, MDS method assume that points are mean-centered i.e.∑n
r=1 xr = 0. After some algebraic operations on D and using the initial form of matrix

B, the final expression of matrix B is as B = HAH such that A = − 1
2D and H = I − 1

n11T .

Finally, for retrieving the coordinates of the points, some properties of matrix B can be
used. In fact B has three important properties, namely B is symmetric, the rank of B is p (this
corresponds to the maximal number of linearly independent rows/columns of B that generates
a base in Rp) and B is positive semidefinite. This implies that the matrix B has p non-negative
eigenvalues and n − p eigenvalues are null. Thus, by the spectral decomposition of B one can
write B = ∨′∧′∨′T where ∧′

= diag(λ1, λ2, ..., λn) is a diagonal matrix of eigenvalues of B and
∨′

with n× p dimension is defined as
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| | . . . |
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However, as B can be written in these following format B = Xn×pX

T
p×n, thus, the observed

Xn×p can be expressed as Xn×p = ∨′

n×p∧
′ 1
2
p×p where ∧′ 1

2 = diag(
√
λ1,
√
λ2, ...,

√
λp).

Each row of Xn×p will have the coordinate of a vector xi ∈ Rp, where p is a parameter that
controls the number of dimensions of the output space: if we want a 2D plot, p = 2, in case of
a 3D plot, p = 3. The Algorithm 2 summarizes the process of MDS.

Data: D =
{
d2rs
}

Result: points in low-dimensional (k) Euclidean space whose interpoint distances match
the geodesic distances found in step 1 of ISOMAP

1. Do A = − 1
2D

2. Do H = I − 1
n11T

3. Compute B = HAH
4. Find the eigenvalues and the eigenvectors of B
5. Take the k eigenvectors associated with the largest k eigenvalues of B and set ∨′

nxk

and ∧′ 1
2 = diag(

√
λ1,
√
λ2, ...,

√
λk)

6. Compute Xnxk = ∨′

nxk∧
′ 1
2

kxk
Algorithm 2: MDS Algorithm

It should be noted that the ISOMAP algorithm is totally unsupervised, in the sense that it
does not use any information about class distribution. It attempts to find a more compact
representation of the original data only by preserving the distances.

3.2 LLE

LLE has been suggested by Saul and Roweis [16] and was introduced at about the same time
as ISOMAP, but it is based on different idea than that of ISOMAP. The idea comes from
visualizing a manifold as a collection of overlapping coordinate patches. If the neighborhood
sizes are small and the manifold is sufficiently smooth, then these patches will be approximately
linear. Moreover, the chart from the manifold to Rd (d is the dimensionality of the manifold
that the input is assumed to lie on and, accordingly, the dimensionality of the output i.e.
yi ∈ Rd) will be roughly linear on these small patches. The idea is to identify these linear
patches, characterize the geometry of them, and find a mapping to Rd that preserves this local
geometry and is nearly linear. It is assumed that these local patches will overlap with one
another so that the local reconstructions will combine into a global one [3]. LLE algorithm can
be summarized in two big steps:

1. Model the manifold as a collection of linear patches and attempts to characterize the
geometry of these linear patches.

2. Find a configuration in d-dimensions (the dimensionality of the parameter space) whose
local geometry is characterized well by W (Wi is a characterization of the local geometry
around xi of the manifold). Unlike ISOMAP, d must be known a priori or estimated.
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3.3 Laplacian Eigenmaps

The idea behind the Lap. Eig. [2] is to use spectral graph theory in order to capture local
information about the manifold. Given a graph and the corresponding matrix of edge weights,
W , the Laplacian graph is defined as L = D −W in which D represents the diagonal matrix
with elements Dii =

∑
jWij .

