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Abstract. This work presents Direct Numerical Simulation of mass transfer from

buoyancy-driven bubbles rising in a wall-confined vertical channel, through a

multiple markers level-set method. The Navier-Stokes equations and mass trans-

fer equation are discretized using a finite volume method on a collocated unstruc-

tured mesh, whereas a multiple markers approach is used to avoid the numerical

coalescence of bubbles. This approach is based on a mass conservative level-set

method. Furthermore, unstructured flux-limiter schemes are used to discretize the

convective term of momentum equation, level-set advection equations, and mass

transfer equation, to improve the stability of the solver in bubbly flows with high

Reynolds number and high-density ratio. The level-set model is used to research

the effect of bubble-bubble and bubble-wall interactions on the mass transfer from

a bubble swarm rising in a vertical channel with a circular cross-section.

Keywords: Mass transfer · Bubbly flow · Vertical channel · Flux-limiters · Un-

structured meshes · Level-set method · Finite volume method · High-Performance

Computing.

1 Introduction

Mass transfer in bubbly flows is a ubiquitous phenomenon in natural and industrial

applications. For example, bubble columns are used in chemical engineering to pro-

mote chemical reactions, as well as to improve heat and mass transfer rates. There-

fore, understanding this phenomenon has both practical and scientific motivations. As
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a complement to theoretical and experimental approaches, the development of super-

computers has promoted High-Performance computing (HPC) and Direct Numerical

Simulation (DNS) of Navier-Stokes equations, as another methodology to design non-

invasive and controlled numerical experiments of bubbly flows. Indeed, during the

last decades multiple numerical methods have been introduced for DNS of two-phase

flows: volume-of-fluid (VOF) methods [26], level-set (LS) methods [33,36], conser-

vative level-set (CLS) methods [32,4], front tracking (FT) methods [42], and hybrid

VOF/LS methods [37,39,7]. Furthermore, some of these numerical approaches have

been extended to include heat transfer or mass transfer phenomenon in two-phase flows

[21,14,3,15,20,12]. On the other hand, few works have reported DNS of mass transfer

in bubble swarms [2,35,29,12]. Although previous publications have researched mass

transfer from bubbles rising on unconfined domains by using VOF, LS, VOF/LS, and FT

methods, there are no previous studies in the context of wall-confined vertical columns

and CLS method. Therefore, this work aims to present a numerical study of mass trans-

fer from bubbles rising in a vertical pipe, in the framework of a multiple-marker CLS

methodology introduced by [5,9,12]. As further advantages, the CLS method [4,12] was

designed for three-dimensional collocated unstructured meshes, whereas the accumula-

tion of mass conservation error inherent to standard level-set methods is circumvented.

Moreover, unstructured flux-limiters schemes as first introduced in [4,8,12], are used

to discretize convective terms of transport equations, in order to avoid numerical oscil-

lations around discontinuities and to minimize the so-called numerical diffusion. This

numerical approach has demonstrated to improve the numerical stability of the unstruc-

tured multiphase solver [4,5,6,7,8,12] for bubbly flows with high Reynolds number and

high-density ratio.

This paper is organized as follows: The mathematical model and numerical methods

are reviewed in section 2. Numerical experiments are presented in section 3. Concluding

remarks and future work are discussed in section 4.

2 Mathematical model and numerical methods

2.1 Incompressible two-phase flow

The Navier-Stokes equations for the dispersed fluid (Ωd) and continuous fluid (Ωc) are

introduced in the framework of the so-called one-fluid formulation [42], which includes

a singular source term for the surface tension force at the interface Γ [42,4,12]:

∂

∂t
(ρv) +∇ · (ρvv) = −∇p+∇ · µ (∇v) +∇ · µ(∇v)T + (ρ− ρ0)g + fσ, (1)

