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Abstract. Multiphase fluid flow with complex compositions is an in-
creasingly attractive research topic with more and more attentions paid
on related engineering problems, including global warming and green
house effect, oil recovery enhancement and subsurface water pollution
treatment. Prior to study the flow behaviors and phase transitions in
multi-component multiphase flow, the first effort should be focused on
the accurate prediction of the total phase numbers existing in the fluid
mixture, and then the phase equilibrium status can be determined. In
this paper, a novel and fast prediction technique is proposed based on
deep learning method. The training data is generated using a selected
VT dynamic flash calculation scheme and the network constructions are
deeply optimized on the activation functions. Compared to previous ma-
chine learning techniques proposed in literatures to accelerate vapor liq-
uid phase equilibrium calculation, the total number of phases existing in
the mixture is determined first and other phase equilibrium properteis
will be estimated then, so that we do not need to ensure that the mix-
ture is in two phase conditions any more. Our method could handle fluid
mixtures with complex compositions, with 8 different components in our
example and the original data is in a large amount. The analysis on pre-
diction performance of different deep learning models with various neural
networks using different activation functions can help future researches
selecting the features to construct the neural network for similar engi-
neering problems. Some conclusions and remarks are presented at the
end to help readers catch our main contributions and insight the future
related researches.

Keywords: deep learning · phase equilibrium · multi-component mul-
tiphase flow

1 introduction

Subsurface multiphase fluid low has attracted increasing attentions from re-
searchers all over world, due to its various applications such as energy industry,
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including enhanced oil recovery and unconventional oil and gas development, and
enrivonmental production, including greenhouse effect and subsurface water pol-
lution control. In petroleum industry, the study of multi-component multiphase
flow is needed in all the expoitation and transportation stages to optimize the
oil field development for the maximization of oil recovery [1, 2, 9, 10, 12, 11, 13].
Meanwhile, the simulation of subsurface multi-component multiphase fluid flow
is critical to handle a large range of environmental concerned issues, for example,
greenhouse gas emission and pollutant disposal. Especially, for the rapid devel-
opment of CO2 sequestration technique, phase compositions and phase tran-
sition behaviors are urgentlly needed for the plan designing and optimization
to better reduce the CO2 emission or controllably dispose the environmentally
hazardous wastes[3, 4]. In addition, the production of unconventional oil and gas
resources has experienced a significant growth in all over the world and success-
fully becomes an important energy supply, due to the rapid production decline of
conventional reservoirs [8]. In order to maximize the oil prodcution from conven-
tional and unconventional reservoir or resolve the aforementioned environment
issues, it is great demand of the accurate numerical model of subsurface multi-
phase fluid systems, as well as the robust and efficient computational algorithm.

A number of studies have investigated the phase equilibrium problems in sub-
surface reservoirs, which often depend on different sets of given conditions [5,
7]. One conventional phase equilibrium calculation approach is performed under
constant chemical compositions, pressure and temperature, which is known as
”NPT” flash. The long history of NPT flash has brought a wide range of applica-
tions related with phase splitting calculation and stability test, but at the same
time some limitations have been found regarding this method. In some specified
conditions, the system equilibrium cannot be determined uniquely, or the solu-
tion from the flash calculation fails to identify a clear and determined state. For
the cubic equation of state, two separate solutions need to be conducted to de-
termine the phase molar volumes of each phase. Furthermore, the root selection
procedure has to be considered in the presence of multiple roots, although the
middle root is often ignored because which corresponds to a physically mean-
ingless solution. The remaining roots need to be paired to minimize the Gibbs
free energy, and the root pairing could be challengeable as there might be two
roots for each phase. If the selection of pairing is wrong, the whole procedure
will fail with an unstable or metastable solution. Another limitation is that pres-
sure is not always a priori, which makes it inefficient to iteratively solve phase
equilibria problems of a differernt variable specification by the NPT flash. An-
other approach with priori conditions including constant chemical compositions,
molar volume and temperature, namely the NVT flash, has been proposed to
handle the above challenges faced by NPT flash. As an alternative, it has shown
great potential in compositional multiphase flow simulation in subsurface porous
media. However, the problem existing in the applicaiton of both the two types
is the much CPU time cost in engineering scale. Generally, the temperature-
pressure range or temperature-volume range, corresponding to NPT flash and
NVT flash respectively, can be so wide that the iterations in each environmen-
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tal condition should be reused for many times. Especially for the complex fluid
mixture with a large number of components, both the two types of NPT and
NVT flash calculations have problems in the quick but reliable phase equilibrium
prediction.