Here, a matrix W is used as a local similarity in order to measure the degree to which points
are near to one another. Thus Wij = e−‖xi−xj‖2/2σ2

if xj is one of the k-nearest neighbors of xi
and equals 0 otherwise. The main goal is to use W in order to find output points y1, ..., yn ∈ Rd
that are the low-dimensional analogs of input points x1, ..., xn ∈ RD where d < D. Lap. Eig.
algorithm can be summarized in two big steps:

1. Given x1, ..., xn ∈ RD, d, k, σ as input, define a local similarity matrix Wij .

2. Let U be defined as the matrix whose columns are the eigenvectors of Ly = λDy associated
to the non-zero eigenvalues. Here L represents Lagrange multipliers. Y is then given by
the n×d matrix whose columns are these d eigenvectors and whose rows are the embedded
points (y1, ..., yn ∈ Rd).

4 Proposed method

This section presents a dimensionality reduction based approach for texture classification. Our
method is firstly inspired by the observation of how dimensionality reduction techniques can
effectively learn relevant information from the raw data, and secondly, by a wide variety of
characteristics that present the feature vectors generated by each one of the classical descriptors
adopted in this work. Based on this, we propose a straightforward solution which concatenates
all these feature vectors (referred as first approach) and also those feature vectors constructed
from patches extracted directly from the raw data (referred as second approach) and makes a
feature selection through PCA and manifold learning techniques to choose the most effective
features for class separability.

The idea consists in creating an approach for texture classification strongly based on the
application of dimensionality reduction techniques. According to the block diagram of the pro-
posed method (refer to Figure 2), the two stages in Figure 2(a) are part of the first approach
and consist in extracting HoG, GLCM, Haralick and LBP features followed by their concatena-
tion. We concatenated these four feature vectors aiming at constructing one big feature vector
to serve as an input for dimensionality reduction using PCA and manifold learning algorithms.
The stage in Figure 2(b) is part of the second approach and consists in extracting 32x32 patches
from an image which will then be concatenated to form a feature vector of the underlying image.
In the next stage of the diagram flow, feature selection is achieved through PCA, ISOMAP,
LLE and Lap. Eig. algorithms during which thresholds are used to maintain only the most
effective features among all belonging to the concatenated feature vector. From this process,
we have as an output a discriminative and reduced feature vector that contains only the best
elements (the most relevant informations) of the input descriptors. Then, the selected feature
vector is taken through the classification process using KNN, Naive Bayes, Decision Trees and
ML Perceptron. Finally, a comparative analysis is achieved using the Wilcoxon test to figure
out if nonlinear dimensionality reduction methods are better than the linear ones using the two
proposed approaches.
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5 Experimental setup

5.1 Image datasets

Two texture image datasets were used in the experiments:

• Salzburg [11] contains a collection of 476 color texture images that have been captured
around Salzburg (Austria) and, herein, depicted in Figure 4. For each texture class (from
total of 10 classes used in this paper), there were 128× 128 source images, of which 80%
was used for training the classifier, while the other 20% was used for testing.

• Outex [19] has a total of 960 (24 × 20 × 2) image instances of illuminant “inca”. The
training set consists of 480 (24× 20) images and the other 480 (24× 20) images are part
of the test set. The test suite for Outex used in this work is Outex TC 00011-r. Some of
the texture instances for each class are depicted in Figure 5.

5.2 Description of experiments

In Figure 2 we present the flow diagram of the proposed method, including details of the
pipeline, and the methods used in the experiments. Note that our contribution is to perform
a statistical comparative analysis to show which approach is better than other between PCA
and manifold techniques and how these approaches can be used to reduce the dimensionality
of the feature space in texture classification task.

In this paper, we perform the following two types of experiments:

• Experiments using the full feature vector created by concatenating all descrip-
tors, followed by classification with feature selection;

• Experiments using the feature vector created by extracting 32 x 32 patches,
followed by classification with feature selection.

