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Abstract. In our previous work on automated microalgae classification
system we proposed the multi-resolution image segmentation that can
handle well with unclear boundary of algae bodies and noisy background,
since an image segmentation is the most important preprocessing step in
object classification and recognition. The previously proposed approach
was able to classify twelve genera of microalgae successfully; however,
when we extended it to work with new genera of filamentous algae, new
challenging problems were encountered. These difficulties arise due to a
variety of the forms of filamentous algae, which complicates both image
segmentation and classification processes, resulting in substantial degra-
dation of classification accuracy. Thus, in this work we propose a modi-
fied version of our multi-resolution segmentation algorithm by combining
them in such a way that the strengths of both algorithms complement
each other’s weaknesses. We also propose a new skeleton-based shape
descriptor to alleviate an ambiguity caused by multiple morphologies
of filamentous forms of algae in classification process. Effectiveness of
the two proposed approaches are evaluated on five genera of filamentous
microalgae. SMO is used as a classifier. Experimental result of 91.30%
classification accuracy demonstrates a significant improvement of our
proposed approaches.

Keywords: Microalgae Image Classification · Image Segmentation · Shape
Descriptor · Skeleton.

1 Introduction

Microalgae are important aquatic life forms and live in most aquatic ecosystems.
Because of responding strongly to environmental changes, they have long been
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used as biological indicators for an assessment of water quality [21]. In recent
studies of diversity of microalgae [14, 13] the researchers found that some species
of microalgae can tolerate to contaminated water resources and can be used to
phytoremediate such contaminated sites. Thus, in water resource management,
a regular assessment of water conditions allows early warning of deteriorating
conditions that can be toxic to both humans and animals. Rapid, accurate iden-
tification of microalgae is therefore one of the most important issues in water
resource management. While the need of identification of algae increases, only a
few biological experts with taxonomy competence are available. Moreover, a task
of identifying the species of algae is also time consuming. Thus, an automated
algae image classification is essential.

An image segmentation is a process of separating objects of interest from an
image background, e.g., detecting algae bodies. It is the most important prepro-
cessing step in an automated image classification task, especially in algae image
classification. Since a shape of algae is a key characteristic used for taxonomi-
cal identification of its genus, we expect the segmentation algorithm capable of
producing segmented results with property that generates boundaries of algae
bodies lying as close as possible to the true edges of algae bodies, and preserves
important morphological features of algae as many as possible. Completeness
of morphological features of the extracted shape will contribute to high quality
of shape descriptors, which finally contributes to high classification accuracy.
In our previous work on automated microalgae image classification [12] we pro-
posed a segmentation algorithm (i.e. the multi-resolution edge detection) that
can efficiently deal with problems of unclear boundary of algae bodies and noisy
background. The proposed algorithm worked well with twelve genera (both non-
filamentous and filamentous forms) of microalgae. Unfortunately, when applied
to new genera of filamentous algae, the algorithm produced unexpected results.

Five genera of microalgae studied in this work are ones of the most commonly
found in water resources of Thailand (as shown in Fig. 1). The two genera,
i.e. Anabaena and Oscillatoria, are from the previous work, and the three new
genera, i.e. Spirogyra, Spirulina, and Anabaenopsis, are newly collected. All five
genera are filamentous algae. In biology, the filamentous forms of these algae
are called trichomes. Trichomes can be found in many characteristics. In this
work we categorize them into three groups according to their silhouette shape
(as shown in Fig. 2) as following:

1. Smoothed boundary: trichomes in this group are composed of cylindrical
cells. Thus, they have a smoothed contour along their elongate body. Mi-
croalgae in this group are Oscillatoria and Spirogyra (see Fig. 2b).

2. Crenate boundary: trichomes in this group are composed of spherical cells.
So, they have notches at joints of spherical cells along their contours, and
hence, the contour appears crenate along their length. Microalgae in this
group is Anabaena (see Fig. 2a).

3. Spirally coiled boundary: trichomes in this group can be short and regularly
spirally coiled like Anabaenopsis or irregularly spirally coiled, such as (e.g.
Spirulina (see Fig. 2d, 2e).
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(a) Anabaena (b) Oscillatoria (c) Spirogyra (d) Spirulina (e) Anabaenopsis

Fig. 1: Five genera of filamentous algae in the study.

