
Creating a reusable cross-disciplinary multi-scale
and multi-physics framework: from AMUSE to

OMUSE and beyond

Inti Pelupessy1, Simon Portegies Zwart2, Arjen van Elteren2, Henk Dijkstra3,
Fredrik Jansson3, Daan Crommelin4,5, Pier Siebesma6,7, Ben van Werkhoven1,

and Gijs van den Oord1

1 Netherlands eScience Center, Amsterdam
2 Leiden Observatory, Leiden

3 Institute for Marine and Atmospheric research Utrecht, Utrecht
4 Centrum Wiskunde & Informatica, Amsterdam

5 University of Amsterdam, Amsterdam
6 Royal Netherlands Meteorological Institute, de Bilt

7 Delft University of Technology, Delft
i.pelupessy@esciencecenter.nl

Abstract. Here, we describe our efforts to create a multi-scale and
multi-physics framework that can be retargeted across different disci-
plines. Currently we have implemented our approach in the astrophys-
ical domain, for which we developed AMUSE1, and generalized this to
the oceanographic and climate sciences, which led to the development of
OMUSE2. The objective of this paper is to document the design choices
that led to the successful implementation of these frameworks as well as
the future challenges in applying this approach to other domains.

Keywords: multi-scale simulations · coupling framework · multi-physics

1 Introduction

The current frontier in computational modelling is the simulation of complex
phenomena involving different physical processes interacting on vastly different
scales. The advent of massively parallel machines and GPU accelerated solvers,
has meant that memory and CPU time bounds are less of a limitation as before,
the difficulty shifting instead to the intrinsic complexity of the calculations.

A recurring challenge involves the interaction of processes acting on widely
different scales. For example, when modelling the formation of planetary systems
in a stellar cluster one needs to follow the collapse of interstellar gas, down to
the formation of proto-stellar systems. Another example occurs when modelling
the dynamical effects of clouds and convection on the atmospheric circulation.
Atmospheric convection and cloud formation are physical processes with small

1 github.com/amusecode/amuse
2 bitbucket.org/omuse

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_29

https://dx.doi.org/10.1007/978-3-030-22747-0_29

2 I. Pelupessy et al.

spatial scales, however they affect the properties of the large-scale atmospheric
flow, for example through their impact on the distribution of moisture and heat
as well as on radiative transfer in the atmosphere.

Many more examples could be given and the conventional approach to these
multi-scale problems, i.e. building a single, monolithic program with as much
physics as possible, is expensive and difficult to scale. Building multi-scale and
multi-physics simulation codes becomes increasingly complex with each new
physical ingredient that is added. Furthermore, one is presented with the prospect
of duplicating much of this work when a different solver or method is needed, a
situation that often arises when a slightly different regime is accessed than that
originally envisaged or when results need to be verified with a different method.

Different strategies that attempt to simplify this problem by compartmental-
izing processes and combining the resulting building blocks exist. For example
[8, 18] are coupling frameworks geared towards earth system modelling. Other
examples are the more general approaches taken in the toolkits [2, 1]. See [6] for a
more thorough review. Most of these can be roughly divided into integrated and
coupling library approaches [19]. In the integrated approach, the functionality
provided by the components (e.g. by subroutines of the code) is separated out
and joined in a new single executable. In the library approach the original codes
themselves are adapted to communicate with each other using an Application
Programming Interface (API), linking against the coupling library.

We recently developed a promising alternative, especially when the target
solvers use completely independent computational methods or discretizations.
The fundamental idea of AMUSE [13, 15] and OMUSE [14] is the abstraction
of the functionality of existing simulation codes - which are often highly special-
ized and optimized for their domain of application - into physically motivated
interfaces and bind these into a modern and flexible scripting language. Our ap-
proach has the benefit of the parallelism and flexibility provided by a coupling
library approach, and the benefit of abstracting much of the bookkeeping inher-
ent to code couplings using modern high-level constructs. In this way, complex
simulations can be described in compact scripts, that can be easily understood
and communicated between peers.