∇ · v = 0, (2)

where v is the fluid velocity, p denotes the pressure field, g is the gravitational accelera-

tion, ρ is the fluid density, µ is the dynamic viscosity, fσ is the surface tension force per

unit volume concentrated at the interface, subscripts d and c denote the dispersed phase

and continuous phase respectively. Physical properties are constant at each fluid-phase

with a jump discontinuity at Γ :

ρ = ρdHd + ρcHc, µ = µdHd + µcHc. (3)

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_45

https://dx.doi.org/10.1007/978-3-030-22747-0_45


DNS of mass transfer from bubbles rising in a vertical channel 3

Here Hc is the Heaviside step function that is one at fluid c (Ωc) and zero elsewhere,

whereasHd = 1−Hc. At discretized level a continuous treatment of physical properties

is adopted in order to avoid numerical instabilities around Γ . The force −ρ0g included

in Eq. (1), with ρ0 = V −1
Ω

∫

Ω
(ρdHd + ρcHc) dV , avoids the acceleration of the flow

field in the downward vertical direction, when periodic boundary conditions are applied

on the y−axis (aligned to g) [22,5,9,12].

2.2 Multiple marker level-set method and surface tension

The conservative level-set method (CLS) introduced by [4,8,12] for interface captur-

ing on three-dimensional unstructured meshes, is used in this work. Furthermore, the

multiple markers approach [19,5] as introduced in [5,8,12] for the CLS method, is em-

ployed to avoid the so-called numerical coalescence inherent to standard interface cap-

turing methods. In this context, each bubble is represented by a CLS function [5,8,9,12],

whereas the interface of the ith fluid particle is defined as the 0.5 iso-surface of the CLS

function φi, with i = 1, 2, ..., nd and nd defined as the total number of bubbles in Ωd.

Since the incompressibility constraint (Eq. 2), the ith interface transport equation can

be written in conservative form as follows:

∂φi
∂t

+∇ · φiv = 0, i = 1, .., nd. (4)

Furthermore, a re-initialization equation is introduced to keep a sharp and constant CLS

profile on the interface:

∂φi
∂τ

+∇ · φi(1− φi)n
0
i = ∇ · ε∇φi, i = 1, .., nd. (5)

where n0
i denotes ni at τ = 0. This equation is advanced in pseudo-time τ up to achieve

the steady state. It consists of a compressive term, φi(1− φi)n
0
i , which forces the CLS

function to be compressed onto the interface along the normal vector ni. Furthermore,

the diffusive term, ∇ · ε∇φi, keeps the level-set profiles with characteristic thickness

ε = 0.5h0.9, where h is the grid-size [4,8,12]. Geometrical information at the interface,

such as normal vectors ni and curvatures κi, are computed from the CLS function:

ni(φi) =
∇φi

‖∇φi‖
, κi(φi) = −∇ · ni, i = 1, .., nd. (6)

Surface tension forces are calculated by the continuous surface force model [16], ex-

tended to the multiple marker CLS method in [5,8,9,12]:

fσ =

nd
∑

i=1

σκi(φi)∇φi. (7)

where σ is the surface tension coefficient. Finally, in order to avoid numerical instabili-

ties at the interface, fluid properties in Eq. (3) are regularized by using a global level-set

function φ [5,8,12], defined as follows:

φ = min{φ1, ..., φnd
}. (8)
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Thus, Heaviside functions presented in Eq.(3) are regularized as Hd = 1 − φ and

Hc = φ. In this work 0 < φ ≤ 0.5 for Ωd, and 0.5 < φ ≤ 1 for Ωc. On the other

hand, if 0.5 < φ ≤ 1 for Ωd and 0 < φ ≤ 0.5 for Ωc, then Hd = φ, Hc = 1 − φ,

and φ = max{φ1, ..., φnd
} [12]. Further discussions on the regularization of Heaviside

step function and Dirac delta function, as used in the context of the CLS method, are

presented in [12].