The main topic under investigation is the effect of different methods in reducing dimensionality
for concatenation of descriptors and 32 x 32 image patches-based feature vector in texture
classification. In our experiments we analyze if PCA reduction produces better results than
manifold algorithms for both feature extraction approaches adopted in this paper. It is for
this reason that we used the Wilcoxon test to find which method has significant difference. A
significance level of α = 0.05 was used in all tests. In this case the comparison is pair-wise.
In addition, all experiments were performed with a stratified k − fold cross validation setting.
The accuracy proved to be a suitable measure to evaluate the classification performance, since
all datasets are balanced and also the sampling for the cross validation is stratified [18].

6 Results and Discussion

6.1 Full feature space experiments

The accuracies for the first set of experiments are shown in Table 1 and Table 3. They present
a general perspective of the results. For each dataset and dimensionality reduction method
among PCA, ISOMAP, LLE and Lap. Eig., we displayed ten accuracies, corresponding to the
dimensionality reduction using 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 features (attributes).

It is evident that, in general, the methods used to reduce the dimensionality of the full
feature space have significant impact on classification accuracy. In this way, the choice of
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Figure 2: Block diagram of the proposed method.

Figure 3: Accuracies of PCA, ISOMAP, LLE and Lap. Eig. for the Salzburg dataset using
the 32 x 32 image patch-based feature vector (a), Salzburg dataset using the concatenated
feature vector (b) and Outex dataset using the concatenated feature vector (c). Boxplots in
gray correspond to significances when compared to the accuracy of other method with p-value <
0.05. Here, the name Salzburg-2 (a) refers to the second approach applied to Salzburg dataset.
Analogously, the names Salzburg-1 (b) and Outex-1 (c) refer to the first approach applied to
Salzburg and Outex datasets, respectively.

Figure 4: A sample from Salzburgs texture database.
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Figure 5: 128× 128 blocks from the 24 texture classes of the Outex database.

d (target feature vector size) can improve or hamper the discriminative capacity of texture
descriptors. While the brute force search for the best value of d seems a major drawback of
many works in feature selection using dimensionality reduction techniques, in this paper, we
adopted an intrinsic dimensionality estimation approach to find the intrinsic value of d. This
approach computes the accumulated percentual of variance of the ith component from a list
of n components (dimensions). Then the intrinsic dimensionality of the reduced space will be
the first component with accumulated variance ratio greater than 95% for ISOMAP algorithm,
for instance. One of the important observations from this result is that the reduction from the
computed d to a higher number of dimensions often maintains the accuracies and sometimes
can even slightly increase them. Figure 6 shows the observed value of d, varying from 0 to
100, based on the percentage of variance retained in the attributes. It also shows that the
intrinsic dimensionalities of Salzburg and Outex datasets for ISOMAP algorithm are 10 and
24, respectively.

Since the results showed in Table 1 and Table 3 are only an overall view, we performed a
deeper analysis using the following pairs of methods: PCA with ISOMAP; PCA with LLE and
PCA with Lap. Eig. Also, because of the comparison must be carried out in pairs and under no
assumption about the distribution of the data , the Wilcoxon’s test was performed to compare
the accuracies obtained by the reduction methods showed in Tables 1 and 3. A significance level
of α = 0.05 was used in all tests. To observe the results in more detail, boxplots for Salzburg
and Outex datasets using PCA with LLE and PCA with Lap. Eig are shown in Figures 3
(b) and 3 (c), respectively. The boxplots shaded in gray correspond to data with significant
difference when compared to the accuracy of the other method, obtaining p-value < 0.05.

We obtained significantly better results for PCA when compared with the LLE method
for Salzburg (see Figure 3 (b)) and with the Lap. Eig method for Outex (see Figure 3 (c)),
according to the Wilcoxon’s statistical test. On a more general note, it can be observed that
the results were not significantly worse, except for the value of d equals to 1 for all the methods
in the two datasets.
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Figure 6: Intrinsic dimensionality estimation for ISOMAP for Salzburg and Outex datasets
using the full feature space.