2 Genesis

AMUSE was conceived within MODEST, a tight knit astrophysical community
of modellers interested in dense stellar system. AMUSE was envisioned as the
need of going beyond purely gravitational N-body calculations became appar-
ent, and the MODEST community sought ways to incorporate the effects of
stellar evolution and the dynamics of the interstellar gas into their models. It
quickly became evident that many simulation codes already existed, specifically
developed to study these processes separately. More practically speaking, the
MODEST community realized that they did not have the manpower nor the
expertise to develop these from scratch.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_29

https://dx.doi.org/10.1007/978-3-030-22747-0_29

from AMUSE to OMUSE and beyond 3

Even so, such a body of existing scientific codes, which we refer to as the
community code base, is not trivial to interface with. The codes are written in
different languages, have different requirements and are not necessarily written
in a way that allows easy interfacing.

The way this problem was solved in AMUSE was by defining a thin interface
layer in Python for these codes, which integrates with a framework layer tying
the various components together, minimizing the necessary changes to the com-
munity codes. The use of these codes is simplified by standardizing the interface
for the different relevant domains (e.g. gravitational dynamics, gas dynamics or
radiative transfer) and a high degree of automation. The framework is designed
with parallel simulation codes in mind and allows for running in a distributed
environment. In practice the computational effort is in the highly tuned codes,
allowing for high performance. In this way, AMUSE allowed codes to be retar-
geted for novel interactions and couplings with other component codes.

AMUSE was developed by a small team of astrophysicist and software en-
gineers over a couple of years. In our experience, it is crucial to seek active
involvement from the community early on, by organizing workshops and tuto-
rials. This allows for early feedback, fosters involvement and helps creating a
forgiving user base.

2.1 Development of OMUSE

While the original goal of AMUSE was to allow for realistic simulations of star
cluster formation and evolution, no limits were imposed on the design and many
published results using AMUSE had no relation to star cluster physics. In dis-
cussion with researchers in other scientific disciplines it became apparent that
they struggled with fundamentally the same multi-scale coupling problems. At
this point (around 2013), the Netherlands eScience Center, the national cen-
ter for academic research software, funded a project to generalize the AMUSE
framework, which resulted in OMUSE.

OMUSE was developed as an extension of the AMUSE framework, exposing
a omuse name space with similar structure as for AMUSE, using the underlying
infrastructure of AMUSE (Practically speaking this means that to use OMUSE,
the user first has to install AMUSE, which is not ideal, since by default many
component of AMUSE are installed that are not needed by OMUSE). The devel-
opment of OMUSE involved transplanting the experiences gained in astrophysics
to another scientific fields, which is as much a cultural challenge as it is a tech-
nical one.

To support earth science applications a number of features were added to the
AMUSE framework: the data model was extended with a hierarchy of grid types,
such that codes with various grid types, ranging from regular Cartesian grids
to unstructured grids, can be supported (within AMUSE only Cartesian grids
were available). For the data transfer between these grids data channels can be
defined which perform grid remapping and functional transforms (in addition to
simple copy channels for use between equal formed grids). A number of domain
specific units and utility functions were also added. As the initial focus was

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_29

https://dx.doi.org/10.1007/978-3-030-22747-0_29

4 I. Pelupessy et al.

on oceanographic applications, the codes that are included range from simple
conceptual ocean models to global circulation models.

3 About the design

Here we will illustrate the design of AMUSE stepping through an example script
to evolve a model star cluster using pure N-body dynamics.

As mentioned above, AMUSE and OMUSE are implemented in Python. The
requirement of the high level interactions defined in the framework layer is not so
much performance but one of algorithmic flexibility and ease of programming.
This suggests the use of a modern interpreted scripting language with object
oriented features. Python also provides for excellent integration with existing
scientific computation tools and libraries.

The following example could be typed in an interactive Python session, but
usually saved in a script or Jupyter notebook. As usual for a Python script, an
AMUSE script starts with the necessary imports,

from amuse.units import nbody_system
from amuse.ic.plummer import new_plummer_model
from amuse.community.huayno.interface import Huayno

In this case three modules are imported from the AMUSE, a module for
scaleless N-body units1, an initial condition generator and a basic N-body grav-
itational integrator.

