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Abstract. A hybrid particle/mesh Vortex Method, called remeshed vor-
tex method, is proposed in this work to simulate three-dimensional in-
compressible flows. After a validation study of the present method in the
context of Direct Numerical Simulations, an anisotropic artificial viscos-
ity model is proposed in this paper in order to handle multi-resolutions
simulations in the context of vortex methods.
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1 Introduction

Among the numerous numerical approaches used in CFD, Lagrangian methods,
also called particle methods, occupy an important place thanks to their intuitive
and natural description of the flow as well as their low numerical diffusion and
their stability. Indeed, in Lagrangian approaches, the physical quantities involved
in the simulated problem are discretized onto a set of particles evolving spatially
in the domain according to the problem dynamics. The particles are therefore
characterized by their position in the computational domain and the value of
the physical quantity they are carrying. Vortex methods [5] belong to this class
of Lagrangian approaches and will constitute the key point of the present work.
In Vortex methods, the particles discretize the Navier-Stokes equations in their
velocity (u) - vorticity (ω) formulation. This formulation allows to directly point
to the essence of vorticity dynamics in incompressible flows, which is character-
ized by advection and diffusion as well as stretching and change of orientation.

However, Vortex methods exhibit difficulties inherent to particle methods
and related to the particle distortion phenomenon, which manifests itself by the
clustering or spreading of the flow elements in high strain regions, thus imply-
ing the loss of convergence of the method. The remeshing technique [8] may be
considered as one of the most efficient and popular method to bypass the inher-
ent problem of particle distortion. It consists in periodically redistributing the
particles onto an underlying Cartesian grid in order to ensure their overlapping
and thus the convergence of the solution. These hybrid Lagrangian/Eulerian

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_46

https://dx.doi.org/10.1007/978-3-030-22747-0_46


2 C. Mimeau et al.

approaches are characterized by the fact that the vorticity and the velocity vari-
ables are both resolved on the particles field and on a Cartesian grid.

In this work the remeshing procedure is performed in a directional way
[9]. This approach transforms the usual tensorial computations (based on 3D-
stencils) into 1D advection/remeshing problems in each direction, thus decreas-
ing substantially the comptutational cost of this procedure. As the Cartesian
grid used in the present work is uniform and fixed in time, the simulations of
flows at high Reynolds numbers involve prohibitive computational efforts. To
encouter this problem, we propose in the present paper bi-level simulations. The
bi-level approach may be considered as a hybrid procedure since it relies on a
resolved vorticity field while the related velocity field is filtered. The artificial
viscosity model derived here for this purpose is directly based on Vortex Method
framework, according to [3].

This paper is organized as follows. We will first describe the remeshed Vortex
Method, giving the governing equations and the fractional step algorithm used
to discretize them. Then we will expose the artificial viscosity model proposed
here to perform bi-level simulations. The last section will be dedicated to the
numerical results: both direct numerical simualtions and bi-level simulations will
be validated in the context of a Taylor-Green Vortex at Re = 1600.

2 Remeshed Vortex Method

2.1 Governing equations

This study is based on the vorticity formulation of the incompressible Navier-
Stokes equations, called the Vorticity Transport Equations. In a domain D, these
equations read:

∂ω

∂t
+ (u · ∇)ω − (ω · ∇)u =

1

Re
∆ω (1)

∆u = −∇× ω, (2)

where ω, u andRe respectively denote the vorticity, the velocity and the Reynolds
number. One can distinguish in Eq. 1 the advection term (u · ∇)ω, the stretch-
ing term (ω · ∇)u (which vanishes in 2D) and the diffusion term ∆ω/Re. The
Poisson equation 2 is derived from the incompressibility condition ∇·u = 0 and
allows to recover the velocity field u from the vorticity field ω. This system of
equations has to be complemented by appropriate conditions at the boundaries
of computational domain D.