2.3 Mass transfer

This research focuses on the simulation of external mass transfer from bubbles rising

in a vertical channel. Therefore, a convection-diffusion-reaction equation is used as a

mathematical model for the mass transfer of a chemical species inΩc, as first introduced

in [12]:
∂C

∂t
+∇ · (vC) = ∇ · (D∇C) + ṙ(C), (9)

where C is the chemical species concentration, D is the diffusion coefficient or diffu-

sivity which is equal to Dc in Ωc and Dd elsewhere, ṙ(C) = −k1C denotes the overall

chemical reaction rate with first-order kinetics, and k1 is the reaction rate constant. In

the present model, the concentration inside the bubbles is kept constant [20,35,2,12],

whereas convection, diffusion and reaction of the mass dissolved from Ωd exists only

in Ωc.

As introduced by [12], the concentration (CP ) at the interface cells is computed by

linear interpolation, using information of the concentration field from Ωc (excluding

interface cells), and taking into account that the concentration at the interface CΓ is

constant. As a consequence, the concentration at the interface is imposed like a Dirichlet

boundary condition, whereas Eq.(9) is computed in Ωc.

2.4 Numerical methods

The transport equations are solved with a finite-volume discretization on a collocated

unstructured mesh, as introduced in [4,8,12]. For the sake of completeness, some points

are reviewed in this manuscript. The convective term of momentum equation (Eq. (1)),

CLS advection equation (Eq. (4)), and mass transfer equation for chemical species (Eq.

(9)), is explicitly computed approximating the fluxes at cell faces with a Total Variation

Diminishing (TVD) Superbee flux-limiter scheme proposed in [4,12]. Diffusive terms

of transport equations are centrally differenced [12], whereas a distance-weighted linear

interpolation is used to find the cell face values of physical properties and interface

normals, unless otherwise stated. Gradients are computed at cell centroids by means of

the least-squares method using information of the neighbor cells around the vertexes

of the current cell (see Fig. 2 of [4]). For instance at the cell ΩP , the gradient of the

variable ψ = {vj , C, φi, φi(1− φi), ...} is calculated as follows:

(∇ψ)P = (MT WM)−1MT WY, (10)

M and Y are defined as introduced in [4], W = diag(wP→1, .., wP→n) is the weight-

ing matrix [28,31], defined as the diagonal matrix with elements wP→k = {1, ||xP −
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xk||
−1}, k = {1, .., n}, and subindex n is the number of neighbor cells. The impact

of the selected weighting coefficient (wP→k) on the simulations is evaluated in Section

3.1. The compressive term of the re-initialization equation (Eq. (5)) is discretized by

a central-difference scheme [12]. The resolution of the velocity and pressure fields is

achieved by using a fractional-step projection method [18]. In the first step a predictor

velocity (v∗) is computed at cell-centroids, as follows:

ρv∗ − ρnvn

∆t
= Cn

v + Dn
v + (ρ− ρ0)g +

nd
∑

i=1

σκi(φi)∇hφi, (11)

where super-index n denotes the previous time step, Dv(v) = ∇h · µ∇hv + ∇h ·
µ(∇hv)T , and Cv(ρv) = −∇h · (ρvv). In a second step a corrected velocity (v) is

computed at cell-centroids:

ρv − ρv∗

∆t
= −∇h(p), (12)

Imposing the incompressibility constraint (∇h · v = 0) to Eq. (12) leads to a Poisson

equation for the pressure field at cells, which is computed by using a preconditioned

conjugate gradient method:

∇h ·

(

1

ρ
∇hp

)

=
1

∆t
∇h · (v∗) , e∂Ω · ∇hp|∂Ω = 0. (13)

Here, ∂Ω denotes the boundary of Ω, excluding the periodic boundaries, where in-

formation of the corresponding periodic nodes is employed. Finally, to fullfill the in-

compressibility constraint, and to avoid the pressure-velocity decoupling on collocated

meshes [34], a cell-face velocity vf [4,8] is interpolated to advect momentum (Eq.

