
New Intelligent Tools to Adapt NL interface
to Corporate Environments

Svetlana Chuprina1[0000−0002−2103−3771] and
Igor Postanogov1[0000−0002−7791−4789]

Perm State University, Bukireva Str. 15, 614990, Perm, Russia
chuprinas@inbox.ru, ipostanogov@outlook.com

Abstract. This paper is devoted to new aspects of Natural Language
Interface to Relational Database (NLIDB) integration into third-party
corporate environments related to control data access. Because there is
no schema information in the input NL query and the different rela-
tional database management system (RDBMS) requires different meta-
data types and rules to control data access, developers meet a problem
addressed to automatic data access control in the case of NL interface
implementation to relational databases. In the paper, we suggest a com-
prehensive approach which takes into account permissions throughout
the pipeline of transforming NL query into SQL query with an interme-
diate SPARQL representation. Our integration solutions based on well-
known Ontology Based Data Access (OBDA) approach, which gives us
the opportunity to adapt the proposed solutions to the specifics of ac-
cess control facilities of various RDBMS. Suggested approach has been
implemented within intelligent service, named Reply.

Keywords: Natural Language Interface · Natural Language Query to
Relational Database · Database Access Control · Ontology Based Data
Access · Intelligent Information System

1 Introduction

Nowadays there is a trend for providing natural language interfaces (NL in-
terfaces, NLI) for human-machine communication. According to the Gartner’s
hype cycle report for emerging technologies [11], in 2017 Virtual Assistants with
NL interfaces, such as Siri (iOS), Google Assistant and Yandex.Alisa (Android),
Cortana (Windows) were at the peak of the cycle. Now the advances in this area
(such as NL understanding) have a major impact on the corporate environment.
Because a lot of time of employees is still spent on formulating of queries for
retrieving data (see, for example, [6]), it is beneficial for companies to use high-
level tools to simplify this process by means of NLIDBs. NLI lowers the entry
threshold for newcomers and gives an ability to formulate ad hoc queries.

NLIDBs can be classified as domain-dependent and domain-independent. The
domain-dependent usually demonstrates better results but are highly restricted
to the domain specifics. In [3] we have presented our domain-independent system

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_3

https://dx.doi.org/10.1007/978-3-030-22750-0_3


2 S. Chuprina et al.

Reply for transforming traditional information systems (IS) into intelligent ones
with NL querying. End users are provided with new NLI to their existing IS
by means of Reply without source code modification. It is also possible to start
developing a new IS with NLI as a ready-made component to its database.
To provide NLI to relational database (RDB) we have used an ontology-based
data access approach that helps us automatically transform input NL query into
SPARQL query and then into SQL query taking into account the specifics of
concrete RDBMS, database schema, and its content.

Towards creating a platform which can be used as a self-service solution,
we have taken a number preexisted stand-alone third-party modules and com-
plemented them with our own modules to build a complete solution. Although
many NLIDBs have been developed since 60s, there are only a few reports about
real-world installation (e.g., [16]). Bearing in mind that “NLIDBs will not be
widely used in businesses until their configuration is so easy that any computer
professional could be able to perform it” [12], we have developed a number of
tools, which automate the configuration throughout the whole pipeline. Thanks
to that, our solution favorably distinguishes from others.

While bringing our system into real-world enterprise infrastructure we have
encountered the problem that neither our, nor any third-party transformation
module used in our pipeline was not taking into account user’s access privileges
for the data sources. E.g., SPARQL to SQL module expects that used config-
uration maps elements of the ontology to available elements of the database.
Direct module integration led to permission violation exceptions at execution
stage accompanied with error messages that are incomprehensible to the end
user.

To the best of our knowledge, there is no published approach for automated
handling data access policies in ontology-based NLIDBs, which use black box
NL to SPARQL and SPARQL to SQL modules that are unaware of policy re-
strictions.