(a) Crenate (b) Smoothed (c) Smoothed (d) S.Coiled (e) S.Coiled

Fig. 2: Silhouette of algae in Fig. 1.

The main purpose of inventing the multi-resolution edge detection is that
we want to extract algae body from a background, where its boundary lies as
close as possible to the true edges of algae, so that the shape features of algae
body will be preserved as many as possible. However, when facing with new mi-
croalgae of filamentous genera, the detected boundary of algae seems not quite
fit enough to efficiently capture small details of boundary in each group. The
following examples show the difficulties we faced when the detected boundary
of algae lies further away from the true edges of algae: i) when size of Anabaena
in an input image is quite small or the trichomes are composed tightly of small
spherical cells (see Fig. 3a), notches along its crenate boundary in the segmen-
tation result are shallow. As a result, its boundary appears more like smoothed
contour than crenate contour. Consequently, Anabaena is more likely to be mis-
classified to Spirogyra or Oscillatoria, and ii) when segmenting a tiny spirally
coiled algae (Spirulina), curls occurring along a spirally coiled boundary will
appear like notches (see Fig. 3b), resulting in ambiguous classification between
the two genera (Spirulina and Anabaena). Finally iii), the multi-resolution edge
detection was not designed to handle trichomes of spirally coiled form that curl
in a circle (or a ring shape), and hence segmentation results of algae of this
morphology wrongly turn into a coccoid form (see Fig. 3c). Thus, in this work
we propose a new modified version of the multi-resolution edge detection so that
segmentation results of algae with ring shape remains a ring shape, and notches
along crenate boundary and curls of spirally coiled boundary are distinct. The
experimental results show that our new segmentation algorithm does benefit a
classification process by bringing the differences of the boundaries in the three
groups clearer.

In addition, in order to alleviate an ambiguity of classifying ambiguous mul-
tiple morphologies of the trichomes forms, we propose a new shape descriptor
computed based on a skeleton of a shape. The experimental results show that
by using our new shape descriptor, the classifier can efficiently cope with several
cases of ambiguity, for example, i) discriminate shapes with crenate boundary
with tiny notches from smoothed boundary shapes, and ii) discriminate shape
with spirally coiled boundary with tiny curls from shapes of crenate boundary.
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(a) Anabaena (b) Spirulina (c) Anabaenopsis

Fig. 3: Incorrect segmentation results of the old approach [12].

2 Related Works
Microalgae segmentation as well as automated algae classification are a very
difficult task due to various factors: not only a wide variation of characteristics
of algae in nature, but also the poor conditions of microscopic images (e.g. low
contrast due to non-uniform illumination conditions, strong background noise
arising from lights scattered, presence of various extraneous objects in the back-
ground). Therefore, algae image classification and its associated problems be-
come challenging for applications of computer vision [16]. Various image pro-
cessing and machine learning approaches have been proposed to tackle these
problems.

Edge-based segmentation approach is one of the most popular approaches
that widely uses in microalgae image segmentation because of its robustness to
noise. Li et. al. [7] proposed to use Sobel edge detection for semi-automated
microorganism segmentation. Since Sobel edge detection often produces discon-
tinuous boundaries, Santhi et. al. [16] and Promdaen et. al. [12] proposed to use
Canny edge detection on a result of Sobel edge detection in order to improve seg-
mentation results. A Canny edge detection was also used by [9, 8]. Because most
of edge detection methods naturally requires postprocessing for linking disconti-
nuities of edges to form closed contours of objects, deformable model approaches
become more attractive since they produce results as a closed contour. Giraldo
et. al. [5] proposed to used active contour, while Borges et. al. [2] proposed to
use level set for segmenting microalgae images. However, edge-based active con-
tours are sensitive to noise and may omit minute features and blurry boundaries
during energy minimizing. Therefore, this approach is not suitable for our prob-
lem at hand, in which input images may contain both blurry-boundary objects
and noisy background. Besides edge-based approach, Zheng et.al. [24] proposed
an interesting intensity-based image segmentation approach, namely GSDAM.
GSDAM separates an object from a background by considering the connectivity
and directionality of lineal structures of intensity information. It can handle well
with low contrast as well as noisy background. Unfortunately it is particularly
designed for segmenting objects with thin and long shape.

