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Abstract. The Internet of Things (IoT) is a novel paradigm based on the 
connectivity among different entities or "things". IoT environment in the form 
of interconnected smart "things" represents a great potential in terms of 
effective and efficient solutions related to urban context (e.g., system 
architecture, design and development, human involvement, data management 
and applications). On the other hand, with the introduction of the IoT 
environment, devices and network security have become a fundamental and 
challenging issue. Moreover, growing number of users connected via IoT 
system necessitates focusing on the vulnerability of complex networks and 
defence challenges at the topological level. This paper addresses these 
challenges from the perspective of graph theory. In this work, the authors 
introduce a novel AV11 algorithm to identify the most critical and influential 
IoT nodes in a Social IoT (SIoT) network in a smart city context using ENEA 
Portici CRESCO infrastructure. 

Keywords: IoT, Malware, Complex Networks, Graph Theory, Infrastructure, 
Smart City, Social Internet of Things (SIoT) network, Risks, Big Data. 

1   Introduction 

In a smart city context, the introduction of the Internet of Things (IoT) paradigm has 
become a fundamental concept: devices become pervasive and blend with human 
beings. It is the state wherein there is no distinguishable difference between the 
operation of devices surrounding us and our actions. Consequently, devices play an 
interactive role in the IoT systems and enhance the human experience. There is a 
seamless integration between us and the things around us. Various devices 
communicate intelligently with one another with minimal human intervention. Thus, 
devices of the IoT system are interconnected; they communicate with one another, 
transfer and retrieve data, intelligently respond to requests and trigger actions [1].  
Hence, the introduction of the IoT in smart cities context involves the consideration of 
a vast number of aspects. These include system architecture, design and development, 
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use of embedded devices, communication technology, human involvement, data 
management and applications, security and privacy concerns. According to the reports 
by Cisco [2], Gartner [4] and Ericsson [3], 50 billion of heterogeneous devices will be 
connected to the Internet by 2020. These devices are getting increasingly smarter, 
connected to the global networks and among themselves, giving value to the IoT 
paradigm that is generating an unprecedented volume and variety of data. In [2] and 
[5], authors have estimated that the data caused by physical objects would reach 507.5 
Zettabytes (ZB) per year (42.3 ZB per month) by 2019, which is 269 times more than 
the amount of data transmitted to Data Centers (DCs) from end-user devices and 49 
times higher than total DCs traffic [13]. This brings up crucial discussion regarding 
all the data generated, stored or transmitted by IoT devices as well as its security and 
how this relates to the privacy of the users. Every approach of IoT system must have a 
secure network and provide a necessary level of control and privacy to the users. To 
accomplish these goals and then the success of the IoT systems' implementation, a 
baseline to build secure IoT network is one of the central aspects achievable with IoT 
graph topology. 
Motivated by such challenges and inspired by graph theory, we aim to identify the 
most critical and influential IoT nodes in a Social IoT (SIoT) network [6] to address 
the way towards building a secure IoT environment for smart city context. This paper 
discusses security issues at the baseline level of IoT system and proposes topology of 
a graph, to target security challenges and vulnerabilities of different IoT systems. In 
detail, in this work the authors utilize a revised version of the AV11 algorithm [15] in 
a real SIoT network [21] to identify crucial infected nodes in the graph that 
corresponds to a set of key IoT systems (e.g., smartphone, laptop, computer, tablet, 
home sensors, etc). The procedure allows extracting information from the graph 
topology regarding the best 𝑘 nodes (namely the "budget") to immunise or remove; 
thus, the remaining network is more robust to attacks. In IoT networks, the concept of 
attack handling can be translated to the identification of the IoT nodes that become 
"infected" in a specific configuration and hence, to defend the graph discovering these 
infected nodes become a crucial issue. Besides the defence concerns, the procedure 
also allows controlling virality of the network, identifying the most influential nodes 
(the influencers). 
In summary, this work aims to investigate the network risk security based on the rapid 
deployment of IoT systems around the digital world. For IoT network, risk 
assessment is complex due to its vast deployment and diversity in terms of devices.  
Thus, traditional risk assessment frameworks do not adequately address the risk 
related to the topology of the network and then the risk assessment of IoT to be 
completed needs also to include a risk framework at a graph level. 
The following objectives will support this aim: 