6.2 32 x 32 patch-based feature space experiments

An overview of the results for the second set of experiments is shown in Table 2 and Table 4. For
each data set and dimensionality reduction method, we showed eleven accuracies, corresponding
to the dimensionality reduction with the value of d equals to 5, 10, 15, 20, 25, 30, 35, 40, 45, 50
and 100. Here, the idea is to test if the extraction of patches directly from a texture image raw
data can improve or maintains the results, and also to compare the use of PCA and manifold
learning methods in this way.

The only result that significantly presented difference among the pair-wise comparisons was
between PCA and ISOMAP for Salzburg data set as shown in Figure 3 (a). PCA significantly
presented better accuracies than ISOMAP for salzburg data set, according to the Wilcoxon’s
statistical test for p-value < 0.05. More importantly, on a more general perspective (i.e., for all
accuracies), the results were not significantly worse.
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Number of Features
1 2 3 4 5 6 7 8 9 10

PCA KNN 58.33 88.89 88.89 100.00 100.00 100.00 100.00 100.00 100.00 100.00
N.B. 80.56 86.11 97.22 100.00 97.22 100.00 97.22 100.00 100.00 100.00
MLP 38.89 77.78 80.56 94.44 97.22 91.67 97.22 100.00 100.00 100.00
DT 52.78 86.11 88.89 94.44 94.44 88.89 94.44 94.44 97.22 88.89

ISOMAP KNN 86.11 100.00 100.00 100.00 100.00 100.00 100.00 100.00 97.22 100.00
N.B. 75.00 100.00 100.00 97.22 100.00 97.22 100.00 94.44 88.89 100.00
MLP 44.44 77.78 91.67 91.67 94.44 94.44 100.00 97.22 97.22 100.00
DT 75.00 97.22 88.89 94.44 97.22 94.44 83.33 83.33 91.67 83.33

LLE KNN 66.67 69.44 94.44 100.00 97.22 97.22 100.00 100.00 100.00 97.22
N.B. 41.67 68.75 78.13 83.33 82.29 82.29 94.79 92.71 89.58 90.63
MLP 30.56 16.67 55.56 55.56 47.22 50.00 69.44 47.22 94.44 83.33
DT 63.89 75.00 91.67 94.44 91.67 97.22 97.22 88.89 94.44 94.44

Lap. Eig. KNN 72.22 83.33 100.00 100.00 97.22 100.00 100.00 94.44 100.00 100.00
N.B. 72.22 83.33 100.00 97.22 100.00 97.22 97.22 94.44 100.00 97.22
MLP 11.11 55.56 91.67 100.00 91.67 94.44 97.22 91.67 100.00 97.22
DT 63.89 80.56 100.00 100.00 94.44 94.44 94.44 94.44 91.67 91.67

Table 1: Quantitative results when comparing PCA method with four techniques of manifold
learning in Salzburg dataset. Here we considered the full feature vector created by concatenating
all descriptors.

Number of Features
5 10 15 20 25 30 35 40 45 50 100

PCA KNN 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
N.B. 53.82 68.14 70.33 72.68 71.99 75.23 78.95 79.15 79.15 80.78 83.24
MLP 91.11 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
DT 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

ISOMAP KNN 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
N.B. 44.08 45.85 52.97 51.37 54.35 56.01 54.48 56.24 58.69 60.03 68.89
MLP 88.46 98.76 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
DT 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

LLE KNN 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
N.B. 22.91 36.01 41.08 43.50 48.04 49.51 49.58 51.80 52.75 53.89 63.33
MLP 43.46 52.55 54.80 57.78 63.89 68.82 69.12 71.86 72.42 77.25 90.20
DT 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Lap. Eig. KNN 99.97 99.97 100.00 100.00 100.00 99.97 100.00 100.00 100.00 100.00 100.00
N.B. 47.78 46.54 54.64 52.97 55.33 56.34 55.39 56.67 54.41 56.70 61.01
MLP 66.86 76.18 80.36 86.44 91.57 92.88 95.26 98.56 98.14 99.08 99.74
DT 99.90 99.93 99.93 99.93 99.87 99.84 99.97 99.97 99.84 99.87 99.80

Table 2: Quantitative results when comparing PCA method with four techniques of manifold
learning in Salzburg dataset. Here a 32 x 32 patch of a texture image is considered as the
feature vector.