Feature extraction and description are also of important for automated al-
gae classification. Shape descriptors are inevitable primary features for this task,
while size and texture depend on the nature of the problem. For example, the
works of [7, 9, 16, 22, 1] could use size of objects as one of key features because
their input images came from a single source, so size of algae in an image are un-
varying. In contrary to our work where input images come from several sources
with unknown imaging conditions, the size of algae are varying in a wide range,
and thus using size as a key feature merely complicates the problem. Com-
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monly used shape descriptors are such as geometric shape descriptors [7, 9, 16,
22], Fourier descriptors [12], and moment invariant [5, 22]. A major drawback of
moment invariants is that higher-order moments are very sensitive to noise. Tex-
ture is also one of the most important characteristics used for identifying algae.
Most commonly used texture descriptors in this area of problems are Haralick
[5, 8] and local binary pattern (LBP) [5, 22]. Because of the way LBP captures
texture information (i.e. considering difference of pixel intensity, while neglect-
ing magnitude of intensity), its major drawback is a limitation of capturing the
texture information.

For a classification task the most commonly used classifiers are support vector
machine [5, 7, 12, 22] and an artificial neural network [5, 8, 9, 16]. For more review
about microorganism classification we refer to an interesting work of Li et.al. [7].
They provide a comprehensive review of 240 related works on the applications
of content-based microscopic image analysis in microorganism classification do-
mains.

3 A New Segmentation Algorithm
In our previous work [12] we proposed two segmentation algorithms, namely the
single-resolution edge detection and the multi-resolution edge detection. The
single-resolution edge detection was purposely designed for segmenting microal-
gae of coccoid form, while the multi-resolution edge detection was purposely
designed for segmenting microalgae of filamentous and tube-like forms. The ra-
tionale behind our idea of treating the two groups of algae differently is that
algae of coccoid form require a small degree of image smoothing in an edge de-
tection process in order to preserve their spines or flagella, while filamentous
and tube-like algae require high degree of image smoothing so that an edge de-
tector can extract an algae body whose boundary lies as close as possible to
the true algae edges. In this work we still adhere to this idea and attempt to
extract an algae body whose boundary fits with the true boundary of algae as
much as possible. Since the multi-resolution edge detection already performs well
with filamentous algae with smoothed boundary and has strong ability to deal
with a noisy background, our plan is to combine a segmentation result of the
multi-resolution edge detection with one of a new proposed algorithm. The new
segmentation algorithm now combines the previous abilities with one that can
handle a wide variety of morphology of filamentous forms. The new algorithm
is called a generalized multi-resolution segmentation algorithm, since it can deal
with a wide range of filamentous forms. The new algorithm is composed of four
main steps. The details of each step are described as follow.

Step 1: Preprocessing

A preprocessing is a process of preparing an input image to have suitable proper-
ties for successive processes, e.g. image segmentation and feature extraction. The
preprocessing that performs in this work is similar to one described in the previ-
ous work [12]. Only a process of converting an RGB input image into a grayscale
image is reconsidered. In this work we found that edges of algae in a blue channel
of input RGB image appear more distinguishable from a background than those
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in a grayscale image obtained by a color-to-gray transformation. Thus, in this
work we propose to use a blue channel of input image as a grayscale version of
input image, instead of a grayscale image obtained by a color-to-gray transforma-
tion. And since edges of algae play an important role in a segmentation process,
we perform edge enhancement on a grayscale image using the Contrast-Limited
Adaptive Histogram Equalization (CLAHE) [11] to improve its acutance.

Step 2: Foreground/background segmentation

The objective of this step is to extract algae body from an image background in
a way that the contours of algae bodies lie as close as possible to the true edges
of algae bodies. To achieve this we hence decide to perform following.

1. We use a thresholding method instead of edge detection. The adaptive
thresholding method is applied to a grayscale image, transforming the grayscale
image into a binary image, where regions of algae bodies are assigned as a
foreground (pixels with value 1), leaving background regions to remain as
a background (pixels with value 0). After thresholding, a few number of
postprocessing tasks are required to improve a quality of this intermediate
segmentation result.