a) Apply the algorithm AV11 for real IoT network [21] and provide the 
assessment risk framework; 

b) Analyse topology structure of the network in terms of infective IoT nodes; 
c) Perform data analysis to calculate statistics associated with the infective IoT 

nodes and hence, the graph topology in terms of devices; 
d) Evaluate stability of the IoT graph with IoT devices configuration; 
e) Assess the risk based on (a-d) in a real IoT network in a smart city context; 
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f) Versus risk assessment and mitigation of IoT dynamic network and future 
association of energy consumption of IoT device in the configuration network. 
 

The paper is organized as follows: Section I – Introduction; Section II – Background: 
Related Works and AV11 Algorithm presentation; Section III – Methodology; 
Section IV – Assessment of an IoT graph; Section V – Conclusions and Future 
Works. 

2 Background: Related Work & AV11 Algorithm  

In recent years, significant research efforts and technological developments have 
been devoted to IoT paradigm [8] targeting energy efficiency of IoT systems. Indeed, 
these “things” enable new computing applications and represent the base of the vision 
of a global infrastructure composed of complex networked physical objects. 
According to [7], IoT systems represent the principal source of big data and, 
consequently, are the drivers of the plethora of applications, e.g. in smart cities [14]. 
Due to the inherently diverse nature of IoT paradigm, it attracts lots of risks in various 
forms. Therefore, understanding the processes and mechanisms involved in the 
evolution of complex networks for the IoT is a significant challenge.  

Undeniably, in the IoT paradigm in smart cities context, mathematics plays an 
essential role in understanding complex networks. To address the networks with 
mathematical models, one is naturally led to dynamical systems, in which the graph 
describing the network is also a dynamical variable. The graph’s dynamics is coupled 
with that of other variables not explicitly considered in the model. Analysis of such 
dynamics requires development of some new tools inspired by the graph theory [16, 
17, 18]. Historically, the study of networks has been mainly a branch of discrete 
mathematics known as graph theory [9] that proves useful in understanding complex 
networks. The network structure is irregular, complex and dynamically evolving in 
time, with the main focus moving from the analysis of small networks to that of 
systems with thousands or millions of nodes, and with renewed attention to the 
properties of networks with dynamical units. 

The complexity of the network structure poses significant challenges of capturing 
risks associated with the topological structure of the graph and risk assessment. In 
[10, 11, 12] a summary of the current literature related to fundament, kernel, methods, 
environment for IoT and associated risks is provided. Even if many efforts are 
addressed to IoT paradigm architecture, no investigation into the security aspects 
associated with the IoT graph in terms of complex network topology is present. 
Nowadays, IoT is missing security and in particular at the topologic level; for this 
reason, the security has emerged as a significant challenge for the IoT. Therefore, in 
this paper, the authors investigate topological and functional structures of an IoT 
network - where IoT system is represented by the nodes - to analyse the system and 
the specific infection nodes and malicious propagation attack. This study is based on 
the application of the algorithm AV11 [15, 22, 23] which intends to immunise or 
remove chosen nodes and make the rest of the network more robust and resilient to 
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attacks. With this analysis, we are also able to figure out intelligent and robust 
characters of IoT.  

