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Abstract. In this paper we discuss an application of the double potential 
method for modelling flow of incompressible fluid. This method allows us to 
avoid the known difficulties in calculating pressure and overcome the instability 
of numerical solution. Also, the double potential method enables us to simplify 
the problem of boundary conditions setting. It arises when computing the in-
compressible fluid flow by the Navier-Stokes equations in the vector potential - 
velocity rotor variables. In the approach given, the final system of equations is 
approximated through applying the finite volume method. In this case, an expo-
nential transformation of the flow terms is applied. A parallel program was de-
veloped by means of using MPI and OpenMP technologies for the purpose of 
the numerical method computer implementation. We used two tasks to test. One 
of them deals with the classical calculation of the fluid flow establishment in a 
long round pipe. The other one is connected with the flow calculation in the 
pipe that in the output region contains a separation into two symmetrical parts. 
To perform numerical simulation, we take into consideration the steady flow 
with Reynolds numbers of 50 and 100. The numerical results obtained are con-
sistent with computational results received through using the ANSYS CFD 
package. 

Keywords: Fluid Flow, Double Potential Method, Navier-Stokes Equations. 

1 Introduction 

Modeling internal flow of viscous incompressible fluid is one of the most important 
and complex problems in continuum dynamics. This challenge implies the great po-
tential to deal with applied tasks. For example, the problem of cleaning aquatic envi-
ronment from impurities of the fine iron ions can be solved by applying the method of 
affecting an electromagnetic field on a collector considered in two-dimensional for-
mulation in [1], [2]. To obtain the distribution of the impurities by the grid method we 
need to have a velocity field in the computational domain. 

When simulating internal flow problems in 2D geometry, the Navier-Stokes model 
is widely used in the stream-vortex function formulation. It allows us to avoid the 
setting limitations in natural variables (speed-pressure). These limitations imply the 
discretization complexity of the equation to determine the pressure field, the high 
instability of the solution to this equation when using numerical simulation cellular 
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methods and no performance guarantee of the mass conservation law [3]. This tech-
nique enables us to reduce the number of dependent variables. To receive the natural 
formulation, we use two coordinates of velocity and pressure. To get the current func-
tion – vortex formulation we have only two scalar variables. 

Many sources suggest the lack of a generalization of such method for the three-
dimensional problem [5-18], but the work [4] shows that it is possible. It is achieved 
through determining the vector potential and the vector vortex like the current func-
tion and the vortex for the two-dimensional variant. It should be noted that in this 
case, the formulation of the boundary conditions for the vector potential is nontrivial. 
The boundary conditions are extremely important for computational hydrodynamics 
and, as it is shown in [4], they have a determining influence on the resulting view of 
flow. To simplify the boundary conditions formulation for incompressible fluid mod-
eling internal flow, the double potential method [19-21], was developed and success-
fully applied in [21]. The approach is discussed in this work. 

2 Mathematical Model 

To simulate the flow of viscous incompressible fluid, we use the Navier-Stokes sys-
tem of equations and the incompressibility condition [3]. The dimensionless formula-
tion of the equations has the f llowing formo : 

  
    


1

,
Re

p
t
u

u u u  (1) 

  0u  (2) 

here u i eed vector, s sp

t

 is a derivative of a function with respect to time, 




 0 0 0Re
u D

 is the Reynolds number, Δ is the Laplace operator,  is the Hamilton 

operator, p is pressure, u0 is characteristic speed of flow, ρ0 is medium density, D0 is 
hydraulic diameter, η is coefficient of dynamic viscosity. 

The system of equations (1), (2) is completed with corresponding boundary and 
initial conditions. They will be presented further when obtaining the system of equa-
tions of the double potential method. Let's consider the main calculations of this 
method. 

From the equation (2) and the rotor property      0rot A , we can write the 

formula for the vector A: 

   rotu A  (3) 
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When condition (3) is fulfilled, vector A is called the vector potential of flow. A 
characteristic feature of the viscous fluid motion is vorticity, which is defined as fol-
lows: 

   rotω u

ion (3) we can write formula 

 (4) 

Basing on the condit     rot rot A .ω  Then, we use 

the rotor property:          rot rot A A A , require that  A 0  [4] and get 

equation to define the vector potential: 

   A ω  (5) 

The equations for calculating the vortex are obtained by the action of the t  opera-
tion on equation (1), then we take the final formula:

ro
 

    
     


1

, ,
Ret

ω
u ω ω u ω  (6) 

So, equations (3)–(6) with the boundary conditions allow us to calculate the velocity 
field in the computational geometry. This method is briefly described in [4] and it has 
applications for solving some problems of computational hydrodynamics. When using 
this method, there is a serious difficulty in setting the boundary condition on the 
vector potential. It can be seen from condition (3). In order to overcome this diffi-
culty, a consequence of the theory of potentials was proposed in [19–21]. Write the 
speed in the form: 

