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Abstract. We introduce a new parallelizable numerical multiscale method for advection-
dominated problems as they often occur in engineering and geosciences. State of the art
multiscale simulation methods work well in situations in which stationary and elliptic sce-
narios prevail but are prone to fail when the model involves dominant lower order terms
which is common in applications. We suggest to overcome the associated di�culties through
a reconstruction of subgrid variations into a modi�ed basis by solving many independent (lo-
cal) inverse problems that are constructed in a semi-Lagrangian step. Globally the method
looks like a Eulerian method with multiscale stabilized basis. The method is extensible to
other types of Galerkin methods, higher dimensions, nonlinear problems and can potentially
work with real data. We provide examples inspired by tracer transport in climate systems
in one and two dimensions and numerically compare our method to standard methods.

Keywords: Multiscale simulation · Semi-Langrangian method · Advection-dominance ·
Multiscale �nite elements · Advection-di�usion equation.

1 Introduction

1.1 Motivation and Overview

Simulating complex physical processes at macroscopic coarse scales poses many problems to engi-
neers and scientists. Such simulations strive to reflect the effective behavior of observables involved
at large scales even if the processes are partly driven by highly heterogeneous micro scale behavior.
On the one hand hand resolving the microscopic processes would be the safest choice but such
a strategy is often prohibitive since it would be computationally expensive. On the other hand
microscopic processes significantly influence the macroscopic behavior and can not be neglected.

Incorporating micro scale effects into macro simulations in a mathematically consistent way is
a challenging task. There exist many scenarios in different disciplines of science that are faced with
such challenges. In fully coupled paleo climate simulations, i.e., climate simulations over more than
hundred thousand years a typical grid cell can have edge lengths around 200 kilometres and more.
Consequently, subgrid processes such as heterogeneously distributed and moving ice shields are not
or just insufficiently resolved [32]. These subgrid processes are usually taken care of by so-called
parametrizations. One can imagine this as small micro scale simulations that are then coupled to
the prognostic variables such as wind speed, temperature and pressure on the coarse grid (scale of
the dynamical core). This coupling from fine to coarse scales is being referred to as upscaling and is
unfortunately often done in rather heuristic ways. This leads to wrong macroscopic quantities like
wrong pressures and eventually even to wrong wind directions and many more undesired effects
such as phase errors. This demands for mathematically rigorously justified multiscale methods.

Many multiscale methods have been proposed in the past two decades. Among them are the
multiscale Eulerian Lagrangian localized adjoint methods (MsELLAM) which constitute a space-
time finite element framework, see [9,20,35,10]. Homogenization is an originally analytical tool
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to find effective models of otherwise heterogeneous models in the limit of a large scale separa-
tion [5,8,27]. The heterogeneous multiscale method (HMM) was pioneered by E and Enquist [13,36]
and refers to a rich zoo of methods [3,19,18,2,12,1]. Variational multiscale methods (VMM) have
been developed in the 1990s by Hughes and collaborators, see [24,25,4,33]. The spirit of the method
lies in a decomposition of the solution space and in the design of variational forms that reflect the
relevant scale interactions between the spaces.

The present work is inspired by multiscale finite element methods (MsFEM) which can be
seen as a special variant of the VMM. The idea of this method is to introduce subgrid variations
into basis functions and can be dated back to works by Babuška, Caloz and Osborn [6]. It shares
ideas with the partition of unity method [31]. The MsFEM in its current form was introduced
in [23,22,15]. The essential idea of the method is to capture the local asymptotic structure of the
solution through adding problem dependent bubble correctors to a standard basis and use these as
ansatz and trial functions. Many variations of this method exist and we refer the reader to [14,17]
for a review.

Many of the aforementioned methods have the advantage that they work well for elliptic or
parabolic problems and that they are accessible to an analysis. The difficulty in many applications
on the other hand is their advection or reaction dominated character, i.e., the dynamics is often
driven by first or zero order terms. This poses major difficulties to numerical multiscale methods.
Multiscale finite element methods naively applied will not converge to any reasonable solution
since basis functions will exhibit artificial boundary layers that are not present in the actual
physical flow. Ideas to tackle this problem are based on combining transient multiscale methods
with Lagrangian frameworks [34] or with stabilization methods for stationary problems, see [28]
for an overview. A HMM based idea for incompressible turbulent flows can be found in [29]. For a
method based on the VMM see [30]. None of the mentioned methods fully remedies the difficulty
of the undesired loss of the localization principle (inherent to advection-dominated problems) that
is necessary to obtain weakly coupled problems on the subscale. This is the starting point of our
work.