The application of our AV11 algorithm at the topological structure level of the 
graph is the baseline for the dynamic network analysis. In the paper, the authors also 
explore those intrinsic structures that are independent of data and methodology. The 
AV11 algorithm is a topological vulnerability tool, meaning that the vulnerability is 
taken into consideration according to a particular position of a node in a graph 
representing a technological network, such as an IoT network. In straightforward 
cases, such as the star, it is clear that the node in the centre is the most 
important/critical/influential one, but usually, for more complex topologies, the 
problem is not that trivial. The spreading of dangerous malware (malicious software) 
in networks of electronics devices has raised deep grave concern because infections 
may propagate from the ICT networks to other Critical Infrastructures producing a 
well-known domino effect. There are two diffusion strategies: targeted intrusion and 
cooperative search. The first strategy foresees a direct conventional approach to the 
actual target, while the second one demands a distributed control system, a 
sophisticated communication scheme and a consensus-like decision-making process. 
As a side effect of the cooperative search, the malware will spread in the network like 
a disease (the “epidemic” spreading). Actually, any worm follows the epidemic 
spreading, but a standard worm will attempt to invade the maximum number of 
machines as quickly as possible. In contrast, a sophisticated malware adopting a 
cooperative search strategy or even a simpler network aware approach will infect 
(relatively) few machines during an extended period. In any case, both seem to 
propagate following the epidemic spreading model, at least during the initial phase of 
the attack. Understanding this model may help to counteract the spreading at its very 
beginning when the cost of defence is more affordable. Researchers are attempting to 
develop a high-level analysis of malware propagation, discarding software details, to 
generalise to the maximum extent the defensive strategies. Since the maximum 
eigenvalue of the adjacency matrix of the network acts as a threshold for the 
malware’s spreading [15], spectral analysis of the graph’s adjacency matrix has a 
relevant role. 

In this section, a brief description of the AV11 algorithm development by the 
authors is presented; the application of the algorithm to a specific IoT network will be 
shown in the next paragraph.  
 

2.1 Description of AV11 Algorithm 
 
The problem to be faced is: find 𝑘 best nodes (the “budget”) of an IoT network to 
immunise/remove them with the intention to make the whole network more resilient 
to malware attacks. Malware is malicious software designed to damage an ICT 
(Information and Communications Technology) network, often called viruses. Today 
viruses are net-aware in the sense that they can exploit vulnerabilities of the network, 
carefully selecting the critical nodes. Something similar could describe the spreading 
of faults, a well-known domino effect or cascade failure. 
A defensive strategy should protect the most critical or influential nodes. Since, 
unfortunately, available resources are limited, to safeguard at most only 𝑘 nodes of 
the network we should select them to maximise the probability to stop or reduce the 
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spread of the malware or the fault in the network. This is what we mean by “find the 
best 𝑘 nodes”.  This task is not trivial since it is not clear what nodes are the most 
important in a network, because the interdependencies among them are often counter-
intuitive. Thus, to identify these 𝑘 nodes many algorithms have been used in the past 
years: degree, closeness, betweenness, Estrada indices, most infected, 𝑘-core, 
dynamical importance, and other [15, 19, 22, 23]. Standard topological centrality 
indicators such as degree, closeness, clustering, etc., are relevant quantities for 
assessing useful information. These parameters can also be employed to provide the 
first, non-trivial understanding of the network's dependencies, but are insufficient to 
unveil more subtle relations among the nodes, and as a matter of fact, spectral 
methods usually perform better. Even worse is the performance of the “most infected” 
strategy. According to this procedure, influential nodes that provide significant 
support to the epidemic spreading are the nodes that get infected more frequently 
during simulations. Our experiments demonstrate the weak points of this strategy. In 
the complex environment of the IoT, relying on such an approach could be extremely 
dangerous. 