  ሺ ሻrotu A  (7) 

here φ is scalar potential. To satisfy condition (2), it is necessary to require: 

  0  (8) 

This condition is implemented as an equation to calculate the scalar potential. 
The view of the velocity in the form of (7), in accordance with the theory of poten-

tials, allows us to represent the boundary conditions on a simply connected computa-
tional domain for the vector potential in the form [19]: 

 


 


0,nAA
n

  for δΩ (9) 

here A  is the tangent component of the vector potential, nA  is the normal compo-

nent of the vector potential, n is normal to the border, δΩ is boundary of the computa-
tional area. The boundary conditions for the scalar potential are determined as fol-
lows: 
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  








,u n

n
   for δΩ (10) 

here 


u  is the flow velocity of medium across the boundary of the area. It is the 

boundary conditions for speed. The boundary and initial conditions for the vortex are 
determined from expression (4) as follows: 

  
 rotω u   for δΩ, (11) 

  


0t
rotω u   for t=0, (12) 

At last, the final formulation of the problem of flow modeling by the double potential 
method is represented by equations (5) - (8) through using the boundary conditions 
(9) - (11) and the initial conditions (12). 

 

3 Numerical Method for 3D Geometry 

For 3D case, the grid consisting of triangular prisms is constructed in the computa-
tional domain (it is shown in Figure 1). The finite volume method on the centers of 
the prismatic cells is used to approximate the equations by the double potential 
method (5) - (8) [22]. 

 

Fig. 1. Computational domain (at the left) and grid consisting of triangle prisms (at the right). 

To approximate the fluxes across the boundaries of the computational cell, we intro-
duce the following notations (see Fig. 2):  is the volume of the current i-th grid 
element,  is the point of the center of the current i-th element,  is the point of 

iV

ent , 

iP
r of t

ijP
betweethe cente he j neighbor to the i-th elem  is the distance n the centers ijl
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of neighboring cells, j  is the u t direction vector from the center of 

 
directional area of the j-th edge of the i - th element. The num ements 
of a prismatic cell is five. 

 ni

the current elem e neighboring one,  is the 

, ,
Ti ij ij ij

x y zn n nn

ent to the center of th  , ,
Tij ij ij ij

x y zS S SS

ber of adjacent el

 

ponential transfor

Fig. 2. Characteristic  elements. 

To approximate th (6), we apply the ex mation 

 

 grid values for prismatic

e vector equation 
similar to the two-dimensional case in [23] and write the resulting difference expres-
sions: 
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here k, p = x, y, z, W̅kp  is approximation of the special operator that acts on the vortex 

on the j-th face in the i-th cell and it is a (3x3) matrix, ̂ i
p is a difference analog of the 

p-th component of the vortex in the center of the curr  cell at the next time layer, 
ωp

ij is the difference analog of the p-th component of the vortex in the center of the 
current cell at the current time layer, ωp

i is the difference analog of the p-th compo-

nent of the vortex in the center of the current cell on the current time layer, 

ent

ijω  is 

linear interpolation of the vortex in the middle of the face, ij
pu

 Th

 is linear interpolation 

of the p-th coordinate of velocity in the middle of the face. e boundary conditions 
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for the vortex are realized by discretization of the speed rotor with the first order of 
accuracy. 

Further, we write the difference analogues for the equation of the scalar potential 
(8)

 

 and the vector potential (5): 
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here k=x, y, z,  is difference analog of the k-th component of the vector potential 

 a 

ence analogue of the three-dimensional velocity vector is written as 
fo

 

ˆ iA
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k
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here  ˆ ˆ ˆ ˆ, ,i i i i
x y zu u uu  is difference analogue of the velocity vector in the center of the 

t cell.  
lgorithm to calculate the velocity field on 3D prismatic grid is the se-

qu

4 Parallel realization 

To parallelize the numerical method, we use two-level domain decomposition tech-

of the central processors of each node. 

curren
The final a
ential calculations of difference expressions (13) – (17). 
 

nique. At the first level, we divide the computational area into domains in accordance 
with number of the supercomputer system nodes. At the second level, we apply split-
ting of domains into subdomains in accordance with threads implemented in the cores 
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The resulting program code was developed in the C++ programming language us-
ing MPI [24] and OpenMP [25] parallel technologies. 

ors with 6 cores 
10X microprocessors with 61 cores 

 on the prismatic grid with 2500000 cells for 
sim  shown in Fig. 3. They show that constructed paral-
lel

MVS-10P Supercomputer of JSCC RAS (see www.jscc.ru) was chosen for testing 
parallel software. The system has parameters: 

- 207 nodes, each includes: 
- 2 x CPU Intel Xeon 2,7 GHz microprocess
- 2 x VPU Intel Xeon Phi 71
- Peak performance is 523.8 TFlops 
- Transfer is FDR InfiniBand 
The results of parallel computations
ple geometry (round tube) are

 software is quite effective (the cylindrical computational domain is shown in 
Fig.1.) 