1.2 Contribution

Our main contribution is a framework of numerical methods for advection-dominated flows which
by reconstructing subgrid variations on local basis functions aims at reflecting the local asymp-
totic structure of solutions correctly. The idea combines multiscale Galerkin methods [14,17] with
semi-Lagrangian methods [7,11] by locally solving an inverse problem for the basis representa-
tion of solutions that is adapted to the actual flow scenario. We demonstrate the idea on one
and two-dimensional advection-diffusion equations with heterogeneous background velocities and
diffusivities in both non-conservative and conservative form.

Conformal MsFEM techniques for advection-dominated tracer transport were already explored
in our previous work [34] in one spatial dimension on a transient advection-diffusion equation.
The finding is that one has to follow a Lagrangian point of view on coarse scales such that
flow is “invisible”. On fine scales one can then simplify Lagrangian transforms in order to make
advective effects locally milder without going to a fully Lagrangian setting. This amounts to
prescribing Dirichlet boundary conditions on coarse flow characteristics and has the effect that
basis functions do not develop boundary layers that are not there in the actual flow. While this
work gave some useful insights it is unfortunately not feasible for practical applications since
it suffers from several weaknesses. First, it is not directly generalizable to higher dimensions.
Secondly, it needs assumptions on the background velocity that are not necessarily fulfilled in
practical applications to ensure that coarse scale characteristics do not come to close.

In order to circumvent these problems we suggest a new idea based on a semi-Lagrangian
framework that locally in time constructs a multiscale basis on a fixed Eulerian grid via many
local and independent inverse problems. The construction is done in a semi-Lagrangian fashion
on the subgrid scale whereas the macroscopic scale is conveniently treated as completely Eulerian.
This is in complete contrast to our previous work but still respects that information in advection-
dominant flows is “mostly” propagated along flow characteristics.
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All reconstructions of the basis cells are independent from each other and can be performed in
parallel while the global time step with the modified basis is numerically cheap. Note that although
we formulate the algorithm globally in an implicit form it can well be formulated explicitly which
can make the global step more efficient.

Our new approach is generic, conceptionally new, and has several advantages. First, we can
effectively incorporate subgrid behavior of the solution into the multiscale basis via the solution of
local inverse problems (and possibly even real data). Secondly, the idea works in any dimension.
Numerical tests show that it is accurate in both L2 and H1 since it represents subgrid features
correctly and can handle problems that involve an additional reaction term. This consequently
includes conservation problems.

2 Semi-Lagrangian Multiscale Reconstruction

We will briefly outline and demonstrate our ideas on an advection-diffusion equation (ADE) with
periodic boundaries as a model problem. For the sake of brevity we will focus on d = 1 dimension
for the presentation of the method and mention strategies for its generalization to d = 2 dimensions
on

∂tu+ cδ∂xu = ∂x (Aε∂xu) + f in [0, 1]× [0, T ]

u(x, 0) = u0(x)
(1)

and

∂tu+ ∂x (cδu) = ∂x (Aε∂xu) + f in [0, 1]× [0, T ]

u(x, 0) = u0(x)
(2)

where cδ(x, t) is the background velocity, Aε(x, t) is a diffusivity coefficient, and f and u0 are some
smooth external forcing and initial condition.

The indices δ > 0 and ε > 0 indicate that both quantities may have large variations on small
scales that are not resolved on coarse scales H > 0 of our multiscale method. We will also work
locally on a scale h � H that can resolve the variations in the coefficients. Furthermore, we
assume that cδ � Aε (see remark below) and that cδ is well-behaved, for example C1,1 in space
and continuous in time. This assumption is still practical since, for example, in long term climate
simulations cδ represents as a relatively smooth coarse grid function. Depending on the application
variations in cδ may be resolved on scale H or not. The latter is often the case in subsurface flow
problems whereas the former is the usual case in tracer transport in climate simulations. The
diffusivity which we assume to be Aε ∈ L∞t L∞x often comes from parametrized processes and is
furthermore assumed to be positive definite (uniformly in ε and point-wise in x). Note, that (1)
does not conserve the tracer u in contrast to equation (2).