To speed up flash calculation, different approaches have been proposed aim-
ing at finding a path faster to estimate the phase equilibriumm conditions. In
this paper, we will review the general deep learning method and the detailed
process, to help readers new in this area get a basic understanding of how this
method can be used in the prediction. Comments on recent techniques proposed
in deep learning methods have been invovled with authors’ own opinioins, to
show the current trend for a better prediction accuracy in engineering need.
The performance of neural network models with different activation methods
are tested from both the convergence analysis of total loss function and mean
estimation errors. Furthermore, the determination of total phase numbers exist-
ing in the mixture, which is the key step in the numerical study of compositional
multiphase fluid flow in subsurface reservoirs is used as the main test target of
our prediction. The performance of different activation functions, on the loss
function convergence rate as well as mean absolute and mean relative errors, are
compared and suggestions are made on future studies regarding similar prob-
lems.

The remainder of this paper is organized as follows. In Section 2, the deep
learning method is explained in details, with clear procedures and instructions
with author’s own comments. Prediction examples are presented in Section 3
to show the robustness and efficiency of the concluded scheme. At the end, we
make some conclusions in Section 4.

2 Deep Learning Method

Artificial neural networks (ANNs) are computational models designed to incor-
porate and extract key features of the original inputs and process data in a
manner analogous to neurons in animals central nervous systems (in particular
the brain), which are capable of both machine learning, as well as pattern recog-
nition, the former sometimes being called supervised and the latter unsupervised
machine learning. The naming convention stems from the fact that in supervised
machine learning, unlike the unsupervised fashion, the ANN is presented with
the target variable(s) and seeks to find a functional relationship that can be used
to predict the target variable(s) from input variable(s) with a desired degree of
precision. Deep neural networks usually refer to those artificial neural networks
which consist of multiple hidden layers. In this paper a deep fully connected
neural network is applied to model the phase equilibrium calculation with data
sourced from VT flash calculation are used as input. Following the input layer, a
number of fully connected hidden layers, with a certain number of nodes, stack
over the other, whose final output is fed into another fully connected connected
layer, which is the final output layer. Since we are fitting the compositions of va-
por phase and liquid phase in our model, the final output layer contains several
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nodes, which could be divided into three sets: one for total phase numbers exist-
ing in the mixture, one for vapor phase compositions and the final one for liquid
phase compositions. The activation function of this layer is fixed as linear. Nat-
urally the proposed ANN input variables include critical pressure (Pc), critical
temperature (Tc) ,acentric factor (ω) and z of the components comprising the
mixture, as well as the temperature T and mole volume c as the environmental
condition. Different from previous studies, a much larger range of T and c can
be included in our environmental conditions, as it is not a priori in our approach
that the mixture should be ensured in a two phase area. On the contrast, our
algorithm can decide whether the mixture is in single phase or two phase area,
and then process the phase equilibrium estimation accordingly.

The whole package is developed using TFlearn. Trained on a Mac Laptop,
which is a common equipment, the training iterations will converge in less than
10 minutes if the source data is with size 151×151. Formally, for the i-th hidden
layer, let ai denote the input of the layer, and yi to denote the output of the
layer. Then we have:

yi = fi(Wi ∗ ai + bi), (1)

where Wi is the weight; bi is the bias; and fi is the activation functions of the
i-th layer. For a network with multiple layers, the output of one hidden layer is
the input of the next layer. For example, we can represent the network in Figure
?? as:

o = f3(W3 ∗ f2(W2 ∗ f1(W1 ∗ x1 + b1) + b2) + b3), (2)

where o = (X,T ); f1, f2, f3 are the activation functions; W1,W2,W3 are the
weights for each layer; b1,b2,b3 are the bias terms of each layer