 

Fig. 3. Comparison of the acceleration and ideal on the prismatic grid with 2500000 cells (at 
the left) and the efficiency and ideal on the prismatic grid with 2500000 cells (at the right). 

ur approach. One of them deals with the classical calcu-
lation of the fluid flow establishment in a long round pipe (see Fig. 1). The other one 

 cylindrical geometry. The bound-
ary

5 Test and Results 

Two tasks were used to test o

is connected with the flow calculation in the pipe that in the output region contains a 
separation into two symmetrical parts (see Fig. 4). 

Let’s consider the first of our tasks. In this case, the well-known stationary 
Poiseuille flow is realized in the three-dimensional

 and initial conditions are written as follows: 

  2 21 ,
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 
0

0,
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y z ,  u
 
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0
y z
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x
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
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0
0

t
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Fig. 4. Longitudinal section of the pipe for z = 0 (at the left) and the pipe cross section for 
 (at the right). 

he test calcula
133632 e steps along the X axis, 1536 triangles at the base in the YZ 
plane. The Reynold number used in the calculation is Re = 100. The Fig. 5–8 show 

r comparison, we present at 
the

 3 6x

T tion was carried out on the prismatic computational grid consisting of 
lements - 87 

the results of calculations. As can be seen from Fig. 5 and Fig. 6, we have got steady 
flow of Poiseuille throughout the volume of the cylinder. 

Let’s consider the solution to the second problem. Here, the numerical simulation 
of the stationary flow was performed for the Reynolds numbers 50 and 100. The ob-
tained numerical results are shown in Fig. 7 and Fig. 8. Fo

 same figures the calculated data obtained through using the ANSYS CFD package 
[26] and based on the traditional SIMPLEC method [4]. Analysis of the results shows 
that qualitatively and quantitatively, the calculations performed by the traditional 
SIMPLEC method and by the double potential method are very close. We could ob-
tain more accurate estimates if setting parameters of the SIMPLEC method were 
known. 

 

Fig. 5. The distribution of the scalar potential (at the left) and velocity modulus (at the right) in 
sections: XY and XZ. 
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Fig. 6. The distribution of z- component of the vector potential in XY section (at the left) and 
the distribution of the velocity module in the array of YZ sections (at the right). 

 

Fig. 7. The distributions of the velocity modulus in the longitudinal section z=0 were calculated 
by SIMPLEC method of the ANSYS CFD software tools for Re=50 (at the top) and with the 
help of double potential method for Re=50 (in the middle section) and Re=100 (below). 
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e distribution of the velocity modulus in the longitudinal section z=0Fig. 8. Th . Distributions of 
the velocity modulus in cross sections YZ for Re = 50, calculated in ANSYS CFD using the 
SIMPLEC method (at the top) and calculated by the double potential method (at the bottom). 

-
pressible fluid internal flows. The main advantage of the method is based on the for-

f the Navier-Stokes equations in the vector potential - vector 
dition to that, it enables us to avoid setting complex boundary 

 

6 Conclusion 

This paper examines the double potential method to calculate the viscous incom

mulation preservation o
vortex variables. In ad
conditions on the vector potential. 

To implement the double potential method, the original difference scheme was de-
veloped. The scheme is based on the finite volume method on cell centers through 
using the flux vector exponential transformation. This scheme realizes both the dou-
ble potential method in the three-dimensional case and its consequence in the two-
dimensional formulation. 

The numerical algorithm obtained was parallelized and the software was imple-
mented in C ++ be means of MPI and OpenMP technologies. The two test problems 
were examined by the generated program code. One of them referring to the classical 
problem deals with the establishing the Poiseuille flow in the long circular pipe. The

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_42

https://dx.doi.org/10.1007/978-3-030-22747-0_42


11 

oth

howed that the double potential method pre-
se

.A03.21.0005. 

tion of Water Purification Processes from Iron Impurities. Preprints of Russian Academy 
 Moscow (2017). 

Karamzin Y. N., Kudryasova T. A and Tarasov N.: I. Mathematical Mod-

Engineering, Volume 

er task deals with calculating the flow in a square tube divided into two symmetri-
cal parts in the outlet region. 

The calculation results demonstrate the great potential to apply the double potential 
method to model viscous incompressible fluid internal flows in technical systems of 
complex three-dimensional geometry. The comparison of the results given with the 
ANSYS CFD package calculated data s

nted allows us to calculate the internal flow of fluid with great accuracy. The paral-
lel implementation of the method in complex geometry enables us to solve tasks of 
this class much faster than be means of standard methods. 
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