Remark. Advection-dominance of a flow (what we sloppily expressed by cδ � Aε) is usually ex-
pressed by a dimensionless number – the Péclet number Pe – which is essentially the ratio between
advective and diffusive time scales. There exist several versions of this number [26]. Since for large
variations of the coefficients on the subgrid scale advection-dominance is a very local property we
need to be more precise with what me mean by that. Here we assume that Pe is high on average, i.e.,

Fig. 1: Global coarse mesh and local �ne mesh in
1D.

Pe =
‖cδ‖L2L

‖Aε‖L2
where L is a characteristic length. We take

L to be the length of the computational domain and
construct our test examples such that the Pe is high on
average but also such that relevant phenomena will occur
far below the reference.

We focus on outlining our method in one dimension
since the idea is simple and avoids complications that
arise in higher dimensions. The idea is to represent non-
resolved fine scale variations of the solution locally on a
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set of non-polynomial basis functions in each coarse cell. That is we fix two (Eulerian) meshes: A
coarse mesh TH of width H and on each cell K ∈ TH of the coarse mesh we have a fine mesh T Kh
of width h � H. On the coarse mesh we have a multiscale basis ϕH,ms

i : [0, 1] × [0, T ] → R, i =
1, . . . , NH , where NH is the number of nodes of TH . This basis depends on space and time and will
be constructed so that we will obtain a spatially H1-conformal (multiscale) finite element space.
Note that this is a suitable space for problems (1) and (2) since they have unique solutions u ∈
L2([0, T ], H1([0, 1])) with ∂tu ∈ L2([0, T ], H−1([0, 1])) and hence in u ∈ C([0, T ], L2([0, 1])) [16].
The initial condition u0 can therefore be assumed to be in L2([0, 1]). The fine mesh on each cell
K ∈ TH is used to represent the basis locally, see Figure 1.

Standard MsFEMmethods are designed so that the basis functions solve the PDE model locally
with appropriate boundary conditions (often Dirichlet). Their choice is crucial. If we now replace
the standard basis by these functions the true local asymptotic structure of the global solution is
represented since the global solution is a linear combination of modified local basis functions that
do reflect the asymptotics. This works for stationary elliptic problems and for parabolic problems
as long as there is no advective term involved. The reason is that advective terms like in our model
problems prevent a basis constructed by a standard MsFEM to contain the correct asymptotics
since flow of information is artificially blocked at coarse cell boundaries. This forms artificial steep
boundary layers in basis functions and displays local behavior that is not there in the actual global
flow. For transient problems another difficulty is that the local asymptotics around a point depends
on the entire domain of dependence of this point and hence there must be some “memory” on the
basis.

The results of [34] suggest that a coarse numerical splitting of the domain must correspond
to a reasonable physical splitting of the problem. Instead of a fully Lagrangian method on coarse
scales a semi-Lagrangian method is used to construct a basis to circumvent the difficulties of pure
Lagrangian techniques. But these are only local in time and therefore they do not take into account
the entire domain of dependence of a point. We show how to deal with this in the following. First,
we start with the global problem.

2.1 The global time step

Suppose we already know a set of multiscale basis functions in a conformal finite element setting,
i.e., we approximate the global solution at each time step in a spatially coarse subspace V H(t) ⊂
H1([0, 1]) in which the solution u is sought. We denote this finite-dimensional subspace as

V H(t) = span
{
ϕH,ms
j (·, t)

∣∣∣ i = 1, . . . , NH

}
. (3)

First, we expand the solution uH(x, t) in terms of the basis at time t ∈ [0, T ], i.e.,

uH(x, t) =

NH∑
j=0

uHj (t)ϕH,ms
j (x, t) . (4)

Then we test with the modified basis and integrate by parts. Therefore, the spatially discrete
version of both problem (1) and (2) becomes the ODE

M(t)
d

dt
uH(t) +N(t)uH(t) = A(t)uH(t) + fH(t)

uH(0) = uH,0
(5)

where

Aij(t) =

∫
[0,1]