In this paper, we propose to solve the issue related to finding the best k nodes with 
our AV11 algorithm, which follows a combinatorial spectral paradigm [19] and has 
proved to be the most effective [15]. We use standard notation and terminology of 
graph theory and refer to the network as a graph, the node as a vertex and the link as 
an edge hereafter. Let 𝐺 be the graph for it. It is well known that the largest 
eigenvalue 𝜆$ of a graph is related to a threshold for the epidemic propagation of a 
fault or a malware in the network [22]. If the ratio probability of infection, i.e. 
probability to cure is under this threshold, the spreading does not take place and vice 
versa [22]. Here, to “cure” means to provide an antivirus or some other kind of 
protection to the node/device. In practice, AV11 removes a set of 𝑘 nodes and finds a 
sub-optimal decrease of the largest eigenvalue of the graph 𝐺 as indicated in the 
pseudocode below. A brute-force strategy would be impossible to use even for small 
graphs, because of the vast number of combinations given that the problem is NP-
complete [22]. Nevertheless, our suboptimal algorithm AV11 reduces the algorithmic 
complexity to	𝑂(𝑘 ∙ 𝑛* ∙ log 𝑛). However, it should be noted that even such a 
complexity is by far too cumbersome for a PC. Therefore, we have used the ENEA’ 
infrastructure (CRESCO) to determine the most critical nodes from the adjacency 
matrix representing an IoT network [21]. Out of 16216 devices (nodes), 3300 were 
identified as the most critical ones. These 3300 nodes are those to be immunized 
somehow, since they guarantee to provide the maximum protection. It has to be 
considered that immunizing a node involves a non-negligible cost and that the 
available resources are scarce. In our case-study, the number of 3300 was chosen 
large enough to test the CRESCO potential, but actually, to determine the number of 
nodes to be immunized it would be necessary to run some Monte Carlo simulations to 
know the minimum number of nodes able to stop the spreading of the malware. 
Therefore 3300 it is crucial to refer only to verify the CRESCO calculation 
capabilities. 
 
The AV11 pseudocode (see [15] for more details) is: 
 
Input: the adjacency matrix 𝐴	and an integer 0 < 𝑘 < 𝑛 
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Output: a set 𝑆 with 𝑘 nodes 
Algorithm: 
1. Calculate eigenvalues of the adjacency matrix 𝐴; let 𝜆$ be the largest eigenvalue; 
2. Initialize: 𝑆 to empty; 𝑍	 = 	 𝐼6;  𝐷	 = 	 81 − min

>∈[$,6]
ℝe(𝜆>)D 𝐼6; 𝑛𝑜𝑑𝑒 = 0;   

3. for 𝑖 = 0 to 𝑘 do 
4.    𝑃	 =	 	(𝑍 ∗ 𝐴 ∗ 𝑍 + 𝐷)L; 
5.    𝑛𝑜𝑑𝑒	 = 𝑖𝑛𝑑𝑒𝑥	𝑜𝑓	max Odiag (𝑃)P	; 
6.    Add 𝑛𝑜𝑑𝑒 to 𝑆; 
7.    Set 𝑍	[𝑛𝑜𝑑𝑒, 𝑛𝑜𝑑𝑒] 	= 	0; 
8.  end for; 
9.  return 𝑆. 
 

Where, 𝐼6 is the identity matrix of order 𝑛 and 0 < 𝑝 ≤ 𝑛 is a parameter based on 
the longest cycle of the graph. 

3   Methodology 

This work focuses on IoT network graph assessment through a topology structure 
analysis using the AV11 algorithm [15, 22], particularly, on the evaluation of infected 
IoT-nodes [21]. To address this challenge, in this paper, we analyse real data of the 
IoT network consisted of 16216 IoT devices (nodes) provided by the authors in [21]. 
In detail, real IoT devices are available in the city of Santander and categorized in [6, 
21] with respect to typologies and data model for objects introduced in the FIWARE 
data models [24]. As we have already mentioned, an experimental campaign which 
consists of the application of the AV11 algorithm to this real network is conducted by 
the ENEA infrastructure, on the Cluster named CRESCO4 (hosted by ENEA R.C. 
Portici). The principal goal is to calculate critical nodes of IoT devices and explore 
their characteristics. In this work, improvements have been made to previous studies 
conducted on the IoT environment concerning the topology and graph control. In 
particular, the authors provide an assessment of dynamical properties of the network 
through spectral eigenvalue analysis and also more in-depth knowledge of the IoT 
devices. Results are also expressed in terms of statistical data that could be 
generalized and applied in a real smart city context. 
Briefly, the cluster CRESCO4 consists of 38 Supermicro F617R3-FT chassis, each 
hosting 8 dual CPU nodes. Each CPU, specifically an Intel E5-2670, hosts in its turn 
8 cores, for a total number of 4864 cores. These CPUs operate at a clock frequency of 
2.6 GHz. Moreover, the system is provided with a RAM memory of 4 GB per core. 
Computing nodes access a DDN storage system, for a total storage amount of 1 Pbyte. 
The connection between computing nodes is realized via an Infiniband 4xQDR 
QLogic/Intel12800-180 switch (432 ports, 40Gbps). 
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3.1 IoT graph in the smart city  
 