As shown in Equation (4), the activation function is where the non-linearity
and the expressiveness power of deep neural network models comes from. There
are numerous activation functions: Rectified linear unit (ReLU), Parameteric
rectified linear unit (PReLU), TanH, Sigmoid, Softplus, Softsign, Leaky rectified
linear unit (Leaky ReLU), Exponential linear unit (ELU), and Scaled exponen-
tial linear unit (SELU). Here, we present the formular for two common used
activation functions, ReLU and Sigmoid, as an example.

f(x) = { 0 , ifx < 0;x, ifx ≥ 0, (3)

σ(x) =
1

1 + exp(−x)
. (4)

3 Examples

In this section, the predictions of phase total phase numbers existing in a fluid
mixture in various complex reservoir environmental conditions are performed
based on the 8 components mixture detected in EagleFord Oilfield. Detailed
component compositions and the parameters effecting phase equilibrium results
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using VT flash calculations based on Peng-Robinson Equation of State are pre-
sented in Table. 1. The VT flash calculation approach is selected as described in
[8, 6], which is energy stable so as to accelerate the flash calculation for the large
scale data. Besides, this scheme is consistent with the first and second thermo-
dynamical laws, which makes the phase equilibrium results more reliable. Unlike
machine learning methods reported in previous literatures, the environmental
conditions need no more to ensure the mixtures to be in a two phase area, so
that the applications of our method can be larger. The number of total phases
is the result predicted using our method, and other phase equilibrium properties
can be estimated correspondingly.

Using the deep learning approach described in Section 2, a neural network is
designed with 5 hidden layers, 100 nodes in each layer, totally 4000 iterations.
The performance of using different activation functions are tested in this section,
to help provide a suggestion for future researchers . A 101× 101 VT flash data
source is generated for this mixture, so the total original data for training is
9180, and the tested data is 1021. Namely, the tested porportion in this paper is
selected as 10 per cent. Especially, the key effort in phase equilibrium calculation,
e.g. the decision of total phase numbers in a mixture, is also processed using our
deep learning approach to test its capability to handle this problem.

3.1 Deep Learning Model Training

As explained in Section 2, the model takes the parameters of each components,
as well as temperature (T ) and mole volume (c) as the input and outputs the
predicted value of X and Y in each phase. The key parameters of the model
are the weights of each layer, which control what the model outputs given the
input. At first, those weights are initialized randomly, which means that the
model will output useless values given the inputs. To make the model useful for
this problem, we need to train those weight parameters to fit our problem. The
difference between the models output and the ground truth is referred as loss.
Here, for this regression problem, we use mean square error as the loss function.
10% of the data sources are selected as the test data, where the remaining
data are input into the network for the training. The mean absolute error and
mean relative error of the tested results from different networks with various
activation functions used are listed in Table 2 . As indicated from the results
in [14], four activation functions are selected from the low error group: ’tanh’,
’relu’, ’sigmoid’ and ’softsign’ and one activation function selected from the high
error group ’softplus’ to test whether their performance will show similar results.
It is glad to see from Table 2 that generally the four activations in low error
group in [14] will show better estimation errors compared with the high error
activation function ’softplus’. It is verifed the statement resulted from the binary
components cases can be extended to the complex multi-component cases.

The loss function curve decreasing with iterations are also presented to show
how the trained outputs are approaching the true value. Results from iteration
200 to iteration 400 are drawn as the loss function in this period represent
a clear approaching trend. From Figure 1, it can be referred that the total loss
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Table 1. Molar composition and compositional properties for the EagleFord2 oil.

Component zi Tc,i (K) Pc,i (MPa) Mw,i (mol/m3) ωi

C1 0.31231 190.72 4.6409 16.04 0.0130
N2 0.00073 126.22 3.3943 28.01 0.0400
C2 0.04314 305.44 4.8842 30.07 0.0986
C3 0.04148 369.89 4.2568 44.10 0.1524
CO2 0.01282 304.22 7.3864 44.01 0.2250
iC4 0.01350 408.11 3.6480 58.12 0.1848
nC4 0.03382 425.22 3.7969 58.12 0.2010
iC5 0.01805 460.39 3.3336 72.15 0.2223
nC5 0.02141 469.78 3.3750 72.15 0.2539
nC6 0.04623 507.89 3.0316 86.18 0.3007
C7+ 0.16297 589.17 2.7772 114.40 0.3739
C11+ 0.12004 679.78 2.1215 166.60 0.5260
C15+ 0.10044 760.22 1.6644 230.10 0.6979
C20+ 0.07306 896.78 1.0418 409.20 1.0456