2.2 Fractional step algorithm

To solve the vorticity transport equations 1-2, the flow is discretized onto par-
ticles that carry the vorticity field ω transported at the velocity u and the
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resolution of the governing equations is based on a splitting algorithm, which
consists at each time step in successively solving the following equations:

∆u = −∇× ω (3)

∂ω

∂t
= ∇ · (ω : u) (4)

∂ω

∂t
=

1

Re
∆ω (5)

∂ω

∂t
+ (u · ∇)ω = 0 (6)

∆tadapt =
LCFL

‖∇u‖∞
(7)

Equation Time discr. method Space discr. method

Poisson equation (3) - Spectral method

Stretching (4) RK3 scheme 4th order centered FD

Diffusion (5) Implicit Euler scheme Spectral method

Advection (6) RK2 scheme Λ4,2 remeshed vortex method

Adaptive time step (7) - 4th order centered FD (LCFL < 1)

Table 1: Time and space discretization methods used for the resolution of the viscous
splitting algorithm (eqs. 3 to 7).

The discretization of each equation of the fractional step algorithm is realized
in this study by using a semi-Lagrangian Vortex method, called the remeshed
Vortex method. Table 1 gives the time and space discretization schemes used in
this work to solve them. The advection of vorticity field (eq. 6) is performed in
a Lagrangian way using a Vortex method. This Lagrangian approach provides a
natural and efficient way to solve the non-linear convection term, with low nu-
merical diffusion. Once the particles carrying the vorticity field have been trans-
ported, they are redistributed on an underlying Cartesian grid using a remeshing
kernel of type Λ4,2 [4]. The Λp,r remeshing kernels are piecewise polynomial func-
tions of regularity Cr, satisfying the conservation of the first p moments. The
Λ4,2 kernel therefore satisfies the first 4 moments and is of regularity C2. It con-
tains 6 points in its 1D-support, which means that each particle is redistributed
onto 6 points in each direction.

In this work, the particle advection and the remeshing procedure are per-
formed using a directional splitting approach [9]. It consists in solving the ad-
vection and remeshing problems direction by direction. As a consequence, if the
chosen kernel contains S points in its 1D-support, the number of operations
with the directional splitting method compared to the tensorial approach goes
from O(S2) to O(2S) in 2D and from O(S3) to O(3S) in 3D (see Fig. 1). If
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we consider the Λ4,2 kernel (S = 6) used in the present work, the directional
splitting method thus allows to divide the number of operations by 12 for each
particle. This directional splitting consequently allows for a drastic reduction of
the computational cost in terms of regridding operations.

The systematic remeshing of particles onto an Eulerian grid at each time
step enables to ensure the overlapping of particles required for the convergence
of the method. Moreover the presence of the grid allows to discretize the other
equations using efficient and/or fast grid methods (finite differences and spectral
method based on FFT evaluations). In the present algorithm, equations 3 to 5
are solved on the grid. Note that the stretching problem 4 is considered here in
its conservative formulation, ∂tω = ∇ · (ω : u).

Finally, the value of the adaptive time step is evaluated (on the grid) at
the end of the fractional step algorithm according to the infinite norm of the
velocity gradient (cf eq. 7), which provides a more relaxed condition compared
to classical CFL conditions. The Lagrangian CFL number, called LCFL, must
be taken lower or equal to 1. In this work we set LCFL = 1/8.

remeshing by directional splitting

remeshing by tensorial product

Fig. 1: 2D schematic representation of a remeshing procedure using a tensorial product
(on top, depicted by plain arrows) and a directional splitting (on bottom, depicted by
dashed arrows). The red lines indicate the support of the remeshing kernel. In this
example, the kernel has a 1D-support of 4 points.
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3 Bi-level approach

3.1 Context and motivation

One of the main limitation experienced by the present hybrid vortex method is
related to the computational resources needed to deal with large problems. In-
deed, the Eulerian grid used in this work to solve equations 3 to 5 in the splitting
algorithm is a uniform Cartesian grid. Therefore, when increasing the Reynolds
number in the present direct numerical simulations, the handling of a uniform
Cartesian grid requires to consider prohibitive mesh sizes in order to correctly
capture the boundary layer, which makes the computation unaffordable. In order
to overcome this problem, a good solution relies in multiresolution [1][11] and
grid adaptivity [13]. However all these approaches require major modifications
in the computational solver. A more straightforward technique may rely in a
LES-like model, that is to say in the derivation of a eddy viscosity model.

The aim of LES models based on the filtered Navier-Stokes equations is to
estimate the subfilter scale stress tensor τij , which is usually modeled by a dissi-
pation term, allowing the energy to cascade from the large scales to the smallest
one.