The following two lines instantiate the simulation code and prepare the code
for the problem at hand by setting (one of) its parameters:

code=Huayno ()
code.parameters.epsilon_squared= (0.01 | nbody_system.length)**2

At this point a separate worker process for the integrator code is started and
running in the background. The worker consists of the original simulation code
with a layer of native code to capture calls from the framework (see figure 1 for
a general schematic of the interface design as discussed below).

The standardized set of methods on the Huayno object defines the interface
to the code. It is designed to communicate the physical quantities relevant to
that domain, as opposed to numerical concepts. Codes from a given physical
domain conform to the same interface, and the interface to different domains
are developed along similar concepts.

The communication with the code uses a remote function protocol with dif-
ferent transport channels available. The default is a channel based on MPI for
computations on a local compute cluster, but a channel based on the eStep
platform for distributed computing is also available.

At the lowest level, the interface functions provide means to set and query
model state variables and code parameters, as well as functions that change the

1 The N-body unit system is useful to interact with codes that internally use a unit
system where the gravitational constant G = 1. Other codes, for example stellar
evolution codes or radiative transfer codes often work with a definite set of units,
and then the normal SI unit system is used.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_29

https://dx.doi.org/10.1007/978-3-030-22747-0_29

from AMUSE to OMUSE and beyond 5

Python C/C++/Fortran

codenative
interface

lo
w

 le
ve

l

u
ni

t
h

an
dl

in
g

data
model

input
generation

output/
analysis

MPI

simulation
script initialize

 set
data

evolve

 get data

cleanup

MPI_WORLD_COMM

interface services

hi
gh

 le
ve

l i
nt

er
fa

ce

st
at

e
m

o
d

el

Fig. 1. Design of the AMUSE/OMUSE framework. This schematic representation
shows the the way a simulation code (the ”code”) is accessed from the framework.
The code has a thin layer of interface functions in its native language (e.g. Fortran)
which communicates through a message channel with the Python host process. The
framework layer provides a number of services such as unit conversion, maintaining the
simulation in a consistent state and converting the internal state data of the code to
a common object oriented data representation. The user script (“simulation script”)
makes only generic calls to the high-level interface. Adapted from [14].

state of the code (like initialization, triggering construction of data structures
internal to the code) and functions that affect the state of the physical model
(evolve forward in time).

On the basis of this low level interface a high level interface is build that
provides a number of services that minimize the burden placed on the user in
interacting with the code. The goal of these services is to eliminate common
sources of error when running numerical simulations, by hiding the particulars
of a given code and automating the interactions with the codes as much as
possible.

First, the framework provides for the conversion of units and data structures.
Every physical quantity that is used needs to have an attached unit. In this
example the epsilon squared parameter (describing the amount of smoothing
applied to the gravitational force) is specified in the nbody unit of length.

The internal data representation of codes is translated to modern object
oriented data structures. For this, two basic data stores are available, particle
sets and grids. In the current example we proceed by initializing our model with
a star cluster of 100 stars, distributed according to Plummer model (a theoretical
equilibrium model used in stellar astrophysics). We send these particles to the

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_29

https://dx.doi.org/10.1007/978-3-030-22747-0_29

6 I. Pelupessy et al.

code and define a channel to efficiently copy back the results to the particle set
in the memory space of the Python script:

stars=new_plummer_model (100)
stars_in_code=code.particles.add_particles(stars)
channel=stars_in_code.new_channel_to(stars)

The framework provides another set of services to ensure that the simula-
tion code always maintains a consistent state in terms of the numerics of the
code, regardless of the order of user input, and to maintain the integrity of the
simulation. The framework keeps track of the state the code is in (in terms
of a predefined state model). The following call instructs the code to evolve
the model for a set amount of time, but also implies a call to the low level
commit particles function - this function may be necessary (or not) to e.g.
copy data to the GPU (for codes that use a GPU) or initialize an internal tree
structure (for codes that accelerate gravitational interaction calculations using
tree based data structures):

code.evolve_model(0.5 | nbody_system.time)
channel.copy_attributes (["x","y","z","vx","vy","vz"])

At the end of the script, data is copied back to the master script’s memory
where it remains available for further analysis (or to be written to disk).