Table 2. Estimation error of deep learning model trained with different activation
functions

activation functions mean absolute error mean relative erro

softplus 0.00679 81540

tanh 0.01342 0.01455

relu 0.01378 0.01723

sigmoid 0.01900 0.02066

softsign 0.01398 0.01499
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function using activation function ’softplus’ is much larger than that of the other
four neural networks. The loss function of ’sigmoid’ and ’softsign’ show similar
lowest value, but they remain almost steady compared to the constant decrease
of the network generated using ’tanh’ and ’relu’.

Fig. 1. The neural network to model VLE.

3.2 Phase Number Characterization

The key effort of phase equilibrium calculation is to decide the total number of
phases existing in the mixture at certain conditions, which is priori to further
prediction of phase behaviors. To test the capability of the deep learning ap-
proach to capture this value, a mixture of 8 components detected in EagleFord
Oilfield is selected to generate the data source using our proposed VT flash cal-
culation algorithm, with the data size of 101×101 and at the constant c = 129.9.
As shown in Fig 2, it can be referred that with the temperature increasing from
250K to 850K, this mixture will change from a two phases mixture to a single
phase mixture. For all the five activation functions used in constructing the neu-
ral network, generally the deep learning result meet well with the original data
generated from VT flash calculation, with only a small difference at the phase
transition point. It is obvious to see that the results predicted using activation
function ’sigmoid’ and ’softplus’ have the maximum prediction errors, with a
larger phase change temperature point and a smaller temperature respectively.
Meanwhile, the result of deep learning neural networks generated using activa-
tion function ’softsigan’ meets well with the original data resulted from VT flash
data, with only a small difference on the prediction of phase change temperature
point. Thus, it can be concluded that the activation function ’softsign’ best fits
the vapor liquid equilibrium problems, especially on the total phase numbers
determination.
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Fig. 2. Number of phases predicted in a mixture with different activation functions
used in the neural network at c = 129.9

Combined with the error analysis in Section 3.1, it could be referred that
activation function ’relu’ and ’softsign’ can be suggested for future deep learning
methods considering to construct the neural networks. To prove this statement,
another phase equilibrium prediction is performed with our trained model for
constant mole volume set as c = 249.8. As shown in Fig. 3, our statement is
verified with the fact the results using activation function ’sigmoid’ and ’softplus’
deviate the most with the original flash calculation data, while the result of
activation function selected as ’softsign’ totally agree with the original data.
The result of activation function ’relu’ also meets well with the VT flash result,
while the ’tanh’ activation function performs not as good in both the two cases.

Fig. 3. Number of phases predicted in a mixture with different activation functions
used in the neural network at c = 249.8
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4 Conclusion

The concept and detailed procedures of deep learning method is described in this
paper, especially instructions for the construction of deep neural networks used
to predict vapor liquid phase equilibrium. Previous methods for phase equilib-
rium calculations are introduced and analyzed first, and this explains why we use
VT flash algorithm for complex multicomponent mixtures to generate the orig-
inal phase equilibrium data used for the training in our deep learning method.
The robustness and efficiency of our designed neural network is verified by the
accurate predictions for the complex mixture selected from a realistic oil field,
and the comparison of different activation functions is presented from three dif-
ferent viewpoints: loss function convergence rate, mean absolute and relative
error and total phase number prediction. Based on our results, it could be con-
cluded that different activations perform with different accuracy in this type of
problems, where ’relu’ and ’softsign’ are suggested to construct the deep neural
networks. This statement is similar with the comparison of the performance of
activation functions in [14] for binary components. It indictaes that this opti-
mized configurations set is capable to handle a large range of phase equilibrium
problems, from components, and data sources. As the total phase number can be
decided using our method, the priori that the mixture should stay in a two phase
area is not necessary any more, which greatly increases the capability and ap-
plication ranges of deep learning methods in the phase equilibrium predictions.
On future studies, a potential direction is to take into consider more mechnisms
in reservoirs, like capillary pressure, to see the capability of this network and
approach.
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