In this work we propose a bi-level approach. It consists in solving the vorticity
field ω on a fine grid while the small scales of the related velocity field are
filtered so that we only consider the velocity values on a coarse grid, u. The
main goal of such approach is to reduce the overall computational cost, more
specifically the cost dedicated to the resolution of the Poisson equation, and to
afford higher Reynolds numbers. In terms of flow physical description on one side
and computational cost on the other side, the bi-level simulations can therefore
be considered in between DNS and LES.

Previous studies dealing with multi-resolution simulations in the context of
remeshed Vortex Methods have already been performed in [6]. However, in that
study, the multi-resolution simulations were dedicated to the transport of a pas-
sive scalar. In other words, a coarse grid was used to compute the flow quantities,
namely the vorticity and velocity fields, while a fine grid was considered to com-
pute the convected passive scalar. An interpolation was performed to exchange
the informations between the coarse and the fine grid quantities, but no eddy
viscosity model was needed since the different scales concerned non-coupled vari-
ables.

In the work proposed here, the bi-level approach is applied to the ω-u coupled
variables involved in the incompressible Navier-Stokes equations, and relies on
the use of a eddy viscosity model. In the context of vortex methods, the deriva-
tion of such eddy viscosity model can be done in a different way than the LES
subgrid-scale models. We give hereafter the main steps of this model derivation,
based on the former studies of [3], and we extend it to our 3D algorithm.
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3.2 An anisotropic artificial viscosity model

When considering purely Lagrangian vortex methods, one obtains an exact weak
solution of convection equations. Therefore, the truncation error of these meth-
ods only comes from the regularization used to compute the velocity of the
particles from the vorticity field [5]. The artificial viscosity model proposed in
this work to handle a bi-level approach is based on the dissipative mechanisms
embedded in this truncation error. In [3], such artificial viscosity model has been
derived in the 2D case by cancelling the positive enstrophy budget embedded in
the truncation error of the regularized vorticity transport equation. This artifical
diffusion model is anisotropic and is given in 2D by :

dωp

dt
= C

∑

q∼p

vq(ωp − ωq)
{

[u(xp)− u(xq)] · (xp − xq)g(|xp − xq|)
}

+

(8)

In the present paper, the model is extended to the 3D case :

dωp

dt
= ∇·(ωpup)+C∆−4

∑

q∼p

vq(ωp−ωq)
{

[u(xp)−u(xq)]·(xp−xq)g(|xp−xq|)
}

+

(9)
where ∆ is the regularization size (or filter size in a LES point of view) and
where C is a coefficient depending on the nature and the state of the flow. Note
that equation 9 allows to cancel the enstrophy production only in directions of
antidiffusion, which provides an anisotropic artificial viscosity model.

In a procedural and algorithmic point of view, the use of such anisotropic
artificial viscosity model in the present remeshed vortex method implies the
replacement of the stretching equation 4 by equation 9, which now gives the
following algorithm :

∆u = −∇× ω

dωp

dt
= ∇ · (ωpup)

+ C∆−4
∑

q∼p

vq(ωp − ωq)
{

[u(xp)− u(xq)] · (xp − xq)g(|xp − xq|)
}

+

∂ω

∂t
=

1

Re
∆ω

∂ω

∂t
+ (u · ∇)ω = 0

∆tadapt =
LCFL

‖∇u‖∞

(10)

4 Numerical results

In order to validate the anisotropic artificial viscosity model proposed in this
paper, we consider the Taylor-Green vortex benchmark, which is an unbounded
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periodic flow commonly used to study the capability of a numerical method to
handle transition to turbulence.