(1)), CLS functions (Eq. (4)), and concentration (Eq. (9)), as explained in Appendix

B of [8]. Temporal discretization of advection equation (Eq. (4)) and re-initialization

equation (Eq. (5)) is done by using a TVD Runge-Kutta method [23]. Reinitialization

equation (Eq. (5)), is solved for the steady state, using two iterations per physical time

step [4,7,12].

Special attention is given to the discretization of convective (or compressive) term

of transport equations. The convective term is approximated at ΩP by (∇h · βψc)P =
1
VP

∑

f βfψfcf ·Af , where VP is the volume of the current cellΩP , subindex f denotes

the cell-faces, Af = ||Af ||êf is the area vector, c = {v, no
i }, as introduced in [4,12].

Indeed, computation of variables ψ = {φi, φi(1 − φi), vj , C, ...} at the cell faces (ψf )

is performed as the sum of a diffusive upwind part (ψCp
) plus an anti-diffusive term

[4,8,12]:

ψf = ψCp
+

1

2
L(θf)(ψDp

− ψCp
). (14)

where L(θf ) is the flux limiter, θf = (ψCp
− ψUp

)/(ψDp
− ψCp

), Cp is the upwind

point, Up is the far-upwind point, andDp is the downwind point [12]. Some of the flux-

limiters implemented on the unstructured multiphase solver [4,5,6,7,8,9,12], have the

forms [40]:










max{0,min{2θf , 1},min{2, θf}} Superbee,

1 CD,

0 Upwind.

(15)
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Using TVD Superbee flux-limiter in the convective term of momentum equation bene-

fits the numerical stability of the unstructured multiphase solver [4,5,6,7,8,9,12], espe-

cially for bubbly flows with high-density ratio and high Reynolds numbers, as demon-

strated in our previous works [5,9]. Furthermore, (φi)f in the convective term of Eq.(4)

is computed using a Superbee flux-limiter (Eq.(15)). Nevertheless, other flux-limiters,

e.g., TVD Van-Leer flux limiter, can be also employed as demonstrated in [12]. Regard-

ing the variable (φi(1 − φi))f of the compressive term in Eq.(5), it can be computed

by a central-difference limiter (CD in Eq.15), or equivalently by linear interpolation as

detailed in Appendix A of [12]. The last approach is used in present simulations. The

reader is referred to [4,5,6,8,9,12] for additional technical details on the finite-volume

discretization of transport equations on collocated unstructured grids, which are beyond

the scope of the present paper. Numerical methods are implemented in the framework

of the parallel C++/MPI code TermoFluids [41]; whereas the parallel scalability of the

multiple marker level-set solver is presented in [9,12].

3 Numerical experiments

Validations, applications and extensions of the unstructured CLS method [4] are re-

ported in our previous works, for instance: dam-break problem [4], buoyancy-driven

motion of single bubbles on unconfined domains [4,6,7], binary droplet collision with

bouncing outcome [5], drop collision against a fluid interface without coalescence [5],

bubbly flows in vertical channels [9,11], falling droplets [10], energy budgets on the bi-

nary droplet collision with topological changes [1], Taylor bubbles [24,25], gas-liquid

jets [38], thermocapillary migration of deformable droplets [7,13], and mass transfer

from bubbles rising on unconfined domains [12]. Furthermore, a comparison of the un-

structured CLS method [4] and coupled volume-of-fluid/level-set method [7] is reported

in [10]. Therefore, this research can be considered as a further step for simulating mass

transfer from buoyancy-driven bubbly flows in a wall confined vertical channel.