7 Conclusions

This research presented an important contribution regarding the use of dimensionality reduc-
tion techniques for texture classification task. We stated that an original feature vector of D
dimensions could be reduced to only d features (where d < D) that can better represent the
data, achieving similar or higher accuracies. To produce an higher feature vector size to be
used as input of the dimensionality reduction methods, we proposed two approaches: one using
the full feature vector created by concatenating HoG, LBP, GLCM and Haralick descriptors;
and other using the feature vector created by extracting 32 x 32 patches of each texture im-
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Number of Features
1 2 3 4 5 6 7 8 9 10

PCA KNN 20.83 77.08 94.79 90.63 95.83 95.83 98.96 97.92 96.88 97.92
N.B. 25.00 73.96 91.67 87.50 91.67 92.71 91.67 95.83 96.88 98.96
MLP 13.54 59.38 81.25 84.38 88.54 88.54 94.79 95.83 96.88 98.96
DT 20.83 68.75 88.54 83.33 84.38 85.42 86.46 88.54 92.71 92.71

ISOMAP KNN 31.25 83.33 89.58 92.71 92.71 96.88 97.92 97.92 98.96 95.83
N.B. 31.25 70.83 81.25 88.54 84.38 94.79 92.71 96.88 94.79 94.79
MLP 17.71 60.42 82.29 87.50 88.54 91.67 92.71 92.71 94.79 95.83
DT 22.92 69.79 85.42 83.33 78.13 90.63 88.54 84.38 87.50 86.46

LLE KNN 40.63 67.71 79.17 88.54 89.58 92.71 98.96 97.92 100.00 96.88
N.B. 41.67 68.75 78.13 83.33 82.29 82.29 94.79 92.71 89.58 90.63
MLP 30.56 16.67 55.56 55.56 47.22 50.00 69.44 47.22 94.44 83.33
DT 63.89 75.00 91.67 94.44 91.67 97.22 97.22 88.89 94.44 94.44

Lap. Eig. KNN 46.88 84.38 88.54 91.67 88.54 95.83 92.71 88.54 88.54 91.67
N.B. 50.00 73.96 75.00 78.13 77.08 82.29 82.29 82.29 83.33 86.46
MLP 10.42 42.71 58.33 58.33 66.67 67.71 73.96 69.79 77.08 86.46
DT 43.75 69.79 77.08 83.33 83.33 85.42 88.54 88.54 88.54 88.54

Table 3: Quantitative results when comparing PCA method with four techniques of manifold
learning in Outex dataset. Here we considered the full feature vector created by concatenating
all descriptors.

Number of Features
5 10 15 20 25 30 35 40 45 50 100

PCA KNN 56.51 62.24 61.98 60.42 58.33 54.69 53.65 52.60 48.96 45.83 37.50
N.B. 61.98 70.05 73.95 76.30 79.43 78.91 79.69 80.47 79.95 80.47 80.47
MLP 63.80 73.70 77.08 75.26 76.82 71.88 69.79 67.97 63.80 63.02 49.23
DT 53.39 56.25 61.20 58.33 57.81 58.85 58.33 55.73 57.81 57.29 53.13

ISOMAP KNN 70.31 76.82 76.56 76.30 75.78 76.56 76.56 76.56 75.78 75.50 72.14
N.B. 55.99 68.23 72.66 73.18 73.18 73.70 73.96 72.92 73.96 74.48 73.70
MLP 51.82 60.42 65.63 63.28 66.41 62.76 60.94 57.81 63.02 56.25 54.95
DT 58.07 65.36 66.93 66.41 64.58 62.50 63.02 61.20 61.46 63.02 64.32