2. Small noisy objects are removed using morphological opening operator (we
note here that the result of this stage will be used again in Step 3).

3. We then can see that thresholding method has classified some parts of the
algae body as background pixels, causing small holes in foreground regions.
Small holes are filled (turning background pixels from 0 to 1) by performing
morphological closing operator [18] with a small-size structuring element
(SE). Using a small-size SE in this step is preferable to a large-size SE because
we want to prevent unwanted objects from being connected to regions of
algae bodies.

4. The multi-resolution edge detection proposed in our previous work plays
an important role in this task. We utilize its ability to cope with noisy
background. Unwanted objects are removed from the segmentation result
by intersecting them with the segmentation result produced by the multi-
resolution edge detection. As a result, segmentation results with pleasantly
clean background is obtained.

5. Finally, large holes within foreground regions must be filled. Note that these
large holes do not commonly occur. Only algae with transparent gaps in their
body, e.g. Oscillatoria and Spirogyra, can produce these holes. In order to
fill large holes, the result from multi-resolution edge detection is required.
Firstly, we would like to note that the multi-resolution edge detection is
an edge-based image segmentation approach, while the new algorithm is a
region-based image segmentation approach. Edge-based segmentation seg-
ments an image by considering a discontinuity of image pixels to identify
edges (or boundary) of objects, while region-based segmentation considers a
similarity of image pixels and groups them together into regions (or objects).
Hence, the results of these two approaches are complement to each other in
a way that one’s imperfect result may be completed by a result of another
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Fig. 4: The whole process of Step 2. Both horizontal and vertical-line SE of size
3 pixels are used in morphological operators.

[10]. In our situation an advantage of the new segmentation algorithm is the
ability to produce segmentation results in which boundary of algae body lie
very closely to the true algae boundary. However, this ability comes with an
unavoidable drawback; it often yields an indented region of algae body when
segmenting algae with transparent gaps in their body. On the other hand,
an advantage of our old segmentation algorithm is that it often yields a full
regions of algae body, but boundary of extracted algae body lies a bit farther
away from the true algae edges. We thus utilize the advantages of both algo-
rithms to complement their drawbacks by combining the two results together
by means of morphological reconstruction, i.e. reconstruction by erosion. Re-
construction by erosion involves two images, i.e. a marker image used as a
starting condition of transformation and a mask images used to constrain
the transformation. So we use a segmentation result of the old algorithm as
a marker image and a result of the new algorithm as a mask image. Then a
process of reconstruction by erosion begins by iteratively eroding away the
boundaries of foreground regions (algae bodies) in a marker image until they
fit a foreground of a mask image or reach a predefined number of iterations.
We finally obtain a final segmentation result in which a full region of algae
body is obtained and the boundary of algae body lies very closely to the true
boundary of algae.

The whole process in this step is shown in Fig. 4.

Step 3: Background removing (for a ring-like form)

In this final step only images of filamentous algae whose bodies curl in a circle (a
ring-liked shape) are involved. In this stage we can see that a background region
inside a ring shape (called area A for short) is incorrectly assigned as part of
algae body. We thus have to remove this area to form a correct ring shape.
This process begins with extracting an area A and then removing it from a final
segmentation result obtained from the previous step. Area A can be extracted
by performing an image subtraction of the final segmentation result and the
intermediate result obtained from Step 2. A subtraction result (area A) is shown
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Fig. 5: The whole process of Step 3. 2-pixels disk SE are used .

in Fig. 5. We then enhance its quality by performing a hole filling operation
before subtracting it from the final segmentation result, in order to achieve a
new correct one (i.e. a ring-shape algae).

Since only images of ring-shape filamentous algae are involved in this step,
we have to discriminate algae of ring-liked forms from the others. We simply
accomplish this by using a global shape measure called Eccentricity (e.g. the
ratio of the length of major axis to the length of minor axis of the shape).
A value of eccentricity is 0 if a shape is a circle; and the value of 1 indicates
a shape of a line segment. Eccentricity is computed on the final segmentation
result obtained from Step 2.