The high level interface in this example is the preferred way to interact with
codes within AMUSE. At this level the interactions with the code are standard-
ized as much as possible, with much of the tedious bookkeeping automated. This
minimizes the possibility of programming errors and makes it easier to switch
to a different model.

Currently AMUSE is distributed with more than 50 codes drawn from vari-
ous astrophysical application domains (gravitational dynamics, stellar evolution,
hydrodynamics and radiative transfer). In addition to this, it contains domain
specific support and utility functions. These allow a researcher or student to get
started quickly. Examples are: generators for initial conditions (e.g. generators
for various particle models for solar systems, stellar clusters, galaxies), common
analysis tools (e.g. identifying binaries, determining orbital elements) and file in-
put/output functions. A number of common coupling schemes are also included.

4 Experiences

Using the AMUSE/OMUSE interfaces allows researchers (students and experi-
enced researchers alike) to quickly develop, run and analyze computational ex-
periments. The fact that the interfaces are homogeneous allows trivially switch-
ing between codes. Experiments are written as concise Python scripts which can
easily be communicated between peers. Other use cases of the interfaces are the
scripting of simulations for parameter searches and optimization, or the detec-
tion of special events. The access to the internal state of the simulation allows
the integration of data analysis with a running simulation. In addition, the inter-
faces expose enough of the internal state such that new solvers can be developed.
These can combine different physics and/or to bridge different scales. Below, we
present two case studies detailing our experiences with the framework.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_29

https://dx.doi.org/10.1007/978-3-030-22747-0_29

from AMUSE to OMUSE and beyond 7

4.1 Online data analysis

Large-scale simulations are capable of generating enormous amounts of data.
Usually, it is only possible to store a limited subset for offline analysis. The
alternative is online data analysis, where the analysis code runs at the same
time as the model. This offers several opportunities, including inspecting the
model internal data at spatial and temporal resolutions that are not available
offline.

We have created an example application for OMUSE that uses the Parallel
Ocean Program (POP) and an ocean eddy tracking analysis code. The POP
model is a parallel global circulation model for ocean flows [17]. POP is often
used to calculate strongly eddying ocean circulation models.

The interest in ocean eddies comes from the fact that eddies transport consid-
erable amounts of energy and mass and thus influence the dynamics of large-scale
ocean circulation and the climate [e.g. 20, 5]. To understand eddy properties and
variability, several mesoscale eddy tracking algorithms have been proposed in re-
cent years. We have adapted a sea surface height-based eddy tracking code by
Mason et al. [11]. The interface to this code allows the user to interact with the
code using the high-level data structures, such as grids and units that are used
in OMUSE.

Figure 2 shows the Python code of our example application for online data
analysis. The application first instantiates the POP interface for high-resolution
to run on a large computing cluster. After that we set the analysis interval for
the eddy tracker to 7 days of simulation.

The EddyTracker is initialized using the same grid as is used in POP for the
sea surface height values. From this grid object, the EddyTracker automatically
extracts the coordinates of the grid points and the sea surface height values, and
performs unit conversions if needed. Note that while POP is running a global
simulation, the eddy tracker is set to only track the eddies in a particular region.
Our application alternatingly runs the POP model for 7 simulation days and
calls EddyTracker to track the eddies at the current time in the model for a full
simulation year.

Figure 3 shows the output of our online eddy tracking program. In this image,
we can clearly see the large anticyclonic eddies that result from the retroflection
of the Agulhas Current, as well as many smaller eddies being tracked over time
by the eddy tracker algorithm. The data generated by the online eddy tracker
can, for example, be used to compare the statistics of the simulated eddies to
the statistics of eddies found in altimetry data.