The hydrodynamics of bubbly flows in a vertical channel can be characterized by

the following dimensionless numbers [17]:

Mo =
gµ4

c∆ρ

ρ2cσ
3
, Eo =

gd2∆ρ

σ
, Rei =

ρcUT id

µc

,

ηρ =
ρc
ρd
, ηµ =

µc

µd

, Cr =
DΩ

d
, α =

Vd
VΩ

, (16)

where, ηρ is the density ratio, ηµ is the viscosity ratio, Mo is the Morton number, Eo
is the Eötvös number, Re is the Reynolds number, d is the initial bubble diameter,

∆ρ = |ρc − ρd| is the density difference between the fluid phases, subscript d denotes

the dispersed fluid phase, subscript c denotes the continuous fluid phase, α is the bubble

volume fraction,Cr is the confinement ratio,DΩ is the diameter of the circular channel,

Vd is the volume of bubbles (Ωd), VΩ is the volume of Ω, and t∗ = t
√

g/d is the

dimensionless time. Numerical results will be reported in terms of the so-called drift

velocity [22,12], UT i(t) = (vi(t)− vΩ(t)) · êy , which can be interpreted as the bubble

velocity with respect to a stationary container, vi(t) is the velocity of the ith bubble,

vΩ(t) is the spatial averaged velocity in Ω.
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Fig. 1. Mass transfer from a single bubble, Eo = 3.125, Mo = 1 × 10−6, ηρ = ηµ = 100,

Sc = 20, Da = 0 and α ≈ 0%. Grid size h = {d/35(−), d/30(−−), d/25(−·)}. (a) Time

evolution of Reynolds number (Re), normalized surface of the bubble (A∗(t)), Sherwood number

(Sh(t)), and mass conservation error (Eφ =
∫
Ω
(φ(x, t)−φ(x, 0))dV/

∫
Ω
φ(x, 0)dV ). Gradients

evaluation (Eq.(10)) with wP→k = 1 (red lines) and wP→k = ||xP − xk||
−1 (black lines). (b)

Sherwood number for Sc = {20(−), 10(−−), 5(−·), 1(··)} with a figure of mass concentration

contours for Sc = 1, and comparison of present results against correlations [43,30].

Mass transfer with chemical reaction (first-order kinetics ṙ(C) = −k1C) can be

characterized by the Sherwood number (Sh), Schmidt number (Sc) or Peclet number

(Pe), and the Damköler (Da) number, defined in Ωc as follows:

Sh =
kcd

Dc

, Sc =
µc

ρcDc

, P e =
UTd

Dc

= ReSc, Da =
k1d

2

Dc

. (17)

where kc is the mass transfer coefficient at the continuous fluid side.

3.1 Validation and sensitivity to gradients evaluation

In our previous work [12], extensive validation of the level-set model for mass transfer

in bubbly flows has been presented. Here, the sensitivity of numerical simulations re-

spect to gradients evaluation is researched, by simulating the mass transfer from a single

buoyancy-driven bubble on an unconfined domain. Ω is a cylinder with height HΩ =
10d and diameter DΩ = 8d, where d is the initial bubble diameter. Ω is discretized by
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Fig. 2. Mass transfer from a bubble swarm (16 bubbles) in a periodic channel with circular cross-

section, Eo = 3.125, Mo = 5 × 10−6, ηρ = ηµ = 100, Sc = 1, Da = 7.97, α = 13.4%.

Vorticity (ωz = ez ·∇×v) and concentration (C) on the plane x−y at (a) t∗ = tg1/2d−1/2 = 6.3,

(b) t∗ = 12.5, (c) t∗ = 37.6.

three unstructured meshes with {4.33 × 106(M1), 3.65 × 106(M2), 1.5 × 106(M3)}
triangular-prisms control volumes, distributed on 192 CPU-cores. Meshes are concen-

trated around the symmetry axis y, in order to maximize the bubble resolution, whereas

the grid size in this region corresponds to h = {d/35(M1), d/30(M2), d/25(M3)}.
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Fig. 3. Mass transfer from a bubble swarm (16 bubbles) in a periodic channel with circular cross-

section, Eo = 3.125, Mo = 5 × 10−6, ηρ = ηµ = 100, Sc = 1, α = 11.8%. Time evolution

of Reynolds number (Re) for each bubble (black lines), averaged Reynolds number (bold contin-

uous line), time-averaged Reynolds number (red discontinuous line), normalized bubble surface

A∗

i (t), total interfacial surface of bubbles A∗(t) =
∑nd

i=1
A∗

i (t), spatial averaged concentration

Cc = V −1

c

∫
Ωc

CdV , and Sherwood number Sh(t).