4 A New Skeleton-based Shape Descriptor

In general, the accuracy of classification and recognition system depends heav-
ily on the quality of relevant object features (or descriptors) used in a learning
process. Conventionally, characteristics of algae, such as size, shape, colors, and
texture, are routinely used for taxonomical recognition. However, size and color
features do not seem very useful for our problem at hand. In our task micro-
scopic images received from users are produced from several imaging systems
with different settings. Consequently, sizes of algae (even in the same genus)
are varied in a wide range depending on a magnifying power used in an image
acquisition process. Similar situation also happens with the colors of algae in
microscopic image. Colors of algae not only typically vary in nature depending
on their growing environment, but also vary significantly according to illumina-
tion adjustment during imaging process. Hence, in this work shape and texture
characteristics are the key features used in a learning process.

Global shape measures, such as geometric features (e.g. compactness, rectan-
gularity, etc.) are a convenient way to describe shapes and are simple to compute
[23]. Unfortunately, these features are unable to capture a small difference along
a boundary of two different shapes, e.g. shapes with crenate boundary with tiny
notches and shapes with wavy boundary with tiny curls. A more sophisticated
shape descriptor such as Fourier Shape Descriptors also requires high computa-
tional time because a high number of Fourier coefficients must be used, in order
to be able to distinguish small differences along the boundary of two different
shapes.
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In this paper we propose a new shape descriptor that utilizes the weakness of
skeleton. The rationale behind our idea is that skeleton is intrinsically sensitive
to small changes in a shape’s boundary. A small change in the shape’s boundary
can cause a large change in the skeleton [4, 19]. We hence utilize the sensitiv-
ity of skeleton to capture small differences along the boundary of two different
shapes. A new skeleton-based shape descriptor is computed on a binary image
obtained from a segmentation process. The boundary of algae body in a binary
image needs to be smoothed (e.g. by morphological opening operator) before we
compute a skeleton, in order to avoid excessive amount of unwanted spurs in
the resulting skeleton. Unavoidable spurs will be suppressed afterwards by using
morphological erosion. Then, three quantities of skeleton-based shape descriptor
that measure a wavy degree of the skeleton can be computed as following.

1. Waviness. Waviness is a ratio between the length of skeleton and the length
of skeleton displacement. A value of waviness is equal to 1 if the skeleton is
a straight line, and closer to 0 when the skeleton is highly wavy.

2. Number of Peaks. Skeletons of algae with spirally coiled shape will look like
sinusoidal wave. Peaks are sinusoidal peaks or location of local maxima of
the curve. We count them as peaks if the height of them are higher than a
predefined threshold (e.g. 3 pixels).

3. Average Height of Peaks. Average height of peaks is a ratio between the total
height of all peaks and the number of peaks.

5 Experiments

5.1 Algae Image Dataset

Microscopic algae images of five genera, namely Anabaena, Oscillatoria, Spir-
ogyra, Spirulina, and Anabaenopsis, used in the experiments are collected from
various sources. The main sources are the study area of Bung Borapet fresh
water source, Nakhon Sawan province [20] and the study area of Khlong Kam-
phuan watershed, Ranong province [17] in the research projects conducted by
Department of Botany, Kasetsart University, Thailand. Other sources include
MetropolitanWaterworks Authority and online algae image database from the
internet. The data set comprises of 300 images, 60 images per genus.

5.2 Automated Algae Image Classification Framework

An automated algae image classification proposed in the previous work [12] is
based on a supervised learning approach that takes an algae image as input
and classifies it into one of multiple genera. The classification system composes
of three main components, namely image segmentation, feature extraction, and
classifier (prediction model) training process. The system works as follows. Af-
ter separating an algae body from an image background using a segmentation
algorithm, multiple features (or descriptors) are computed from the algae body.
Multiple features are then formed into a feature vector (one feature vector repre-
sents one input image). Finally, a training process takes a set of feature vectors
as an input. For supervised learning a training process needs additional input,
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i.e. a list of labels (names of genus) associated with each input image. A classifier
will then be trained based on these sets of inputs. Once the classifier is trained
it can be used to predict a genus of an unknown algae image in the future. De-
tails of image features and a classifier used in a learning process will be next
described.