ϕH,ms
i (x, t) · Aε(x, t)∂xϕH,ms

j (x, t) − ϕH,ms
i (x, t)cδ(x, t)∂xϕ

H,ms
j (x, t) dx (6)
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known

can be reconstructed

unknown

Fig. 2: The �ne mesh in each cell K ∈ TH is traced back one time step where the known solution can be used to reconstruct
a basis representation of the solution.

for (1) and

Aij(t) =

∫
[0,1]

ϕH,ms
i (x, t) · Aε(x, t)∂xϕH,ms

j (x, t) + ∂xϕ
H,ms
i (x, t)cδ(x, t)ϕ

H,ms
j (x, t) dx (7)

for (2). The mass matrix is given by

Mij(t) =

∫
[0,1]

ϕH,ms
i (x, t)ϕH,ms

j (x, t) dx , (8)

fH(t) contains forcing and boundary conditions and the initial condition uH,0 is the projection of
u0 ∈ L2([0, 1]) onto V H(0). Note that (5) contains a derivative of the mass matrix:

Nij(t) =

∫
[0,1]

ϕH,ms
i (x, t)∂tϕ

H,ms
j (x, t) dx . (9)

This is necessary since the basis functions depend on time and since we discretized in space first.
For the time discretization we simply use the implicit Euler method. The discrete ODE then

reads
M(tn)un+1 = M(tn)un + δt

[
A(tn+1)un+1 −N(tn+1)un+1 + fH(tn)

]
. (10)

Other time discretization schemes, in particular, explicit schemes are of course possible but may
involve conditions on the time step size that originate from the (space-time local) transformation
to Lagrangian coordinates. We pass on elaborating this here for the sake of brevity. For didactic
reasons we therefore choose to present the algorithm in an implicit version. The next step is to
show how to construct the multiscale basis.

Convention. Quantities marked with a tilde like x̃ signalize (semi-)Lagrangian quantities.

2.2 The Reconstruction Mesh

Our idea combines the advantage of both semi-Lagrangian and multiscale methods to account
for dominant advection. The reconstruction method is based on the simple observation that local
information of the entire domain of dependence is still contained in the global solution at the
previous time step. This can be used to construct an Eulerian multiscale basis: we trace back
an Eulerian cell K ∈ TH at time tn+1 on which the solution and the basis are unknown to the
previous time step tn. This gives a distorted cell K̃ over which the solution un is known but not
the multiscale basis ϕ̃i, i = 1, 2.

In order to find the points where transported information originates we trace back all nodes
in T KH from time tn+1 to tn. For this one simply needs to solve an ODE with the time-reversed
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velocity field that reads
d

dt
x̃l(t) = −cδ(x̃l(t),−t) , t ∈ [−tn+1,−tn]

x̃l(−tn+1) = xl

(11)

for each xl and then take x̃l = x̃l(−tn), see Figure 2 for an illustration. This procedure is standard
in semi-Lagrangian schemes and can be parallelized.

2.3 Basis Reconstruction

After tracing back each point xl of K ∈ TH to its origin x̃l in a distorted coarse cell K̃ ∈ TH we
need to reconstruct a local representation of the (known) solution un on K̃:

un(x)|K̃ = un(x̃j)ϕ̃K,1(x) + un(x̃j+1)ϕ̃K,2(x) (12)

where x̃j and x̃j+1 are the boundary points of K̃. In one dimension one can of course choose a
representation using the standard basis of hat functions but this would not incorporate subgrid
information at step tn at all. We solve this problem by solving an inverse problem for the basis to
modify the local basis representation. The idea is to fit a linear combination of the basis locally
such that un is optimally represented, i.e., we solve

minimize
ϕ̃K,i∈C0(K̃)

∥∥∥un − (unj ϕ̃K̃,1 + unj+1ϕ̃K̃,2

)∥∥∥2
L2(K̃)

+
∑
i

αiRi(ϕ̃K̃,i)

s.t. unj = un(x̃j) , unj+1 = un(x̃j+1)

ϕK̃,1(x̃j) = ϕK̃,2(x̃j+1) = 1

ϕK̃,1(x̃j+1) = ϕK̃,2(x̃j) = 0 .