LLE KNN 59.11 68.23 66.15 70.57 72.14 70.57 71.88 71.88 73.44 72.40 65.10
N.B. 58.59 64.32 68.23 71.88 75.00 75.52 77.08 79.17 78.13 79.95 82.55
MLP 37.24 37.50 42.19 42.71 44.53 45.83 48.18 46.88 46.09 47.66 53.91
DT 53.13 53.65 50.26 58.33 59.11 55.73 59.11 56.77 53.65 51.82 52.34

Lap. Eig. KNN 61.46 69.27 69.27 71.61 73.70 73.96 76.56 75.78 74.48 74.48 67.45
N.B. 47.66 58.59 63.02 61.72 64.58 66.93 67.71 68.23 68.49 68.49 67.45
MLP 59.38 67.71 74.22 71.09 71.88 75.26 74.22 74.22 74.22 73.96 67.97
DT 58.85 63.28 62.76 62.50 61.98 65.10 66.41 64.32 63.80 62.50 60.42

Table 4: Quantitative results when comparing PCA method with four techniques of manifold
learning in Outex dataset. Here a 32 x 32 patch of a texture image is considered as the feature
vector.
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age. In this paper we especially carried out investigations through Wilcoxon’s statistical test
with regard to figure out whether or not manifold learning algorithms perform better than
PCA. In this case for each data set, we performed six pair-wise comparisons, namely PCA with
ISOMAP; PCA with LLE and PCA with Lap. Eig such as each comparison was done for both
approaches. Thus, we had twelve pair-wise comparisons in total for all experiments.

In the first place, it is important to note that the use of the two approaches (full feature
vector and 32 x 32 patches-based feature vector) followed by feature selection using both PCA
and manifold learning produced, on average, superior results than the individuals descriptors
for texture classification task. In the second one, among all the pair-wise comparisons involved
in the experiments, only three results (from a set of twelve ones) were significantly differents,
according to the boxplots in Figure 3. These results clearly indicated that PCA overperformed
the ISOMAP in Salzburg using the second approach, also overperformed the LLE in Salzburg
using the first approach, and finally, overperformed the Lap. Eig in Outex using the first
approach.

Since the results for the rest of nine comparisons did not significantly show the difference
between the accuracies of PCA and each one of the manifold learning method, we believe that
increasing the dimension of the feature vectors of both approaches by respectively adding more
descriptors and by extracting 8 x 8 patches from texture image, may promote better performance
in favour of manifold learning methods. The reason for this is that manifold learning methods
are more efficient in dimensionality reduction than PCA in the presence of huge collections of
texture images (bigger databases) and especially for texture classification task [4][25].

Future studies can take into account new approaches for estimating the intrinsic dimension-
ality value of d for each manifold learning method, can also explore different manifold learning
methods and variations of the supervised classifier’s algorithms in order to produce better accu-
racies, as well as investigate the sub-spaces generated by such methods in order to understand
better their discriminative power.
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[23] Geoffrey I. Webb. Näıve Bayes, pages 713–714. Springer US, Boston, MA, 2010.

[24] Frank Wilcoxon. Individual Comparisons by Ranking Methods, pages 196–202. Springer New York,
New York, NY, 1992.

[25] Chuan Yang, Lihe Zhang, Huchuan Lu, Xiang Ruan, and Ming-Hsuan Yang. Saliency detection
via graph-based manifold ranking. In Proceedings of the 2013 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR ’13, pages 3166–3173, Washington, DC, USA, 2013. IEEE
Computer Society.

14

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_15

http://www.wavelab.at/sources/STex/
http://www.wavelab.at/sources/STex/
https://dx.doi.org/10.1007/978-3-030-22750-0_15