4.2 Multi-scale coupling of Atmospheric LES models to OpenIFS

As an example of the use of OMUSE for multi-scale coupling, we present here
the use of the framework in a project on cloud-resolving atmospheric modelling.
The project aims to couple the global atmospheric model OpenIFS [3] with
a local, high-resolution (cloud-resolving) Large Eddy Simulation (LES) model,
DALES [7]. The reason for this coupling is that global atmospheric models, such

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_29

https://dx.doi.org/10.1007/978-3-030-22747-0_29

8 I. Pelupessy et al.

from omuse.units import units
from omuse.ext.eddy_tracker.interface import EddyTracker
from omuse.community.pop.interface import POP

start and initialize POP
p=POP(channel_type="distributed", mode="3600 x2400x42",

number_of_workers =592)
p.parameters. ... # set all input files needed by POP

set the analysis interval & initialize the EddyTracker
dt_analysis = 7 | units.day
tracker = EddyTracker(grid=p.nodes , domain="Regional",

lonmin =0. | units.deg , lonmax =50. | units.deg ,
latmin =-45. | units.deg , latmax =-20. | units.deg ,
dt_analysis)

evolve the simulation until the set end time
tend = p.model_time + (1 | units.yr)
while (p.model_time < tend):

p.evolve_model(p.model_time + dt_analysis)
tracker.find_eddies(ssh=p.nodes.ssh , rtime=p.model_time)

tracker.stop()
p.stop()

Fig. 2. This example demonstrates how to build an application that analyses data from
a running simulation using OMUSE. This code executes an eddy tracking program that
tracks the eddies based on sea surface height every seven days of simulation time of a
running POP model.

as OpenIFS, typically cannot resolve individual clouds, as the clouds are smaller
than the model grid size. The global models instead rely on parameterizations
to account for processes on sub-grid scales.

Replacing a parameterization scheme (e.g. for convection) by a full micro-
scopic model that resolves, rather than parameterizes, the small-scale process
is in this context known as a superparameterization [4]. More specifically, su-
perparameterization concerns the two-way nesting of a high-resolution model
with limited spatial domain (in our case, DALES) in model columns of a global
model of lower resolution (e.g. OpenIFS). Separate instances (or copies) of the
high-resolution model are nested in the different model columns of the global
model. This approach is seen as one possible route to understanding the feed-
backs between cloud processes and climate [16] - one of the largest remaining
uncertainties in climate modelling. Figure 4 shows a snapshot of a superparame-
terized simulation, with 72 DALES models over the Netherlands coupled to the
global OpenIFS.

Both OpenIFS and DALES are implemented mainly in Fortran. For coupling
the two models we considered a number of different strategies. The most straight-
forward might have been to directly embed DALES in the physics routines of
OpenIFS. However, it was desirable to create the option of using superparame-
terization only for a selected number of OpenIFS model columns, to allow using a
high resolution for the local models at a reasonable total computational cost. The
selective superparameterization would have made load balancing in the existing
parallelization of OpenIFS complicated. For this reason, and also for increased

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_29

https://dx.doi.org/10.1007/978-3-030-22747-0_29

from AMUSE to OMUSE and beyond 9

Fig. 3. Output of the online eddy tracking application using data from a running POP
simulation, showing a region around the southern tip of Africa. The green lines show
the contours between areas of different sea level anomaly values. Red indicates areas of
elevated sea level, and is used to indicate anticyclonic eddies. Similarly, blue indicates
a lower sea level, and is used to identify cyclonic eddies. The red or blue lines indicate
the track that an eddy has traveled since it was first detected.

flexibility, we chose to keep the two models separate, give each a library interface,
and implement the coupling as a separate program.

A direct benefit is the convenience of writing the coupling code in Python.
Performance-wise, typically more than 90% of the time of the whole simulation
is spent in the DALES models. Neither the Python code nor the communication
has been a significant bottle-neck so far, helped by the fact that the coupling is
formulated in terms of vertical profiles and thus does not require the exchange
of 3D fields.

The DALES models in our setup are time-stepped in parallel. The asyn-
chronous function call mechanism in AMUSE works very well for this - the
DALES interface contains a function to perform a time step, the coupler makes
an asynchronous call to this function for every DALES model, then waits for
them all to complete.

We have mainly used the Cray system at ECMWF for the simulations. One
practical difficulty we encountered there is that the Cray MPI so far does not
support spawning new MPI processes, which is how AMUSE normally launches
its worker codes. Support for MPI spawning is scheduled to be available this
year, until then we are using a work-around where all workers are launched at

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_29

https://dx.doi.org/10.1007/978-3-030-22747-0_29

10 I. Pelupessy et al.

Fig. 4. Superparameterized weather simulation over the Netherlands, with the global
OpenIFS model in purple and local, cloud-resolving DALES models in blue. Both
models show the cloud fields in shades of white in the form of liquid water path.

the start of the simulation as a regular MPI job, after which the appropriate
MPI communicators are created. This solution is possible for us since we know
how many workers are needed for a particular simulation prior to starting the
simulation.