(13)

1.0

0.0

1.0

0.0

1.0

Fig. 3: Left: An oscillatory function (black) is be-
ing approximated by a standard linear basis (red)
on an interval [a, b] compared to a modi�ed basis
(blue) that solves (13). The regularization param-
eters were taken as αi = 0.1. Right: Comparison
of the standard basis to the modi�ed basis. The
modi�ed basis neither constitutes a partition of
unity nor is it positive.

The operators Ri : C0(K̃) → R denote regularizers
weighted by positive numbers αi ∈ R. A simple regu-
larizer that we found useful in one spatial dimension is
a penalization of the quadratic mean deviation of the
modified basis function from the standard linear basis
function, i.e., we use

Ri(ϕ̃K̃,i) =
∥∥∥ϕ̃K̃,i − ϕ̃0

K̃,i

∥∥∥2
L2

(14)

where ϕ̃K̃,i denotes the t-th standard (linear) basis on K̃.
In a spatially discrete version this system is linear and
small and will be cheap to solve. A suitable choice of a

regularizer depends on the problem at hand. Figure 3 illustrates the effect of a local reconstruction
of a basis compared to a representation with a standard basis.

2.4 Basis Propagation

After having reconstructed a suitable basis on each coarse cell K̃ we have an H1-conformal basis.
This basis, however is a basis at time step tn and does not live on the coarse Eulerian grid TH
that we initially fixed. The step to take now is to construct a basis at tn+1 on TH . This is done
by evolving the basis according to the model at hand with a vanishing external forcing. Note,
however, that we compute the basis at tn+1 along Lagrangian trajectories starting from tn, i.e.,
we need to transform the original model. Equation (1) becomes

∂tϕK,i = ∂̃x

(
Ãε∂̃xϕK,i

)
in K̃ × [tn, tn+1]

ϕK,i(x̃j , t) = ϕ̃K̃,i(x̃j) , t ∈ [tn, tn+1]

ϕK,i(x̃j+1, t) = ϕ̃K̃,i(x̃j+1) , t ∈ [tn, tn+1]

ϕK,i(x̃, t
n) = ϕ̃K̃,i(x̃)

(15)
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and equation (2) transforms into

∂tϕK,i +
(
∂̃xc̃δ

)
ϕK,i = ∂̃x

(
Ãε∂̃xϕK,i

)
in K̃ × [tn, tn+1]

ϕK,i(x̃j , t) = ϕ̃K̃,i(x̃j) , t ∈ [tn, tn+1]

ϕK,i(x̃j+1, t) = ϕ̃K̃,i(x̃j+1) , t ∈ [tn, tn+1]

ϕK,i(x̃, t
n) = ϕ̃K̃,i(x̃) .

(16)

These evolution equations are solved on K̃, i.e., on the elementK ∈ TH traced back in time. Advec-
tion is “invisible” in these coordinates. The end state ϕK,i(x̃, tn+1) on K̃ can then be transformed
onto the Eulerian element K ∈ TH to obtain the desired basis function ϕK,i(x, tn+1) ∼ ϕn+1

K,i (x)

reconstructed
       basis

reconstructed basis
  after propagation

Fig. 4: The basis reconstructed according to (13)

at time tn is propagated forward to time tn+1

according to (15) or (16).

at the next time step. Corresponding basis functions in
neighboring cells can then be glued together to obtain a
modified global basis ϕH,ms

i , i = 1, . . . , NH . This way we
get a basis of a subspace of H1 that is neither a parti-
tion of unity nor is it necessarily positive. Nonetheless,
it is adjusted to the problem and the data at hand. The
propagation step is illustrated in Figure 4.

Using our method we reconstruct and advect the rep-
resentation of the global solution first and then the solu-
tion itself using the modified representation. The global
step is completely Eulerian while the local reconstruc-
tion step is semi-Lagrangian in contrast to [34] where
the global step is Lagrangian and and the local step is
“almost”-Lagrangian. Note that the steps to reconstruct
the multiscale basis are embarrassingly parallel and all
constitute of small problems.

2.5 Basis Reconstruction and Propagation in 2D

The ideas of the above method can be transferred to two dimensions. The reconstruction in two
dimensions though is different. We intend to briefly give the reader an idea of the differences
without describing the details in order to point out difficulties in the generalization to higher
dimensions.