Neumann boundary-condition is applied at lateral, top and bottom walls. The initial

bubble position is (x, y, z) = (0, 1.5d, 0), on the symmetry axis y, whereas both fluids

are initially quiescent.

Mass transfer coefficient (kc) in single rising bubbles is calculated from a mass-

balance for the chemical species in Ωc, as follows [12]:

kc(t) =
Vc

Ad(CΓ,c − C∞)

dCc

dt
, (18)

where Cc = V −1
c

∫

Ωc
C(x, t)dV , Ad =

∫

Ω
||∇φ||dV is the interfacial surface of the

bubble, Vc is the volume of Ωc, CΓ,c is the constant concentration on the bubble inter-

face from the side of Ωc, and C∞ = 0 is the reference concentration. Dimensionless

parameters are Eo = 3.125, Mo = 1 × 10−6, Da = 0, Sc = {1, 5, 10, 20}, ηρ = 100
and ηµ = 100.

Fig.1a shows the time evolution of Reynolds number (Re), normalized interfacial

surface (A∗(t)), Sherwood number (Sh(t)), and mass conservation error (Eφ), The

grid-independence study shows that h = d/35 is enough to perform accurate predic-

tions of hydrodynamics and mass transfer from single bubbles. Furthermore, the effect
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Fig. 4. Mass transfer from a bubble swarm (16 bubbles) in a periodic channel with circular cross-

section, Eo = 3.125, Mo = 5 × 10−6, ηρ = ηµ = 100, Sc = 1, α = 11.8%. (a) 3D bubble

trajectories. (b) Projection of bubble trajectories on the plane x − z. (c) Projection of bubble

trajectories on the plane x − y and z − y. Here RΩ = 0.5DΩ is the radius of the cylindrical

channel, (x∗, y∗, z∗) = (x/RΩ , y/RΩ, z/RΩ).

of gradients evaluation (Eq.(10)) on the simulations, is depicted for weighting factors

wP→k = 1 (red lines) and wP→k = ||xP − xk||
−1 (black lines). It is observed that

numerical results are very close, whereas the numerical stability is maintained indepen-

dently of the selected weighting factor. In what follows wP→k = ||xP − xk||
−1 will

be employed. Fig.1b depicts the effect of Schmidt number on the Sherwood number,

as well as a comparison of present results against empirical correlations from litera-

ture [43,30]. These results also give a further validation of the model for mass transfer

coupled to hydrodynamics in buoyancy-driven bubbles.

3.2 Mass transfer from a bubble swarm rising in a vertical channel

As a further step and with the confidence that the CLS model has been validated [12],

the mass transfer from a bubble swarm rising in a vertical pipe, is computed. The satu-

ration of concentration inΩc is avoided by the chemical reaction term in Eq.(9) [35,12].

On the other hand, the mass transfer coefficient (kc) in Ωc is computed by using a mass

balance of the chemical species at steady state (dCc/dt = 0), as follows [12]:

kc =
Vck1Cc

(CΓ,c − Cc)
∑nd

i=1Ai

(19)
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whereAi =
∫

Ω
||∇φi||dV is the surface of the ith bubble, and Cc = V −1

c

∫

Ωc
CdV . Ω

is a periodic cylindrical channel, with height HΩ = 4d and diameter DΩ = 4.45d, as

depicted in Fig. 2.Ω is discretized by 9.3×106 triangular-prisms control volumes, with

grid size h = d/40, distributed on 960 CPU-cores. Periodic boundary conditions are

used on the x−z boundary planes. On the wall, no-slip boundary condition for velocity,

Dirichlet boundary condition for CLS markers (φi = 1), and Neumann boundary con-

dition for C. Bubbles are initially distributed in Ω following a random pattern, whereas

fluids are quiescent. Since fluids are incompressible and bubble coalescence is not al-

lowed, the void fraction (α = Vd/VΩ) and number of bubbles are constant throughout

the simulation.