5.3 Image Features

As we discussed earlier, only shape and texture features will be used in the learn-
ing process. It is interesting to note that both shape and texture features play
an important role in this task. Shape features will play a key role when texture
features are unavailable, for example, when a size of algae in an input image is
very small or when an input image with out-of-focused algae is obtained. On the
other hand, texture features will play a key role when shape features are ineffec-
tive, for example, when we have to discriminate two algae of the same shape (e.g.
Oscillatoria and Spirogyra). Hence a suggested approach is to combines shape
features with texture features to form more powerful discriminating features
used for training a prediction model. Shape descriptors used in this work are
three geometric shape features plus three quantities of our new skeleton-based
shape features. The three geometric shape features [23] are Solidity, Eccentric-
ity, and Convexity (For more details of these descriptors we refer the reader to
the original work). Similar to our previous work [12], texture descriptors used
in this work are the thirteen texture descriptors proposed by [6]. The thirteen
descriptors are derived from a gray level co-occurrence matrix (GLCM). This
matrix characterizes texture of an object (or image) by calculating the frequen-
cies of pixel pairs with specific values and in a specified spatial relationship
occurred in an image. Based on our preliminary experiments, it suggests that
the most effective number of gray-levels used for computing GLCM is 256 and
a direction of calculation is set to 0◦. The thirteen descriptors include Angular
Second, Contrast, Correlation, Sum of Squares, Inverse Difference Moment, Sum
Average, Sum Variance, Sum Entropy, Entropy, Difference Variance, Difference
Entropy, and Information Measure of Correlation 1, 2. Hence, the total number
of features we used in a training process are 19 features.

5.4 Classifiers

As suggested from our previous work [12], we use the Sequential Minimal Op-
timization (SMO) algorithm for training a support vector classifier using scaled
polynomial kernels in a classification process since it has been successfully ap-
plied in many application domains such as medical image analysis, handwritten
character recognition, and speech recognition. We set a value of complexity pa-
rameter of SMO to 4. Due to a limited data sample, the k -fold cross-validation
method is applied in an evaluation process. In all experiments the value of k is
set to 4. So, our image dataset is randomly partitioned into 4 subsets of equal
size (i.e., 15 images per subset). Of the 4 subsets, a single subset is retained as
the test data used for testing the trained classifier, and the remaining 3 subsets
are used as training data. The training process repeatedly runs 4 times, each
time with different subset of data. The 4 classification results will be averaged
to produce a single classification accuracy.
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5.5 Classification Results

In this section the three experiments with three different experimental settings
are reported. The first experiment is a baseline for evaluating an improvement of
the new proposed approaches. The old version of algae image classification [12]
is applied with new algae dataset (using the old segmentation algorithm and the
old set of shape features), and we let its result be the baseline’s performance. The
second experiment is conducted by employing the new segmentation algorithm;
however, only 16 features are used in a training process. The three features of the
new skeleton-based shape descriptor are omitted. Finally, the third experiment is
conducted using the new segmentation algorithm and all 19 features (including
the three new features). The experimental results of the three experiments are
shown in Table 1, 2, and 3 respectively.

The average classification accuracy of our old approach is 84.00% (Table 1).
It can be seen that algae of the first four classes are highly misclassified over each
other’s classes. The main cause of these mistakes is a consequence of inaccurate
image segmentation. When examining the segmentation results of Anabaena, we
found that crenate boundaries of algae’s shape barely appeared. Consequently,
shape of Anabaena becomes more similar to those of Oscillatoria and Spirogyra.
Similarly, shape of Spirulina with tiny curls looks more like shape of Anabaena
than those of the self-genus. These ambiguities cause a classification task to be
more complicated.

Experimental results of the second experiment are shown in Table 2. The av-
erage classification accuracy is 86.30%. Even though the average accuracy does
not significantly improve from the baseline performance, the ambiguity among
the three classes, i.e. Anabaena, Oscillatoria, and Spirogyra, significantly de-
creases. A group of algae with straight boundary (Oscillatoria and Spirogyra)
is much better discriminated from a group of algae with wavy boundaries (An-
abaena and Spirulina). Only within a group of algae with wavy boundaries (An-
abaena, Spirulina, and Anabaenopsis) are confusedly classified to other genera.
This classification result explicitly demonstrates the advantage of using efficient
segmentation algorithm - unsophisticated case of ambiguity can simply be alle-
viated.