The Taylor-Green vortex is an analytical periodic solution of incompressible
Navier-Stokes equations. It describes the non-linear interaction of multiscales
eddies under the influence of vortex stretching and their final decay. It is a
classical benchmark used as an initial condition for numerical methods to study
flow problems related to transition to turbulence. This bencharmark has already
been tested with success in the context of a remeshed vortex method by van Rees
et. al [12]. Since this method was different from the present one in the sense of
the remeshing procedure (tensorial versus directional approach in our case), we
are eager to test the validity of the method proposed in this work.
We consider the flow that evolves in a periodic cubic box of side length L = 2π
and develops from the following initial condition, which satisfies the divergence-
free constraint:

ux(x, t = 0) = sin(x) cos(y) cos(z)

uy(x, t = 0) = − cos(x) sin(y) cos(z) (11)

uz(x, t = 0) = 0

The Reynolds number of the flow is defined by Re = 1/ν. In the present study
it is set to Re = 1600. At such regime, the minimum number of grid cells per
direction is approximatly given by:

nx ≈
l0
η

= Re3/4 ∼ 253 (12)

where l0 = 1 denotes the integral length scale, that is to say the scale of the

largest eddies, and where η =
(

ν3l0
u3

0

)
1

4

corresponds to the Kolmogorov length

scale, that is to say the scale of the smallest eddies, with u0 the caracteristic
velocity set to 1. Therefore, according to this estimation, we expect reliable
results from a 2533 total grid resolution.

4.1 DNS results

First of all, we validate the present remeshed vortex method in the case of Direct
Numerical Simulations. The results presented in this subsection are obtained
from the splitting algorithm described in the first part (eqs. 3-7).

Grid convergence study In the present grid convergence study the simula-
tions are performed on the following uniform Cartesian grids:

nx × ny × nz = 643, 1283, 2563, 5123 (13)

The results are analyzed in terms of enstrophy evolution, where the enstrophy
is the integral quantity defined as:

Z =
1

L3

∫

D

ω
2 dx = ν−1ε. (14)
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They are compared in Fig. 2 to the convergence study performed by Jammy et.
al using an explicit finite difference solver [7]. We can notice that both methods
converge with a 2563 resolution, which corresponds to the minimum number of
cells required in the domain to correctly solve the smallest scales, as explained
previously. One can also emphasize an interesting feature of the Vortex Methods
which relies on the fact that even with unconverged grids (e.g. 643), the correct
maximum value of enstrophy at T ≈ 9 is captured by the present method (Fig.
2a), which is not the case with a finite difference based method (Fig. 2b). This
result highlights the low numerical diffusion produced by the present method
due to the Lagrangian treatment of advection.

(a) (b)

Fig. 2: Grid convergence study in terms of enstrophy evolution. (a) Present method.
(b) Results obtained by Jammy et. al [7] with the OpenSBLI solver, based on a fi-
nite difference algorithm. (c) Superimposition of the solutions obtained by [7] and the
present method with the converged 5123 resolution.

Validation Based on the results of the previous section, we consider the con-
verged grid nx×ny ×nz = 5123 for the simulations performed in this validation
study. As can be seen on Fig. 2 c), the present solution is in good agreement
with the one of [7], especially until T ≈ 9, when the peak of energy dissipation
is reached. A discrepancy between the two results is then observed during the
flow mixing stage, showing a slightly more dissipative behavior provided by the
present vortex method compared to the finite difference method of [7].

Our results are now qualitatively analyzed in terms of vortical structures in
the flow. Fig. 3 shows the norm of vorticity field |ω| obtained with the present
method using a 5123 resolution in the x = 0 plane at T = 9, when the maximum
of energy dissipation occurs. The vorticity isocontours of the eddy depicted on
the close-up view are given below, in Fig. 4, and are compared to the one found
in [12] using the same resolution of 5123. As can be noticed, our results and the
one of [12] coincide rather well. A noticeable discrepancy is noticed concerning
the shape of the ”eye” of the vortical structure. However, the size of the eddy
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and the thin elongated parts are almost similar for both methods, without any
noisy regions.

Fig. 3: T=9. Instantaneous magnitude of vorticity field |ω| at T = 9 in the x = 0 plane
with a 5123 resolution. Global view (left) and close up view (right).

Fig. 4: T=9. Instantaneous isocontours of |ω| for values 1, 5, 10, 20, 30 at T = 9 in
the x = 0 plane with a 5123 resolution. (Left) Present vortex method. (Right) Results
obtained by [12].