Dimensionless parameters are Eo = 3.125, Mo = 5× 10−6, Sc = 1, Da = 7.97,

ηρ = 100, ηµ = 100, α = 13.4% and Cr = 4.45, which corresponds to a bub-

bly flow with 16 bubbles distributed in Ω. Fig. 2 illustrates the mass transfer from a

swarm of 16 bubbles at t∗ = {6.26, 37.6}. Concentration contours (C), and vortic-

ity contours (ωz = êz · ∇ × v) are shown on the plane x − y. Fig. 3 depicts the

time evolution of Reynolds number for each bubble and the time-averaged Reynolds

number (discontinuous line), normalized bubble surface A∗

i (t), total surface of bub-

bles A∗(t) =
∑nd

i=1A
∗

i (t), spatial averaged chemical species concentration (Cc) in Ωc,

and Sherwood number Sh(t) at steady state (dCc/dt = 0). Fig. 3 shows that Rei(t)
presents fluctuations, due to oscillations in the bubble shapes (see Ai(t)), and bubble-

bubble interactions such as bouncing interaction, and the so called drafting, kissing

and tumbling processes [5,9,10]. On the other hand, the Reynold number of the bubble

swarm, R̄e = n−1
d

∑nd

i=1 Rei(t), achieves the steady-state. The spatial averaged con-

centration (Cc) tend to the steady-state after a short transient, indicating an equilibrium

between mass transfer from the bubbles and chemical reaction in Ωc. Furthermore, the

mass transfer coefficient (Sh) achieves the steady-state, once dCc/dt = 0. Finally, Fig.

4 depict bubble trajectories, which indicate a bubble-wall repulsion effect.

4 Conclusions

DNS of mass transfer from buoyancy-driven bubbles rising in a vertical channel has

been performed using a parallel multiple marker CLS method [5,9,12]. These numer-

ical experiments demonstrate the capabilities of the present approach, as a reliable

method for simulating bubbly flows with mass transfer and chemical reaction in ver-

tical channels, taking into account bubble-bubble and bubble-wall interactions in long

time simulation of bubbly flows. The method avoids the numerical merging of bubble

interfaces, which is an issue inherent to standard interface capturing methods. Inter-

actions of bubbles include a repulsion effect when these are horizontally aligned or

when bubbles interact with the wall, whereas two bubbles vertically aligned tend to fol-

low the so-called drafting-kissing-tumbling mechanism observed also in solid particles.

These bubble-bubble and bubble-wall interactions lead to a fluctuating velocity field,

analogous to that observed in turbulence. Nevertheless, the time averaged Reynolds

number (Re) and mass transfer coefficient (Sh) tend to the steady-state. Turbulence

induced by agitation of bubbles promote the mixing of chemical species in the contin-

uous phase, whereas the spatial averaged chemical species concentration tends to the
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steady-state, indicating a balance between chemical reaction in Ωc and mass transfer

from bubbles. These results demonstrate that the multiple marker CLS approach [12] is

a predictive method to compute Sh = Sh(Eo,Re,Da, α, Cr) in bubbly flows rising in

a vertical channel. Future work includes the extension of this model to multicomponent

mass transfer and complex chemical reaction kinetics, as well as parametric studies of

Sh = Sh(Eo,Re,Da, α, Cr) to develop closure relations for models based on the

averaged flow (e.g., two-fluid models [27]).
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