The main contributions of our research presented in the paper are the fol-
lowing:
1. adaptive ontology-driven approach to enforce practical value of NLIDBs tak-

ing into account the issues of restricted data source access;
2. algorithm for handling access policy in NLIDBs based OBDA solutions,

where SPARQL is used as an intermediate representation language;
3. demonstration of the proposed approach with an example.

The paper is divided into six sections. Section 2 contains the description of
the suggested approach. Section 3 includes a demo example. Section 4 presents
a preliminary evaluation of the approach. Section 5 describes the related work.
Section 6 contains a conclusion and future perspectives.

2 NLIDB Obstacles and OBDA Solutions

In this paper, we will focus on access policies for 2 types of database objects
such as tables and columns. Access privileges for rows (row-level security) are

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_3

https://dx.doi.org/10.1007/978-3-030-22750-0_3


New Intelligent Tools to Adapt NL interface to Corporate Environments 3

usually implemented with the help of data views. The user cannot violate access
privileges for rows and if some data row shouldn’t be returned to the user accord-
ing to the access control requirements, it should have already been filtered from
the result. For cell-level privileges it is common to mask the not accessible ac-
tual value and inform the user that the value was masked. Before discussing the
NLIDB obstacles, let’s say a few words about data access control in traditional
information system UIs.

For a traditional information systems UI it is very easy to report current
access restrictions. If there are some UI controls that lead to the execution
of queries that cannot be executed, they can be disabled or hidden. Queries
that cannot be executed are queries that access restricted tables (for table-
level restrictions) or restricted columns in table references and search conditions
clauses (for column-level restrictions). Asterisk signs in select lists are explicitly
expanded to the available columns. In the case of whole database search (e.g., by
substring) the search should be done only in the available tables and columns.

User interface for an ad hoc query usually has controls for specifying blocks
in the resulting SQL query, e.g., there are controls for choosing output fields,
conditions, sorting order etc. For the specification stage, all restricted tables
and columns should be disabled or hidden. If UI suggests possible values for
columns that are affected by row or cell-level security, the suggestions should
contain only visible values. For the building stage, where the resulting SQL
query is formulated, the building engine should use only those paths and join
conditions for connecting required tables, which avoid restricted objects. If this
is not possible, advanced ad hoc query UIs suggest which fields or tables should
be excluded to make query building successful.

For NLIDB it is usually difficult to inform the user what information is avail-
able via NLI. The easiest way to do this is to describe the available information
in the documentation. More advanced user interfaces suggest autocompletion
tools. Another problem is a lack of adequate reporting if the query fails, which
can occur for several reasons. In this paper, we focus on the case when the query
has been successfully interpreted and the execution has failed due to permission
violation.

This problem can be solved in two main ways:

1. Interpreting the query without considering permissions, executing the query
and catching the exception, interpreting the exception and reporting the
reason why this exception has happened.

2. Considering permissions on the interpretation stage and trying to avoid per-
mission violation.

The challenge of the first way is that the exception could have happened due
to a number of reasons, so it is difficult to take into account all the related issues.
That is why we chose the second way.

Considering permissions on the interpretation stage is specific to the NLIDB
type. Different NLIDB types may be classified by architecture into four
groups [1]:

1. pattern-matching;

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_3

https://dx.doi.org/10.1007/978-3-030-22750-0_3


4 S. Chuprina et al.

2. syntax-based systems;
3. semantic grammar systems;
4. intermediate representation languages systems.

For the intermediate representation language system, one could use SPARQL.
Therefore, an input NL query is transformed into SPARQL query which is later
transformed into SQL query by an OBDA framework. Reply has this type of
architecture with SPARQL as the intermediate representation language.

OBDA systems built on top RDBs can be implemented in two different ways:
materialized and virtual. According to the materialized approach, all the data
from RDBs should be transformed into ontology representation and stored in
RDF triplestores. In the virtual approach, the data is stored only in RDBs, and
querying the virtual RDF graph using SPARQL leads to execution the corre-
sponding SQL query over the original source thus avoiding the cost of material-
ization [2].