4.3 Testing and validation

AMUSE and OMUSE try to foster good scientific computation practices: frame-
work code and interfaces are tested and basic verification/ validation is done. A
natural question remains is to what extent we can guarantee the correctness of
the resulting simulations [see also the related discussion in 9]. Our philosophy is
that this remains the responsibility of the researcher. A new AMUSE/OMUSE
application should be thoroughly tested, especially where it involves new interac-
tions between components. This is unavoidable since, while the framework does
simplify the design and implementation of couplings (the ”engineering” aspect),
developing e.g. a new coupling involves an element of scientific inquiry (which
couplings are physically sound). For example, in the OpenIFS-DALES coupling
there are various ways to downscale the input variations from the global circu-
lation model to the local LES simulation. This has a significant impact on the

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_29

https://dx.doi.org/10.1007/978-3-030-22747-0_29

from AMUSE to OMUSE and beyond 11

results, and uncovers subtle issues about the numerical representation of both
models.

4.4 Performance

An important concern of any coupling framework is the computational perfor-
mance. The architecture of the AMUSE framework is designed with a high de-
gree of parallelism, and individual simulation codes are often highly optimized.
In the applications we have developed, the performance of the AMUSE/OMUSE
framework is rarely a concern: the overhead imposed by the framework is mea-
sured to be rather small (less than a few percent [15]), However, this is strongly
problem dependent. In particular massively parallel codes that use thousands
of processes can generate big data transfers, and it is not difficult to formulate
problems where the strength of the coupling is intrinsically so strong that very
frequent communication between the component solvers is necessary.

The current design of AMUSE and OMUSE uses parallel data structures for
storing the data inside parallel models. A limitation of the current design is the
fact that the communication between solvers is handled by a single process user
script. One of the main performance challenges that will be addressed in the
near future is the development of distributed data transport. Note that such
distributed communication channels would not change the semantics of the use
of a channel between data structures in the user script.

5 Challenges

While the current implementations of AMUSE and OMUSE provide a core func-
tionality, challenges remain for more general applications. These range from tech-
nical ones to challenges related to organizational and human factors.

Generalization and extension Currently we are working on making sure the
core framework is domain agnostic, such that an implementation for another
field can be more easily developed. The concrete motivation stems from the
development of an hydrological version (”HyMUSE”) as computational core of
the eWaterCycle project [10].

OMUSE was built as an extension of AMUSE, with some of the develop-
ment related to OMUSE done inside the code base of AMUSE. This brought a
clearer picture of the difference between general framework components within
AMUSE, and astrophysics specific code. It also brought to light that this model
of development would not scale to multiple domains, as the AMUSE framework
framework code would have to support and intermingle code of multiple domains.
With the application to a third domain (Hydrology) it becomes more urgent to
refactor the code in clearly separated general framework code and domain spe-
cific packages. This generalization of the framework involves new challenges in
the coordination and prioritization of the development goals.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_29

https://dx.doi.org/10.1007/978-3-030-22747-0_29

12 I. Pelupessy et al.

Interoperability Over the years a number of frameworks have been developed
that have some overlap and are conceptually close to the AMUSE/OMUSE
system (e.g. CSDMS, [12, 18]). One of the future goals is to attain a level
of interoperability. For example, within the CSDMS the Basic Model Interface
(BMI) has been defined as a minimal code interface to interact with a model
code. BMI shares some characteristics with the AMUSE low-level interface. We
have developed an automatic interface generator for codes that support BMI.
This makes it possible to automatically generate low-level AMUSE interfaces
and serves as a starting point for building a high-level AMUSE interface.

Maintainability Another challenge involves the maintainability of the frame-
work. This involves adapting the framework to keep it up to date with the
evolving software ecosystem in on which it depends, i.e. making sure breakages
from compiler updates etc. are fixed and keeping up with changes in software
development practices and trends in software usage and distribution.