The third experiment demonstrates that a more sophisticated case of ambi-
guity (i.e. an ambiguity among a group of shapes with wavy boundaries.) can be
alleviated by means of involving a discriminative shape descriptor in the learning
process. Experimental results of the third experiment are shown in Table 3. The
average classification accuracy is significantly improved to 91.30%. This result
strongly demonstrates the effectiveness of the proposed skeleton-based shape
descriptor.

5.6 Discussion

In the third experiment, fewer algae in each class are misclassified into incorrect
genus. After examining the segmentation results of these samples, we found
nothing wrong with the results (example of them are shown in Fig.6). We thus
presume that because a number of images in our dataset is quite limited, hence
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Genus Anabaena Oscillatoria Spirogyra Spirulina Anabaenopsis Accuracy

Anabaena 53 3 4 0 0 88.30%
Oscillatoria 10 42 6 2 0 70.00%
Spirogyra 5 7 48 0 0 80.00%
Spirulina 8 0 0 50 2 83.30%
Anabaenopsis 0 0 0 1 59 98.30%

Average Accuracy 84.00%

Table 1: A confusion matrix of the old version of algae image classification [12].

Genus Anabaena Oscillatoria Spirogyra Spirulina Anabaenopsis Accuracy

Anabaena 48 4 2 6 0 80.00%
Oscillatoria 5 53 2 0 0 88.30%
Spirogyra 4 4 52 0 0 86.70%
Spirulina 8 0 0 50 2 83.30%
Anabaenopsis 0 1 0 3 56 93.30%

Average Accuracy 86.30%

Table 2: A confusion matrix of the new approach with 16 features (without the
new shape descriptor).

Genus Anabaena Oscillatoria Spirogyra Spirulina Anabaenopsis Accuracy

Anabaena 52 3 1 4 0 86.70%
Oscillatoria 4 54 2 0 0 90.00%
Spirogyra 3 2 54 1 0 90.00%
Spirulina 4 0 0 54 2 90.00%
Anabaenopsis 0 0 0 0 60 100.00%

Average Accuracy 91.30%

Table 3: A confusion matrix of the new approach with the new shape descriptor.

the training data are not a good representative of algae in a particular genus. On
the other hand, texture descriptors, considering as a statistical approach, used
in a learning process are probably not sufficient to capture a high variation of
texture features of algae in each genus. In addition, shape descriptors may not
be effective enough to capture very small detail of object boundary. Finally, it
is interesting to note that our input images are collected from various sources.
Hence size, colors, and illumination of algae in these input images are varied
in a wide range. Nevertheless, our new segmentation algorithm is capable of
segmenting them successfully in most case, which indicates the effectiveness of
the proposed algorithm.

6 Conclusion

This paper presented a new image segmentation algorithm called a generalized
multi-resolution that provides several advantages. Firstly, it can produce seg-
mentation results in which boundary of algae fits well with the true boundary
of algae. Consequently, important morphological features of algae, even in cases
of very small algae or very small detail of algae boundary, are preserved. This
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Fig. 6: Example segmentation results of incorrect classification.

allows a shape description method to compute high accurate shape descriptors,
resulting in high classification accuracy. Secondly, the proposed segmentation
algorithm can efficiently handle multiple morphologies of filamentous forms of
algae. Lastly, the proposed segmentation algorithm is simple to compute and
requires low computational time. So it can be used in a real-time environment
effectively. In addition, we also proposed a new skeleton-based shape descriptor
that effectively alleviates an ambiguity of multiple morphologies of filamentous
forms of algae in a classification process. The proposed shape descriptor is also
simple to compute; thus, it can also be applied in a real-time system.

It’s also worth noting that biological images are often far more difficult to
be processed and recognized than images of daily-life [3]. Image features and
object descriptors are of important, especially in the domain where availability
of image data is limited. Learning for selecting relevant image features to achieve
a good recognition accuracy is still vital [15]. Even a deep learning on limited
data still requires a special treatment to improve the accuracy of detection.
Image augmentation, however, may help increase the amount of relevant data
for deep learning, but in our case augmenting data couldn’t be beneficial since
algae exhibit diverse morphology.
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