Suppose that we want to reconstruct a basis on cell K ∈ TH at time tn+1. We trace back the
cell as described in (11) and denote the distorted cell at time tn by K̃ and its edges by Γ̃ . As
in one spatial dimension, to construct a H1-conformal basis we need to ensure continuity of the
basis across coarse cell boundaries. This can be achieved by first reconstructing the solution at
the previous time step tn with a basis representation on each edge, i.e., we solve first an inverse
problem on each deformed edge Γ̃ similar to (13).

Note that the regularizer (14) needs to be replaced since the edge Γ̃ is usually curved. We use
a harmonic prior

Ri(ϕ̃K̃,i) =
∥∥∥∆g(Γ̃ )ϕ̃Γ̃ ,i

∥∥∥2
L2(Γ̃ )

(17)

with a low weight αi as in (13). The operator ∆g(Γ̃ ) denotes the Laplace-Beltrami operator induced
by the standard Laplace operator with the trace topology of the respective edge Γ̃ , i.e., g(Γ̃ ) is
the metric tensor. We pass on providing details here.

The edge reconstruction provides boundary values for the cell basis reconstruction. The opti-
mization problem to solve on K̃ can then again be designed similar to (13) just constrained by
the previously reconstructed boundary values. The essential task is to ensure conformity of the
global basis by first reconstructing representations on all edges Γ̃ of K̃ and then inside the cells
K̃.
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(a) (b)
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Fig. 5: Snapshots of the solution at t = 1/3, t = 2/3 and T = 1. The colored dashed lines show the solution of the standard
FEM (10 elements), the colored line shows the SLMsR (10 coarse elements). The reference solution is shown in black (1K
elements). (a) non-conservative equation (1) coe�cients (19). (b) conservative equation (2) coe�cients (20).

In three dimensions it would be necessary to first reconstruct edges then faces and only then the
interior representations. This might seem expensive but as in one dimension it is embarrassingly
parallel since all reconstructions are independent and the local problems are small.

The next step is the basis propagation. The observation here is that one needs to distinguish
between the conservative form (2) and the non-conservative form (1) since in the conservative form
an additional local reaction term is responsible for strong local variations. Hence, reconstructed
edge boundary values can vary quite strongly in a propagation step similarly to the one described
in Section 2.4. Consequently, edge boundary values need to be adjusted in the propagation. This is
done by first propagating the reconstructed edge boundary values and then using these as (time-
dependent) boundary values for propagation problems similar to (15) or (16).We pass on providing
technical details.

3 Numerical Examples

For all 1D tests we use a Gaussian

u0(x) =
1

σ
√
2π

exp− (x− µ)2

2σ2
. (18)

with variance σ = 0.1 centered in the middle of the domain [0, 1], i.e., µ = 0.5. The end time is
set to T = 1 with a time step δt = 1/300. We show our semi-Lagrangian multiscale reconstruction
method (SLMsR) with a coarse resolution H = 10−1 in comparison to a standard FEM with the
same resolution and high order quadrature. As a reference we choose a high-resolution standard
FEM with href = 10−3. For the multiscale method we choose a fine mesh T Kh with h = 10−2 in
each coarse cell K ∈ TH . We would like to point out that there are no standardized test cases for
our type of model. Therefore, we designed our tests in such a way that small scale effects occur in
the solution below the coarse resolution and compare our multiscale methods to the performance
of standard methods with the same (coarse) resolution.

Test 1. We will show two examples in a non-conservative and conservative setting according to (1)
and (2), respectively, to show the capability of the SLMsR to capture subgrid variations correctly.
Note that the coarse standard FEM has as many cells as the SLMsR has coarse cells and that
the standard FEM does not capture subgrid variations in the following tests which can result in
aliasing and phase errors. The resolution for the reference solution resolves all subgrid variations
but the reader should keep in mind that practical applications do not allow the application of
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high-resolution methods. The coefficients

cδ(x, t) =
1

2
cos(2πt) +

1

4
cos(6πt) cos(8πx) +

1

8
cos(4πt) cos(62πx) +

1

8
cos(150πx)