For sustainability of the interfaces, it is important to consider how the code
is archived, especially when the AMUSE interface depends on a modified version
of a third-party code (such as OpenIFS). In other cases the code of the model
itself is open source and the modifications needed in the code to support the
AMUSE interface are rather small.

6 Conclusions

The AMUSE/OMUSE system is a unique tool for scientific discovery. It en-
capsulates existing legacy codes into a modern simulation environment. This
allows researchers to quickly translate conceptual ideas into numerical experi-
ments. These are documented in portable scripts that can easily be communi-
cated among peers. This lowers the barrier for verification and validation, and
the framework thus aids in making simulations more reproducible. We have also
shown here that the system is quite general and is easily retargeted for different
scientific disciplines.

During the development of AMUSE and OMUSE we have found that the en-
gagement of the community and domain scientist is crucial. Since the resources
available for development in an academic setting are quite modest the involve-
ment of domain scientist helps developers to focus on features that have most
immediate use.

The generalization of the framework provides an opportunity - different dis-
ciplines sharing the same code base should lower the burden in the development
and maintaining the framework, as well as a challenge: it becomes more diffi-
cult to coordinate development efforts and different fields may have conflicting
needs - and thus attention must be paid to prioritizing the development of new
features. Within our project, we found that the involvement of the Netherlands
eScience Center, as an entity dedicated to the generalization of research soft-
ware, provides a good focal point for these tasks. This way, scientists can spend
more of their limited time on developing and testing scientific ideas.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_29

https://dx.doi.org/10.1007/978-3-030-22747-0_29

from AMUSE to OMUSE and beyond 13

Acknowledgments

FJ, DC, PS and GvdO acknowledge support from the Netherlands eScience Cen-
ter (grant 027-015-G03) for their project Towards Large-Scale Cloud-Resolving
Climate Simulations. Furthermore, acknowledgment is made for the use of ECMWF’s
computing and archive facilities in this project.

Bibliography

[1] Borgdorff, J., Mamonski, M., Bosak, B., Kurowski, K., Belgacem,
M.B., Chopard, B., Groen, D., Coveney, P., Hoekstra, A.: Dis-
tributed multiscale computing with muscle 2, the multiscale coupling
library and environment. Journal of Computational Science 5(5), 719
– 731 (2014). https://doi.org/https://doi.org/10.1016/j.jocs.2014.04.004,
http://www.sciencedirect.com/science/article/pii/S1877750314000465

[2] Buis, S., Piacentini, A., Déclat, D., the PALM Group: PALM: a computa-
tional framework for assembling high-performance computing applications.
Concurrency and Computation: Practice and Experience 18(2), 231–245
(Feb 2006)

[3] Carver, G., et al.: The ECMWF OpenIFS numerical weather prediction
model release cycle 40r1: description and use cases. in preparation to be
submitted to GMDD (2018)

[4] Grabowski, W.W.: An improved framework for superparameteriza-
tion. Journal of the Atmospheric Sciences 61(15), 1940–1952 (2004).
https://doi.org/10.1175/1520-0469(2004)061¡1940:AIFFS¿2.0.CO;2

[5] Griffies, S.M., Winton, M., Anderson, W.G., Benson, R., Delworth, T.L.,
Dufour, C.O., Dunne, J.P., Goddard, P., Morrison, A.K., Rosati, A., Wit-
tenberg, A.T., Yin, J., Zhang, R.: Impacts on Ocean Heat from Transient
Mesoscale Eddies in a Hierarchy of Climate Models. Journal of Climate
28(3), 952–977 (Feb 2015)

[6] Groen, D., Zasada, S.J., Coveney, P.V.: Survey of multiscale and multi-
physics applications and communities. Computing in Science & Engineering
16(2), 34–43 (2014). https://doi.org/10.1109/MCSE.2013.47

[7] Heus, T., van Heerwaarden, C.C., Jonker, H.J.J., Pier Siebesma, A.,
Axelsen, S., van den Dries, K., Geoffroy, O., Moene, A.F., Pino,
D., de Roode, S.R., Vilà-Guerau de Arellano, J.: Formulation of the
Dutch Atmospheric Large-Eddy Simulation (DALES) and overview of
its applications. Geoscientific Model Development 3(2), 415–444 (2010).
https://doi.org/10.5194/gmd-3-415-2010