4.2 Bi-level results

This section is dedicated to the validation of the anisotropic viscosity model (9)
in the context of the Taylor-Green vortex benchmark. The fractional step algo-
rithm used here is the one given in subsection 3.2. As explained previously, the
bi-level approach consists in using this artificial viscosity model within the in-
compressible (ω,u) Navier-Stokes equations where the vorticity field ω is solved
on a fine grid and where the related velocity field u is filtered so that we only
consider the velocity values on a coarse grid. The velocity filtering is performed
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through the following cutoff filter, defined in the Fourier space:

fk∆
(|k|) = 1 if |k| ≤ k∆ =

π

∆
(15)

0 otherwise (16)

where ∆ is the filter size. In the simulations performed below we consider a 643

coarse mesh size for the velocity calculations and a 2563 fine mesh size for the
vorticity field. In this case the filter size is therefore equal to ∆ = 4h where h,
the fine grid step, is equal to L/256.

Fig. 5(a) shows enstrophy evolution curves obtained with model (9) for dif-
ferent values of the constant C. This parametric study on constant C is carried
out between T = 0 and T = 10. This time range is of great importance since
it corresponds to the moments when the vortices roll-up and start to interact
with each others under the influence of the vortex stretching, leading to the for-
mation of regions of high energy dissipation, until the maximum of dissipation
is reached (T ≈ 9) and kinetic energy is dissipated into heat under the action
of molecular viscosity. It emerges from the results given in Fig. 5(a) that the
artificial viscosity model (9) set with C = 0.04 manages to capture the correct
behavior of the flow, especially at the peak of energy dissipation between T = 8
and T = 10. The enstrophy evolution obtained with C = 0.04 is reported in Fig.
5(b) and compared to the DNS result (red and blue solid lines respectively).
We also plotted in this figure the curves corresponding to the same simulations
where the small scales of the vorticity field have also been filtered only for the
evaluation of the enstrophy (denoted “Z” in the figure caption), so that Z is
defined on the coarse 643 grid (red and blue dashed lines). Fig. 5(b) thus clearly
highlights the fact that the model (9), represented by the solid red curve, is
between DNS (solid blue curve) and LES (dashed curves) since it allows to take
into account the small-scales of the vorticity field.

(a) (b)

Fig. 5: Enstrophy as a function of time for DNS vs model (9) with (a) different values
of C, (b) filtered vorticity values for enstrophy Z evaluation.
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Simulations based on model (9) were also performed with a 5123 − 1283 bi-
level resolution, setting C = 0.04. Fig. 6 compares the contours of |ω| obtained
respectively at T = 8 and T = 9 with a 2563 − 643 and a 5123 − 1283 bi-level
resolution to the contours obtained with DNS based on a 5123 resolution. These
figures show that the contours obtained with model (9) and a 5123 − 1283 res-
olution are very close in a qualitative point of view to the one given by the
Direct Numerical Simulations obtained at 5123, without spurious vortex struc-
tures. These results confirm the capability of the proposed anisotropic artificial
viscosity model to adequately resolve the large scales of the flow.

T=8

T=9

Fig. 6: Contours of |ω| in the YZ plane at x = 0 obtained through the artificial viscosity
model (9) (C = 0.04) at T = 8 and T = 9 with a 2563 − 643 bi-level resolution (left)
and a 5123 − 1283 resolution (center). They are compared to the DNS results obtained
with a 5123 resolution (right).

5 Conclusion

In this work, a hybrid vortex method has been employed to simulate a three-
dimensional flow. One original feature of this vortex method relies in the remesh-
ing process. The particle advection-redistribution is indeed performed direction
by direction, which allows significant computational savings in 3D compared to
classical tensorial approaches. The present method has been first validated in the
context of Direct Numerical Simulations, showing low numerical diffusion and
good agreements with purely grid based high order methods. An anisotropic
eddy viscosity model has also been presented in the context of this remeshed
vortex method. The results obtained with such model for bi-level simulations
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constitute an encouraging preliminary study, which has to be tested on other 3D
flow types.

Among the next tasks to consider, the main one would consist in dealing
with multi-scale problems on hybrid CPU-GPU architecture in order to signifi-
cantly enhance the computational performances. In practice, we aim to dedicate
the high resolution vorticity transport/stretching sub-problems on multi-GPU’s
while solving the diffusion and Poisson equations on multi-CPU’s with a velocity
field defined on a coarse grid. This strategy would therefore require interpolation
operations between the two coupled flow quantities.
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