As aforementioned, the authors consider as IoT network the case-study provided 

by the Santander testbed [21] of real IoT objects.  
The Santander testbed considered in this current work as IoT network is composed 

of several thousand devices that comply with IEEE 802.15.4 standard (10-meter 
communications range with a transfer rate of 250 kbit/s), 200 GPRS modules and 
2000 joint RFID, positioned at static locations (e.g., streetlights, bus stops) or mobile 
location such as on-board of vehicles (e.g., buses, taxis), in order to provide 
environmental monitoring, outdoor parking area management, mobile environmental 
monitoring, traffic intensity monitoring, guidance to free parking lots, parks and 
gardens irrigation, and participatory sensing. The general idea is to develop an 
architecture to support the smart city concept.  

Briefly, we present characteristics of Santander IoT network used in this 
manuscript to apply the AV11 algorithm. The IoT objects are categorized with 
typologies and data model for objectives introduced by FIWARE Data Model and 
comprehend a total of 16216 devices, of which 14600 from private users and 1616 
from public services. The following form has been used to describe network objects: 
id_device, id_user (owner id of device), device_type (category associated with a 
device in the form of code to differentiate between public and private devices from 1 
to 16), device_brand (each device is assigned with a number from 1 to 12 encoding a 
brand), device model (it is associated with each device, a number from 1 to 24). The 
device_type code is provided to every object by the global Web Index 2017 [27] that 
identifies both the status (static: home sensors, PC, etc., or mobile: smartphone, car, 
etc.) and the type of device being private or public (Table 1). 

Besides, the adjacency matrix is compiled by notions of Social Internet of Things 
(SIoT): social relationships between the nodes are established by a disjunction (OR) 
of five elementary relationships [6]. Mobile devices are carried with the users during 
their movements, while static objects are left in the users’ home.  

To simulate the user’s movements, authors in [6] rely on a mobility model called 
Small World in Motion (SWIM). In this way, the authors of [6] obtained the estimate 
of the relationships between the devices on a given day, producing the 16216 × 16216 
adjacency matrix of the Santander case study. In Figure 1 a Gephi [26] visualization 
of this network is showed. These datasets are freely downloadable from [21]; they are 
among very few ones available for IoT offering a valuable estimation of real-life 
phenomena.  

Table 1 summarizes a legend of groups of devices: a code number identifies each 
group, also classified as public or private and static or mobile. 
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Table 1. The first column is the code number defined by the device type and mobility 
characteristic provided in the second and third columns respectively. 

Device Type IoT-Device Kind 
1 Smartphone Mobile 
2 Car Mobile 
3 Tablet Mobile 
4 Smart Fitness Mobile 
5 Smartwatch Mobile 
6 PC Static 
7 Printer Static 
8 Home Sensors Static 
9 Point of Interest (specific point  

location that a user may find useful or  
interesting) 

Static 

10 Environment Weather Static 
11 Transportation (Vehicles, taxis or  

buses) 
Mobile 

12 Indicator (Digital signage to display  
information) 

Static 

13 Garbage Truck Mobile 
14 Street Light Static 
15 Parking (Location designed for  

parking) 
Static 

16 Alarms (Security supervisor or traffic  
monitoring) 

Static 
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Figure 1. Gephi visualization of the graph representing the network of the Santander case study 
with all 16216 nodes. 