From the security point of view, another benefit of the virtual approach is
that data is not duplicated in RDF triplestore. Although access control can be
specified at the RDF level [7], not so many IT-specialists who knows not only
how to specify user access rights in the RDBMS, but also how to specify user
access rights in RDF triplestore. With that in mind, many companies would
reject such OBDA systems because the possibility of data leaks due to incorrect
configuration and may overweight the potential benefit of the intelligent system
applying. If the virtual approach is used, end user can only access the data which
she/he can access using traditional ad hoc query interface.

In OBDA solutions for NLIDBs there are 4 components where permissions
could be considered:

1. OBDA framework;
2. NL to SPARQL translator;
3. ontology;
4. mappings between elements of an RDB schema and elements of an ontology.

For this paper, we treat OBDA framework as a black box with ontology,
mappings and SPARQL query as input and an SQL query as an output. With
this assumption, we show how OBDA solutions for NLIDBs could be enhanced.

The original architecture is presented at Fig. 1. For the sake of simplicity do
not depict the NL to SPARQL module errors on the diagram.

Error 
Message

NL Query SPARQLNL 
to 

SPARQLCommon 
Ontology

SQLSPARQL 
to 
SQL

Common 
OBDA Mappings

SQL 
Query 
Executer

Final 
Result Set

User 
message 

Result Set
Post

Processor

Result Set

Fig. 1. Original Reply’s execution stage.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_3

https://dx.doi.org/10.1007/978-3-030-22750-0_3


New Intelligent Tools to Adapt NL interface to Corporate Environments 5

OBDA mapping specification consists of 2 blocks: Source and Target (in the
Ontop mappings notation). Source is an SQL SELECT query that would be
executed by RDB to raise triplets defined in Target.

On the assumption that Target contains only one template for an RDF triple,
this triple has one of the following types:

1. <instance uri> a <class uri>

2. <instance1 uri> <object property uri> <instance2 uri>

3. <instance uri> <data property uri> <value>

SQL SELECT query has the following structure:

SELECT <select_list> FROM <from_item> WHERE <condition>

When considering the permission aspect, select list and conditions from the
SQL SELECT query could use fields, which could be forbidden. In addition,
the from item can refer to the forbidden tables or fields. Although SQL looks
different from the NL query point of view, their building blocks are the same.
NL query can vary output fields, requested entities types, and conditions. Like
in SQL, output fields can be specified implicitly.

The easiest way to prevent execution failure of the translated query is to
remove elements of the ontology that are mapped to the forbidden elements of
the RDB. In this case, the queries that contain removed elements of ontology
could be misinterpreted. Firstly, the closest element in the edited ontology maybe
not related to the concept/relation which the user has asked for. Secondly, if
the closest concept/relation could not be found, the related part of the query
would be completely ignored, and the NLIDB has not enough data to inform
the user about the situation and give some recommendations about the query
reformulation. Worse, in this case, the user can conclude that the system cannot
handle complex queries. Finally, the system would not know why the user was
not satisfied with the query result and would not give any recommendations
about query reformulation.

In order to tackle this problem, we suggest the following approach. For each
user (or for each role if multiple users have the same privileges) automatically
a new instance of ontology and a set of mappings are created by means of our
personalization module. The individual user’s instance of ontology is created by
copying the common ontology and annotating the elements for which mappings
have been removed and no other mappings left. The individual user’s set of
mappings is created by removing from the common mapping specification only
those ones, Sources of which suppose access to restricted tables or fields. This
process is presented at Fig. 2.

To provide the best user experience translators from NL to SPARQL should
handle permission-based restrictions. Unfortunately, none of the tools that we
have analyzed [4, 15, 18] support this. Here we suggest an approach how the exist-
ing NL to SPARQL translators can be minimally modified to support permission-
based restrictions.