Aε(x, t) = 10−3 + 9 · 10−4 cos(10πt) cos(86πx)
(19)

are chosen for the non-conservative equation (1) and the coefficients

cδ(x, t) =
1

2
+

1

8
cos(8πx) +

1

8
cos(62πx) +

1

8
cos(150πx)

Aε(x, t) = 10−2 + 9 · 10−3 cos(10πt) cos(86πx)
(20)

for the conservative equation (2). The latter one is numerically more difficult when it comes to
capturing fine-scale variations, i.e., if cδ(x) ∼ f(x/δ) then d

dxcδ(x) ∼ δ−1f ′(x/δ) and one can
expect very steep slopes in the solution. The results of the tests are shown in Figure 5. The
corresponding errors in Table 1 show clearly the superior performance of the SLMsR in regimes
of low coarse resolution while it performs similarly to a standard FEM as subgrid variations are
resolved by TH . The reader may observe that the L2-error of the multiscale method is superior
to the standard method in the pre-asymptotic regime as well as the H1-error. The latter may
increase slightly with growing coarse resolution (but stays in the same order) due to a well-known
resonance effect that can occur when physical scales and the coarse numerical scale are of the same
order. This can be taken care of by other methods [14] such as oversampling.

L2
rel H1

rel

H FEM SLMsR FEM SLMsR
1/8 0.100034 0.018361 0.652919 0.191475
1/32 0.026464 0.009116 0.559342 0.144821
1/128 0.011342 0.002582 0.426786 0.160761
1/512 0.000578 0.000491 0.159977 0.173261

L2
rel H1

rel

H FEM SLMsR FEM SLMsR
1/8 0.188325 0.074356 0.975117 0.336754
1/32 0.140284 0.039869 1.024470 0.252878
1/128 0.044685 0.023380 0.782080 0.183882
1/512 0.004562 0.006220 0.290947 0.140458

Table 1: Relative errors of standard FEM and SLMsR for the non-conservative test problem (19) (left table) and for the
conservative problem (20) (right table) at �nal time T = 1.

Test 2. This test shows an example where both diffusion and background velocity are generated
randomly. We intend to show an example of how the SLMsR behaves when data is involved that
does not exhibit a clear scale separation which is a common situation in practice. For this we
initially generate (fixed) mesh based functions with random nodal coefficients. In each mesh cell
the functions are interpolated linearly. Note that this is not to simulate a sampled stochastic
process. We simply intend not to create any scale or symmetry bias when constructing coefficient
functions. The results look appealing and show a clear advantage of the SLMsR, see Figure 6.

Test 3. Here we show one preliminary example of our SLMsR equation (1) with a dominant
advection term in two dimensions. The test was carried out on the torus T2 (periodic unit square)
in the time interval t ∈ [0, 1]. As initial value we chose a normalized super-position of two isotropic
Gaussians

u0(x) =
1

2
√
(2π)2 det(M)

2∑
i=1

exp

{
−1

2
(x− µi)

TM−1(x− µi)

}
(21)

where

M =

[
3

100 0
0 3

100

]
and µi =

[
i
3 ,

1
2

]T
. (22)

The test of the SLMsR was performed on a coarse unstructured uniform triangular Delaunay
mesh with nc = 62 coarse cells, i.e., for our triangulation H ∼ 0.3 (maximum mean diameter of
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Fig. 6: Comparison of SLMsR and standard FEM for randomly generated (but �xed) coe�cient functions. (a) Snapshots
of the solution at t = 1/2 and t = 1. Solid black lines show the reference solution, dashed red lines show the standard
solution and solid blue solid lines show the SLMsR. (b) The velocity coe�cient we chose to be a smooth function disturbed
by Gaussian noise with mean zero and variance 0.1. (c) The di�usion coe�cient was generated from a uniform distribution

and scaled to have minumum 10−5 and maximum 10−2.

circumcircle of a cell). We compare the SLMsR to a standard low resolution FEM with the same
resolution and to a standard high resolution FEM with approximately nf = 63K cells. To get a
fine mesh on each coarse cell of the SLMsR we created a triangulation such that the sum of all
fine cells over all coarse cells is approximately nf to get a fair comparison of the SLMsR to the
low resolution standard FEM with respect to the reference solution that resolves all coefficients
involved.