 
 
 

4   Assessment of an IoT graph 

As we have already mentioned, among topological analytical tools, the spectral 
description of networks deserves special attention. By its means, it is possible to infer 
insights on dynamical properties based on “static” parameters. Following Restrepo, 
Ott and Hunt [19] the authors focus on the largest eigenvalue of the graph adjacency 
matrix.  This parameter (under a set of commonly accepted hypotheses) is closely 
related to the epidemic spreading of viruses or failures. The dynamical importance of 
a node (or an edge) [19] is defined as a normalised amount by which the maximum 
eigenvalue of the graph decreases if the node is removed. Therefore, if we remove a 
node, we can infer a measure of its “dynamical dependence” for all the other nodes 
employing the variation of the maximum eigenvector (the eigenvector of the 
maximum eigenvalue). Thus, if we consider a node (link), its dynamical importance 
will define its “importance” for the graph. The purpose of a network defence 
technique is to intervene in certain elements (the “budget”) of the network to limit the 
impact of an attack or the spread of a virus or information. 
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Our algorithm AV11 selects a subset of 𝑘 nodes all at once according to spectral 
combinatorial methods, to immunize or remove them to make the remaining network 
more robust to attacks. In particular, AV11 classifies all the nodes of a graph 
according to a spectral parameter that describes dynamical properties of the graph’s 
nodes in terms of the node influence on the network. A selected subset may be 
optimal or suboptimal, as a result of the brute-force method, and is not unique. 
In [15] it is shown that the AV11 algorithm performs better than other selection 
techniques such as 𝑘-core in different topological scenarios. Note that although it 
might seem counterintuitive, the degree of centrality is not the best choice. In 
contrast, it often gives the wrong results. The same supposedly holds for the most 
important degree-like parameters, like 𝑘-core presented by the articles [15] [23] 
where the percentage of infected nodes is presented after the application of techniques 
to identify the immunizations nodes. Even more critical is the inferior performance of 
the “most infected” strategy. According to this procedure, influential nodes, i.e. those 
nodes that provide significant support to the epidemic spreading or the cascade effect, 
are those that get infected more frequently during simulations. Our experiments 
demonstrate how deceiving this idea is [22] [23]. In the complex environment of the 
IoT, relying on such a strategy could be extremely dangerous. 
 

4.1 Data Analysis: Results & Discussion 
 
In this paper, the authors have used the spectral algorithm AV11 to determine the first 
3300 critical nodes on the IoT network created by the authors in [6] composed in total 
by 16216 nodes. Table 2 presents the first “best” ten nodes of 3300 classified by the 
algorithm to be protected from malware.  

Table 2. The first ten nodes/devices of the IoT graphs from the AV11 analysis; they are all type 
1 device, i.e. smartphones. The AV11 algorithm provides the value that is used to rank the 

importance of the node (third column); thus, these nodes are recognized as the most influential 
and need to be protected in the first place. 

Classification Node Max_Eingevalue 
   
1 247 364.837169 
2 1407 363.841058 
3 1521 362.846303 
4 593 361.856203 
5 728 360.910795 
6 274 359.966537 
7 240 359.021899 
8 3631 358.075309 
9 3322 357.135808 
10 2314 356.211899 
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The algorithm goes like this: choosing a set of 𝑘 nodes (in our case study 𝑘	 = 	3300) 
simultaneously and removing them from the graph 𝐺, we obtain a new graph, and 
therefore we can calculate a new 𝜆$, smaller with respect to the old 𝜆$. Since the 
infection threshold depends on the inverse of 𝜆$ , the lower 𝜆$  the stronger the 
resilience to the infection spreading. Thus, we are interested in choosing 𝑘 nodes that 
will provide the minimum possible 𝜆$. Moreover, AV11 provides an individual 
ranking for each of the 𝑘 selected nodes (Table 2, third column AV11 value).  
Then we analyse the major device groups (see Table 2) in order to provide some 
group statistics (Table 3).  
For each type of group device, parameters taken into consideration are the number of 
devices in the group, the percentage of the total number of devices, mean and 
variance of the eigenvalues per group, eigenvalue sum per group and the percentage 
related to the total sum of the 3300 eigenvalues. 
Therefore, within the subset of the 3300 nodes, the relevance of each device group 
concerning the transmission of any interaction to the whole network is represented by 
the sum per group of the eigenvalues of the group. For example, as shown in Table 3, 
the sum of the 375 eigenvalues of the type 2 devices accounts for 12.50% of the 3300 
eigenvalues sum. Then the type 2 group is placed among the most influential of the 
network. In other words, since any physical action in the real world somehow finds a 
counterpart in the graph spectral analysis, the of contribution of each group type to the 
eigenvalue sum (see Table 3, last column) may be read as the relative relevance in the 
virtual world of the graph produced by real phenomena in the physical world.  
The most relevant effect on the total eigenvalue sum is caused by smartphones, 
accounting for 27% of the total number of devices and 31.50% of the total eigenvalue 
sum. The second massive contribution comes from the PCs (25.70%), the third one 
from cars (12,50%). Smartphones, cars, tablets, printers and PCs represent 86% of the 
total sum of the eigenvalues, therefore are by far the most critical part of the network. 
However, it is immediately evident that some devices, namely 6, 7, 12, 13 (PCs, 
printers, indicators, trucks) even if not the most numerous, have high eigenvalue mean 
values, meaning that their impact on the network is important, despite the total 
number of devices.  
It is particularly interesting to note the importance of indicators and printers since at 
present they are the favourite targets of hackers. Moreover, if we associate a cost to a 
device, it would be possible to produce a cost function describing the trade-off 
between the risk reduction provided by a security measure applied to a specific group 
of devices and the economic cost of the measure itself. Not surprisingly in this sense, 
it may be more affordable to spend more on the security of PCs, printers, indicators 
and trucks than on smartphones.  
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Table 3. In the first column codes of devices are indicated, then for each type of device the 
following statistics are shown: the absolute number of that type of device present in the 