One of the main requirements is that each output data property, that wasn’t
explicitly specified in the user’s query, should be wrapped into OPTIONAL block
of the related SPARQL query. If there are no mappings for the data property

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_3

https://dx.doi.org/10.1007/978-3-030-22750-0_3


6 S. Chuprina et al.

Access 
Policies

Common 
Ontology

Common 
OBDA Mappings

Individual User's 
Ontology

Individual User's 
OBDA Mappings

Personalization 
Module

Fig. 2. Creating individual user’s instance of ontology and set of mappings.

that is wrapped into OPTIONAL block [17], OBDA framework would return the
corresponding SQL query where the not found column would have NULL values.

To make Reply more adaptable to the user preferences the default values for
output attributes of the queried concepts are supported. E.g., if some user types
the query “list clients”, a predefined subset of fields would be returned per client.
Additionally, the system supports application-wide defaults, and the user can
also choose the preferred attributes. This approach is implemented by excluding
OPTIONAL blocks with output data properties that are not in the corresponding
preferred list. An alternative connection between the related classes via object
properties can be specified by means of UNION.

Algorithm 1 describes steps of our approach in case of permission change.
Algorithm 2 can be used for modifying intermediate SPARQL query for user’s
NL query. The complete transformation process is presented at Fig. 3. The new
modules are marked by the blue color.

NL Query

SPARQL

NL 
to 

SPARQL
Individual User's 

Ontology

SQLSPARQL 
to 
SQL

Individual User's 
OBDA Mappings

SQL 
Query 
Executer

Final 
Result Set

User 
message 

Result Set
Post

Processor

Policy
Violation
Analyzer

SPARQL 
Post

Processor

Modified SPARQL

Result Set

Modified Error MessageError 
Message

Fig. 3. Modified Reply’s execution stage.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_3

https://dx.doi.org/10.1007/978-3-030-22750-0_3


New Intelligent Tools to Adapt NL interface to Corporate Environments 7

foreach user U in tracked users do
retrieve permissions from the RDB for U ;
if permissions changed then

create a copy of common mappings B for U ;
foreach table T used in the Sources of mappings do

if access to T is not allowed then
remove all mappings, that reference T ;

end if

end foreach
foreach column C used in the Sources of mappings do

if access to C is not allowed then
remove all mappings, that reference C;

end if

end foreach
foreach ontology element E that had mappings in B do

if there are no spawning mappings left then
mark E as unavailable due to the policy restrictions;

end if

end foreach

end if

end foreach
Algorithm 1: Generating users’ mappings on access policy change.

transform NL query Q into SPARQL query SPQ;
init empty list of errors ERRS;
foreach non-optional ontology element E in SPQ do

if E is marked as unsupported then
add into ERRS an error that E is unsupported;

else if E is marked as unavailable due to the policy restrictions
then

add into ERRS an error that E is unavailable;
end if

end foreach
if ERRS is not empty then

return ERRS;
end if
foreach optional ontology data property P in SPQ do

if P is not in the preferred set of attributes then
remove P from SPQ;

end if

end foreach
transform SPQ into SQL query SQ;
return execute SQ;

Algorithm 2: Executing NL query taking into account access policy.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_3

https://dx.doi.org/10.1007/978-3-030-22750-0_3


8 S. Chuprina et al.

3 Example

To demonstrate the suggested approach, we present an example of our demo
database about apartment agreements. Each house contains a number of apart-
ments. Some of the apartments are rented, and some of them have been sold. For
each rented apartment there is a rental agreement, and for each sold apartment
there is a service agreement.

A person who has a running rental agreement is called tenant, and a person
who owns an apartment (has a running service agreement from the landlord’s
point of view) — owner. The fragment of this database schema is presented at
Fig. 4.

Fig. 4. Fragment of database schema about apartment agreements.

The restrictions on this database are the following: technical support spe-
cialist have no access to service agreement table (therefore have no access to the
information who are the owners in the list of people), and have no access to a
social security number of any person. If the database has row-level access poli-
cies, the forbidden rows would be hidden by the database management system
itself so there is no need in a special treatment on the OBDA layer. If there is
a cell-level access policy, restricted sells would be marked as hidden (either by
NULL or predefined value) and would not need the special treatment.