Fig. 7: Background velocity for
Test 1 and Test 3. Four vortices
moving through the domain from
left to right and come back to their
starting points at T = 1.

We test our multiscale reconstruction method with a solenoidal
field cδ described by the stream function

ψ(x, t) = sin(2π(x1 − t)) sin(2πx2) (23)

so that cδ(x, t) = ∇Tψ.
This background velocity describes four vortices moving in time

through the (periodic) domain from left to right and get back to
their starting point at T = 1. Note that this velocity field involves
both scales that are resolved by the coarse mesh and scales that
are not resolved, see Figure 7. Also note that since ∇ · cδ = 0
equation (1) and (2) are (analytically) identical and hence we only
solve (1).

The diffusion tensor is chosen to be

Aε(x, t) =
1

100

[
1− 0.9999 sin(60πx1) 0

0 1− 0.9999 sin(60πx2)

]
.

(24)
In this case advection dominance is a local property and Péclet numbers are ranging from Pe = 0
to Pe ∼ 6 · 106. Snapshots of the solutions are shown in Figure 8. It can be observed that the low
resolution FEM does not capture the effective solution well since it diffuses too strongly while the
SLMsR reasonably captures the effective behavior of the solution and even the fine scale structure.

4 Summary and Discussion

In this work we introduced a new idea for a framework of multiscale methods demonstrated on
advection-diffusion equations that are dominated by the advective term. Such a methods are of
importance, for example, in reservoir modeling and tracer transport in earth system models. The
main obstacles in these applications are, first, the advection-dominance and, secondly, the multi-
scale character of the background velocity and the diffusion tensor. The latter makes it impossible
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multiscale SLMsR

 standard FEM 
    (high res)

 standard FEM 
    (low res)

Fig. 8: Snapshots of the solution (surface plot) for Test 3 at time T = 1
for the low resolution standard FEM (62 elements), the SLMsR (62 coarse
elements) and the reference solution (63K elements).

to simulate with standard meth-
ods due to computational con-
straints while simulating using stan-
dard methods with lower resolution
that does not resolve variations in
the coefficients leads to incorrect so-
lutions on coarse meshes.

Our idea to cope with these diffi-
culties is inspired by ideas for semi-
Lagrangian methods, ideas based on
“convected fluid microstucture” as
described in [21], inverse problems
and multiscale finite elements [14].
At each time step we reconstruct fine
scale information from the solution
at the previous time step. This fine scale information enters the local representation of the so-
lution in each coarse cell, i.e., it is added as a corrector to the local basis such that the basis
representation is optimal in some sense. The reconstruction is done by solving an inverse problem
with a suitable regularizer and constructs a basis that does not constitute a partition of unity
(PoU) and that is made for the concrete problem at hand. The idea of adding prior knowledge
about the solution to a local representation in PoU methods, however, is similar, see for exam-
ple [31,18]. After reconstructing the basis at the previous time step the basis is evolved with
suitable boundary conditions to the time step the basis is sought for, i.e., we evolve the local
representation of the solution rather than the solution itself. Note that the global framework of
the SLMsR is completely Eulerian while only the local reconstruction step in each coarse cell is
semi-Lagrangian.

One of the main features of the SLMsR is its scalability: Although it sounds expensive to trace
back each coarse cell, then solve an inverse problem and then solve a PDE at each time step
(the so-called offline phase) we would like to point out that these local problems are independent
and usually small and therefore the offline phase is embarrassingly parallel, although we did not
take advantage of that in our implementation. The global time step (online phase) also consists
of a small problem and matrix assembly procedures can be made very efficient by using algebraic
tricks, see [23,14].

We would like to further emphasize the flexibility of the SLMsR. Here we presented an implicit
version but explicit time stepping is possible. The method can be transferred to higher dimensions
as well as it can be extended to deal with advection-diffusion-reaction problems. Furthermore,
the use of inverse problems in the local steps to adjust the basis makes it generally possible to
incorporate knowledge coming from measurement data. For this a thorough understanding of the
data is necessary (as for any other assimilation method). The SLMsR is promising for practical
applications but lots of work needs to be done on the path towards applicability. This includes a
numerical analysis which we do not aim at in this work. We would like to explore that opportunity
in the future.
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