[8] Hill, C., DeLuca, C., Suarez, M., Da Silva, A., others: The architecture of
the earth system modeling framework. Computing in Science & Engineering
6(1), 18–28 (2004)

[9] Hoekstra, A., Chopard, B., Coveney, P.: Multiscale modelling and sim-
ulation: a position paper. Philosophical Transactions of the Royal So-
ciety A: Mathematical, Physical and Engineering Sciences 372(2021),

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_29

https://dx.doi.org/10.1007/978-3-030-22747-0_29

14 I. Pelupessy et al.

20130377–20130377 (Jun 2014). https://doi.org/10.1098/rsta.2013.0377,
http://dx.doi.org/10.1098/rsta.2013.0377

[10] Hut, R., van de Giesen, N., Drost, N.: The future of
global is local. eWaterCycle II: bridging the gap between
catchment hydrologists and global hydrologists. (2018),
https://meetingorganizer.copernicus.org/EGU2018/EGU2018-10614.pdf

[11] Mason, E., Pascual, A., McWilliams, J.C.: A new sea surface height–based
code for oceanic mesoscale eddy tracking. Journal of Atmospheric and
Oceanic Technology 31(5), 1181–1188 (2014)

[12] Peckham, S.D., Hutton, E.W., Norris, B.: A component-based
approach to integrated modeling in the geosciences: The de-
sign of CSDMS. Computers & Geosciences 53, 3–12 (Apr 2013).
https://doi.org/10.1016/j.cageo.2012.04.002

[13] Pelupessy, F.I., van Elteren, A., de Vries, N., McMillan, S.L.W., Drost, N.,
Portegies Zwart, S.F.: The Astrophysical Multipurpose Software Environ-
ment. Astronomy and Astrophysics 557, 84 (Sep 2013)

[14] Pelupessy, I., van Werkhoven, B., van Elteren, A., Viebahn, J., Candy,
A., Portegies Zwart, S., Dijkstra, H.: The oceanographic multipur-
pose software environment (omuse v1.0). Geoscientific Model Develop-
ment 10(8), 3167–3187 (2017). https://doi.org/10.5194/gmd-10-3167-2017,
https://www.geosci-model-dev.net/10/3167/2017/

[15] Portegies Zwart, S., McMillan, S.L.W., van Elteren, E., Pelupessy, I., de
Vries, N.: Multi-physics simulations using a hierarchical interchangeable
software interface. Computer Physics Communications 183, 456–468 (Mar
2013)

[16] Schneider, T., Teixeira, J., Bretherton, C.S., Brient, F., Pressel,
K.G., Schär, C., Siebesma, A.P.: Climate goals and computing the
future of clouds. Nature Climate Change 7, 3– (Jan 2017),
http://dx.doi.org/10.1038/nclimate3190

[17] Smith, R.D., Jones, P.W., Briegleb, B., Bryan, F., Danabasoglu, G., Dennis,
J., Dukowicz, J., Eden, C., Fox-Kemper, B., Gent, P., others: The Parallel
Ocean Program (POP) reference manual. Los Alamos National Laboratory,
LAUR-10-01853 (2010)

[18] Valcke, S.: The OASIS3 coupler: a European climate modelling commu-
nity software. Geoscientific Model Development 6(2), 373–388 (Mar 2013).
https://doi.org/10.5194/gmd-6-373-2013

[19] Valcke, S., Balaji, V., Craig, A., DeLuca, C., Dunlap, R., Ford, R.W., Jacob,
R., Larson, J., O’Kuinghttons, R., Riley, G.D., Vertenstein, M.: Coupling
technologies for Earth System Modelling. Geoscientific Model Development
5(6), 1589–1596 (Dec 2012). https://doi.org/10.5194/gmd-5-1589-2012

[20] Viebahn, J., Eden, C.: Towards the impact of eddies on the response of the
Southern Ocean to climate change. Ocean Modelling 34(3-4), 150–165 (Jan
2010)

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_29

https://dx.doi.org/10.1007/978-3-030-22747-0_29