As it was suggested above, the individual user’s set of mappings was created
by removing from the source mapping specification only those ones, Sources of
which suppose access to restricted tables or fields.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_3

https://dx.doi.org/10.1007/978-3-030-22750-0_3


New Intelligent Tools to Adapt NL interface to Corporate Environments 9

Fig. 5 presents a result of comparison between source mapping rules file and
the corresponding individual user’s file. The latter lacks mappings related to
service agreement table and SSN column.

Fig. 5. Comparison between source and individual mapping rule files.

For NL query “Return all information about the tenants” the traditional NL
to SPARQL engine would detect that person has an id, first name, last name,
phone, and SSN and would formulate a SPARQL query returning all these
columns. Running this query would lead to an access denied exception due to the
SSN ’s restriction. To solve this problem one could supply the NL to SPARQL en-
gine information about the restricted fields or post-process the generated query.
The easiest solution is to put the expected fields in OPTIONAL blocks. In that
case, because the mapping for the forbidden fields has been removed, the OBDA
framework would just skip them without any exception.

The same solution is adequate for the cases when all the output fields are
available and explicitly specified (e.g., NL query “Return first and last name
of tenants”). For NL query “Return first name, last name and SSN of tenants”
OBDA framework would fail to generate the SQL query because of the lack
of mappings for SSN. To report the user that the field SSN was detected in
the query but was omitted because of the policy restrictions, our system parses
the generated SPARQL query to find the data properties for which there are
no mappings. This approach is error-prone, that’s why we suggest for NL to
SPARQL query engines to explicitly output all detected classes, objects and
data properties as well as the role they play in the query.

All constraints, retrieved from the query should be specified in the SPARQL
query as usual. If the user constrains the available field, the query would be
successfully executed (e.g., “Return all information about tenants with last name
Doe”). If the user constrains the restricted field (“Return all information about

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_3

https://dx.doi.org/10.1007/978-3-030-22750-0_3


10 S. Chuprina et al.

a person with SSN 078-05-1120”), the OBDA framework would fail to generate
the corresponding SQL query due to the lack of mappings for SSN attribute.
There is an option to remove the constraint automatically and to answer the
query without this constraint, but we believe that most of the time it would be
not the result the user expects and it is more adequate to explain to the user
why this query has no opportunity to be executed.

Although there is no table named tenant in the database, we specify tenants
as people who have a running rental agreement. The same approach applies to
the owners. The user with the permission policy specified above would not have
access to service agreements so she/he not able to get the expected response to
the query “Return all information about service agreements”.

For NL query “Return all information about people at 1650 El Prado” the
system will establish that the only object property available between person and
apartment (which is a part of the house at 1650 El Prado) is having a rental
agreement, and would return only data about tenants. If the user explicitly asks
about the owners (“Return all information about owners at 1650 El Prado”)
the system demonstrates the intelligent capabilities and returns the suggestion
to reformulate the query asking about people (superclass) or tenants (sibling).

An example of the SPARQL query that would be generated for the NL query
“Return all information about people at 1650 El Prado”:

SELECT DISTINCT ?person fn ?person ln ?person phone ?person ssn {
{

?agreement :service agreement person id fkey ?person.
?agreement :service agreement apartment id fkey ?apartment.

} UNION {
?agreement :rental agreement tenant id fkey ?person.
?agreement :rental agreement apartment id fkey ?apartment.

}
OPTIONAL { ?person :person.first name ?person fn. }
OPTIONAL { ?person :person.last name ?person ln. }
OPTIONAL { ?person :person.phone ?person phone. }
OPTIONAL { ?person :person.ssn ?person ssn. }
?apartment :apartment house id fkey ?house.
?house :house.address ‘‘1650 El Prado’’.

}
The first block of the UNION clause and the SSN’s OPTIONAL clause would be

omitted by an OBDA framework due to the lack of mappings which have been
removed according to our approach.