network, percentage of the device type related to the total number of devices, the average and 
the variance of the AV11 values per type, and finally the percentage of the eigenvalues of a 

type_device related to all the AV11 values. 

Type_device Nodes %Nodes 
 

AV11 
value Mean 

 
AV11 value 
    Var 

%AV11  
Total  

1 887 27 114 11399 31.50 

6 535 16 155 9432 25.70 

2 375 11.30 107 4654 12.50 

15 361 10.90 33 208 3.80 

7 317 9.60 99 3644 9.80 

3 252 7.60 85 2519 6.60 

14 141 4.30 54 1003 2.39 

11 128 3.90 69 944 2.80 

4 127 3.80 52 661 2.00 

8 68 2.10 35 168 0.75 

9 50 1.50 39 1136 0.61 

10 27 0.82 93 9775 0.79 

5 15 0.45 21 9 0.10 

12 10 0.30 98 1799 0.31 

13 7 0.21 138 15 0.30 
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In essence, the IoT environment will continue to increase in size and complexity. 
Therefore, a domino effect due to net-aware malware has to be considered probable 
and not only possible. Inherent vulnerability of IoT devices and structures exacerbate 
the problem to the point that does not allow an ex-post reaction of the attack, and it is 
not even viable to trust the enhancement of the IoT resilience. Thus, it is mandatory to 
rely on a formal ex-ante defence analysis, able to provide cost-effective 
countermeasures.  

5.   Conclusion and Future Works 

In this paper, we proposed the AV11 algorithm and shown its applicability on a real 
IoT network example with the goal to provide an assessment framework based on the 
graph theory for the IoT network in a smart city context. The IoT network has been 
modelled as an undirected graph, and the nodes/devices have been classified 
according to a spectral technique able to identify the most influential nodes, i.e. the 
nodes that can propagate malware through the network. Since it was demonstrated 
[22, 25] that immunizing a small set of properly selected nodes can prevent or at least 
reduce the spreading, it is mandatory to identify these nodes in advance. Meanwhile, 
it is not a viable solution to immunise a large part of an IoT network, because of the 
vast number of devices. The economic advantages of the proposed algorithm are thus 
clear. For example, instead of concentrating the defence efforts on smartphones, it 
could be equally efficient but more economical to protect static assets such as 
computers, printers, indicators. Further, as part of future work, we aim to approach an 
IoT network dynamic risk assessment and mitigation and the association of the energy 
consumption of each device in the configuration network. Since limited research is 
devoted to topological structures of other complex networks for IoT in comparison 
with the investigation of IoT software technology and also to the ongoing 
investigation on the energy efficiency of the IoT devices, the authors aim to address in 
the future works these results on dynamic IoT network in smart cities context. 
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