4 Implementation and testing specifics

The suggested approach was implemented in our system Reply which transforms
traditional information systems into intelligent ones with a natural language
query interface. In the previous version of Reply administrator had an ability to

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_3

https://dx.doi.org/10.1007/978-3-030-22750-0_3


New Intelligent Tools to Adapt NL interface to Corporate Environments 11

create multiple independent versions of intelligent systems by specifying multiple
pairs of ontology and mappings. In the current version, in addition to that, a
base pair of ontology and mappings could be specified and a permission tracking
option could be enabled. In that case, our system automatically retrieves access
policies from RDB metadata and generate multiple configurations per selected
users according to the suggested approach. This process can be rerun from the
system administrator’s GUI, by an API call or automatically by our system. The
automatic permission tracking is available for a subset of supported databases.

For example, to automatically track changes in user permissions for
PostgreSQL we generate a code for creating an event trigger that is fired in
case of GRANT or REVOKE DDL commands. The generated code should be exe-
cuted by a database superuser. In the body of the trigger, we raise a notification
to a channel that our system listens to. PostgreSQL’s metadata about user per-
missions is retrieved from the information schema.column privileges view.

To parse SQL queries in the Sources of the mappings we use JSqlParser,
and for manipulating generated SPARQL query — Apache Jena.

Because we haven’t found a NL to SPARQL translator that outputs implic-
itly requested attributes in a consistent way to our approach, testing the whole
pipeline starting with NL query would not provide more information than start-
ing with SPARQL query. As it was said above, our approach is independent not
only from the language used by the user but also from the specifics of the query,
from the specifics of the implementations of NL to SPARQL and SPARQL to
SQL translators.

To test our system, we use the database from the example above (see Fig. 4).
The database schema contains one-to-many and many-to-many relations, as well
as multiple paths between tables. We have generated SPARQL queries, which
use combinations of available and forbidden tables and columns. Our system has
successfully reported permission violation and suggested what elements of the
NL query should be avoided (even though there was no one). In the real-world
example, the reported elements might not be explicitly included in the user’s NL
query, and so to make the report even clearer, tighter integration with NL to
SPARQL translator is needed. We have also tested whether our system correctly
reacts to permission updates.

5 Related Work

Modern corporate NLIDBs have a number of additional requirements that are
not usually considered by academia:
1. taking into account user’s access privileges for the data sources;
2. providing out-of-the-box integration with corporate chat platforms;
3. reusing existing corporate knowledge resources for automation the configu-

ration stage.
At present, there are no platforms, which provide a comprehensive OBDA

solutions for NLIDB and at the same time cover all of its pipeline stages. Nev-
ertheless, there are a number of tools, which implement the individual stages

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_3

https://dx.doi.org/10.1007/978-3-030-22750-0_3


12 S. Chuprina et al.

of the pipeline to transform NL query into SQL query with the intermediate
SPARQL representation [2, 4, 15, 18]. Almost all of them expect that either all
instances in ontology or the whole database are available. This is not the case
for corporate environment where the users usually have only limited access to
data. The papers [10, 12] present sufficiently complete overview of the NLIDB
state of the art, including benefits and limitations of different solutions.

Another key factor for successful installation NLIDB into corporate environ-
ment is bringing a tight integration with existing NL tools. One of the most
widely used types of them is corporate chat platforms that support chat bots.
Amongst other things, hat bots can report a status of the running systems, run
tests and even deploy code to the production environment. From the earliest
versions, Reply had an API that can be called from user’s NL query interface
to retrieve the query result. While bringing Reply into real-world installations
we have developed out of the box wrappers for the most popular corporate chat
platforms. Reply can be integrated into third-party web-based information sys-
tems as a separate web-page. Due to the fact that we provide HTTP REST API,
Reply can also be used by desktop applications.

Previously, to automate Reply configuring we have successfully implemented
a number of our [14] and other’s [5] state of art techniques. E.g., we automatically
convert RDB’s schema to ontology representation and enrich it with synonyms,
parent and child concepts using our or third-party ontology or linguistic resources
[8, 13]. In corporate environment, we can also use corporate knowledge resources
and document storages as a source for ontology learning. Nowadays, many of
knowledge resources use wiki or wiki-based markup language. Our approach for
constructing ontologies from knowledge bases being developed is similar to the
approach used for building DBpedia [9].

To improve the comprehensiveness of NLIDB’s and make the NL-interface
enable users to get really practical results we suggest new intelligent tools to
adapt NL-interface to corporate environments on self-service principles.

6 Conclusion

In the paper, we presented the new approach to intelligent handling database
access policies within OBDA. It helps to tackle the problems of adaptation of
NLIDBs to corporate environments. Our approach does not depend on the meth-
ods used to implement the transformation of NL query to SPARQL as well as
SPARQL to SQL so it is applicable to a wide range of OBDA solutions for
NLIDBs.

According to the algorithm, the system automatically modifies the generated
SPARQL query taking into account the access policies of target DBMS and
user’s preferences. The algorithm is demonstrated on the apartment agreements
database example.

In future, we plan to apply developed tools and services not only for querying
RDBMS using natural language but also for inserting data into them. We believe
that it is possible to use our intelligent tools to improve the human-computer

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_3

https://dx.doi.org/10.1007/978-3-030-22750-0_3


New Intelligent Tools to Adapt NL interface to Corporate Environments 13

interaction within traditional corporate environments and also in other environ-
ments, such as human-centric Internet of Things.

References

1. Androutsopoulos, I., Ritchie, G., Thanisch, P.: Natural Language Interfaces to
Databases - An Introduction. Natural Language Engineering 1, 29–81 (1995).
https://doi.org/10.1017/S135132490000005X

2. Calvanese, D., Cogrel, B., Komla-Ebri, S., Kontchakov, R., Lanti, D., Rezk,
M., Rodriguez-Muro, M., Xiao, G.: Ontop: Answering SPARQL Queries
over Relational Databases. Semantic Web Journal 8(3), 471–487 (2017).
https://doi.org/10.3233/SW-160217

3. Chuprina, S., Postanogov, I., Nasraoui, O.: Ontology Based Data Access Meth-
ods to Teach Students to Transform Traditional Information Systems and Sim-
plify Decision Making Process. Procedia Computer Science 80, 1801–1811 (2016).
https://doi.org/10.1016/j.procs.2016.05.458

4. Dubey, M., Dasgupta, S., Sharma, A., Höffner, K., Lehmann, J.: AskNow: A
Framework for Natural Language Query Formalization in SPARQL. In: Sack, H.,
Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) The
Semantic Web. Latest Advances and New Domains. pp. 300–316. Springer Inter-
national Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-34129-3 19

5. Jiménez-Ruiz, E., Kharlamov, E., Zheleznyakov, D., Horrocks, I., Pinkel, C.,
Skjæveland, M.G., Thorstensen, E., Mora, J.: BootOX: Practical Mapping of RDBs
to OWL 2. In: Arenas, M., Corcho, O., Simperl, E., Strohmaier, M., d’Aquin, M.,
Srinivas, K., Groth, P., Dumontier, M., Heflin, J., Thirunarayan, K., Staab, S.
(eds.) The Semantic Web - ISWC 2015. pp. 113–132. Springer International Pub-
lishing, Cham (2015). https://doi.org/10.1007/978-3-319-25010-6 7

6. Kharlamov, E., Solomakhina, N., Özçep, Ö.L., Zheleznyakov, D., Hubauer, T.,
Lamparter, S., Roshchin, M., Soylu, A., Watson, S.: How Semantic Technologies
Can Enhance Data Access at Siemens Energy. In: Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics). vol. 8796, pp. 601–619 (2014). https://doi.org/10.1007/978-3-
319-11964-9

7. Kirrane, S., Mileo, A., Decker, S.: Access control and the Resource Description
Framework: A survey. In: Semantic Web (2017). https://doi.org/10.3233/SW-
160236

8. Kostareva, T., Chuprina, S., Nam, A.: Using Ontology-Driven Methods to Develop
Frameworks for Tackling NLP Problems. In: Supplementary Proceedings of the
Fifth International Conference on Analysis of Images, Social Networks and Texts
(AIST 2016), Yekaterinburg, Russia, April 6-8, 2016. pp. 102–113 (2016), http:
//ceur-ws.org/Vol-1710/paper11.pdf

9. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,
Hellmann, S., Morsey, M., Van Kleef, P., Auer, S., et al.: DBpedia – A Large-scale,
Multilingual Knowledge Base Extracted from Wikipedia. Semantic Web 6(2), 167–
195 (2015). https://doi.org/10.3233/SW-140134

10. Nihalani, N., Silakari, S., Motwani, M.: Natural language Interface for Database:
A Brief review. International Journal of Computer Science Issues (IJCSI) 8(2),
600–608 (2011)

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_3

https://dx.doi.org/10.1007/978-3-030-22750-0_3


14 S. Chuprina et al.

11. Panetta, K.: Top Trends in the Gartner Hype Cycle for Emerging
Technologies, 2017, https://www.gartner.com/smarterwithgartner/

top-trends-in-the-gartner-hype-cycle-for-emerging-technologies-2017/,
accessed: 2019-01-05

12. Pazos R., R.A., González B., J.J., Aguirre L., M.A., Mart́ınez F., J.A., Fraire H.,
H.J.: Natural Language Interfaces to Databases: An Analysis of the State of
the Art, pp. 463–480. Springer Berlin Heidelberg, Berlin, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-33021-6 36

13. Postanogov, I., Jastrzab, T.: Ontology Reuse as a Means for Fast Prototyping
of New Concepts. In: Kozielski, S., Mrozek, D., Kasprowski, P., Malysiak-Mrozek,
B., Kostrzewa, D. (eds.) Beyond Databases, Architectures and Structures. Towards
Efficient Solutions for Data Analysis and Knowledge Representation. pp. 273–287.
Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-
319-58274-0 23

14. Postanogov, I.: Towards Automating the Creation of OBDA
Systems. Procedia Computer Science 150, 511–517 (2019).
https://doi.org/10.1016/j.procs.2019.02.086, proceedings of the 13th Interna-
tional Symposium “Intelligent Systems 2018” (INTELS’18), 22-24 October, 2018,
St. Petersburg, Russia

15. Shekarpour, S., Marx, E., Ngonga Ngomo, A.C., Auer, S.: SINA: Semantic Inter-
pretation of User Queries for Question Answering on Interlinked Data. Journal of
Web Semantics (2015). https://doi.org/10.1016/j.websem.2014.06.002

16. Waltinger, U., Tecuci, D., Olteanu, M., Mocanu, V., Sullivan, S.: Natu-
ral Language Access to Enterprise Data. AI Magazine 35, 38 (2014).
https://doi.org/10.1609/aimag.v35i1.2502

17. Xiao, G., Kontchakov, R., Cogrel, B., Calvanese, D., Botoeva, E.: Efficient Han-
dling of SPARQL OPTIONAL for OBDA. In: Vrandečić, D., Bontcheva, K.,
Suárez-Figueroa, M.C., Presutti, V., Celino, I., Sabou, M., Kaffee, L.A., Simperl,
E. (eds.) The Semantic Web – ISWC 2018. pp. 354–373. Springer International
Publishing, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6 21

18. Xu, K., Feng, Y., Zhao, D.: Xser@QALD-4: Answering Natural Language Ques-
tions via Phrasal Semantic Parsing. In: CEUR Workshop Proceedings (2014).
https://doi.org/10.1007/978-3-662-45924-9 30

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22750-0_3

https://dx.doi.org/10.1007/978-3-030-22750-0_3

