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Abstract. In this paper we describe our endeavours to explore the role of unsu-
pervised learning technology in profiling marine situations. The characterization
of the marine environment with hydrographic variables allows, for example, to
make technical and health control of sea products. However, the continuous mon-
itoring of the environment produces large amounts of data and, thus, new infor-
mation technology tools are needed to support decision-making. We present here
a first contribution to this area by building a tool able to represent and normalize
hydrographic situations, cluster them using unsupervised learning methods, and
present the results to domain experts. The tool, which implements visualization
methods adapted to the problem at hand, was developed under the supervision of
specialists on monitoring marine environment in Galicia (Spain). This software
solution is promising to early identify risk factors and to gain a better understand-
ing of sea conditions.

1 Introduction

The Ría de Vigo is the southernmost of Galician Rías (NW Spain), several inlets placed
at the northern boundary of the NW Africa upwelling system [21]. The Ría de Vigo is
a 32 km long v-shaped, 40 m average depth estuary connected to the shelf by a 52 m
deep southern channel and a 23 m deep northern mouth, separated by the Cies islands.
In the inner part of the ria, the main river, Oitaven-Verdugo is placed. The runoff of this
river is mainly seasonal with high flow in winter and low in summer [14].

The wind-driven barotropic flow is the main driving force of the residual circulation
[17], with time responses of local winds and remote winds within 6 h and 12 h [7].
From March-April to September-October, due to southward winds, cold and nutrient-
rich Eastern North Atlantic Central Water (ENACW) upwells onto the shelf and is in-
troduced to the ria [6, 1]. This entrance of ocean water mainly comes from the bottom.
During the rest of the year, SW winds provoke the entrance of warm and nutrients-
depleted water by the surface, blocking the circulation of the ria. This situation is related
to a high runoff of the river and an exit of surface fresh water, producing a convergent
front in the ria. However, this stational scheme gives only a general picture since the
events with frequencies <30 days explains >70% of the variability [13]. As a general
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picture, the winter situation consists in a stratified column maintained by the fresh wa-
ter discharge, in spite of the thermal inversion by heat losing through the surface. In
summer, the upwelling colds down the bottom layers. This fact along the warm surface
water (because of radiation) causes a strong thermal stratification. The rest of the year,
the column mix is dominant because of downwelling events.

Galician Rias are one of the most productive oceanic regions of the world [3]. Sub-
tidal dynamics is important since it is the main responsible for the net export and import
of water, nutrients, contaminants, plankton, to and from the ria of Vigo [8]. Hydrogra-
phy is a fundamental tool to understand the dynamics of the ria.

The key contribution of this research is to design a tool able to cluster and visualize
hydrographic situations in Galician rias. An automatic categorization of hydrographic
situations can help to recognize similar patterns, processes and consequences influenc-
ing on the water renovation time, the probability of HABs and the capability of natural
cleaning. The clusterings can also help to understand where the marine litter will go to.

This is a preliminary research project that aims at exploring the possibilities of
unsupervised learning technology. We therefore selected an initial sample of Galician
stations (see Fig. 1) and we represented the data extracted from these stations at different
points in time.

2 Materials and Methods

2.1 Collection of observations

In order to control the quality of the water in the Galician shellfish harvesting areas,
INTECMAR1 weekly monitors the hydrography of Galician coast. These weekly cam-
paigns have been running since 1992. The current oceanographic network is formed
by 43 oceanographic stations distributed along Rias Baixas and the Ría de Ares. Eight
of these stations are located in the Ría de Vigo. Among other measurements, salinity
and temperature profiles are recorded using a SBE25 CTD (conductivity-temperature-
depth) profiler. Conductivity measurements are converted into salinity values using the
UNESCO equation [20]. Every week, the obtained raw CTD data are processed, fil-
tered and bin averaged using the standard prescriptions of the CTD manufacturer [9,
10]. All data are downloaded, processed and saved on the INTECMAR data center (and
distributed through www.intecmar.gal).

In order to make an initial prototype, only the samples of two years (2015-2016)
obtained from the Ría de Vigo were considered. The profiles of temperature and salinitiy
were used to represent the hydrographic situations.

2.2 Data Representation

The main aim is to automatically discover associations among campaigns and, thus,
for each campaign, the information collected from all the stations is represented into a
single campaign representational unit. This is a vector of numerical values (temperature
and salinity) obtained from all the stations at different levels of depth.

1 www.intecmar.gal

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_27

https://dx.doi.org/10.1007/978-3-030-22747-0_27


Oitavén-Verdugo
River

Cí
es

 Is
la

nd
s

Fig. 1. Stations in one Galician estuary (“Ría de Vigo”)

The information obtained from each station comes originally in the form of triples:
(depth, temperature, salinity) from INTECMAR data center. For example, (2.35
m, 12.34 oC, 35.28), (2.47 m, 12.38 oC, 35.48), and so forth2. The depth values are
not uniform over campaigns. For example, campaign 1 might have measures at depth
levels of 2.35 m, 2.47 m, ... while campaign 2 might have measures at depth levels of
2.15m, 2.87m, and so forth. Such inconsistencies come from the characteristics of the
measuring devices and the type of bin average routinely used in the procedure. From
a data representational perspective, this demands some normalization strategy. Follow-
ing domain expert knowledge, superficial measures (all measures taken at depths lower
than 2 metres) were discarded and the remaining measures were bin averaged at 1 meter
intervals. This leads to the following intervals: [2m, 3m), [3m− 4m),... For each inter-
val, all measures whose depth falls in the interval are aggregated by weighted average.
This results in a representation that has two values for each interval: weighted average
of temperatures and weighted average of salinities in the interval. Given li, the number
of intervals for station i, the overall vectorial representation of a given campaign is:

stationi = (T1,i, S1,i, T2,i, S2,i, · · · , Tli,i, Sli,i) (1)
campaignk = (station1, station2, ...) (2)

where Tn,i (Sn,i) is the temperature (salinity) of the n-th interval in station i. The
geographical locations of the stations (located at different points of the estuaries) make
that the maximum depths are different and, thus, different stations contribute with dif-
ferent number of values to this representation. Additionally, since the maximum depth
of each cast can vary among campaigns (e.g., due to the sea-weather, tide and surveyor
skill), the deepest measures of each cast were discarded.

2 Temperature is measured in degrees centigrades and practical salinity is dimensionless.
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In this way, campaignk represents the hydrographic situation of the estuary at the
k-th campaign (on a given date). This situation is modelled by the sequences of tem-
peratures and salinities obtained at different depths from stations located at strategic
points in the estuaries. By automatically associating campaignk with other campaigns,
we can relate current campaigns with situations seen in the past, we can profile marine
situations and we can try to anticipate risk factors.

2.3 Clustering campaign data

Each campaign is represented by a vector of values (eq. 2) and the main purpose of
this new marine application is to cluster campaigns into groups. To meet this aim, we
employ k-means [11, 12]. K-means is a well-known clustering algorithm that finds clus-
ters and cluster centroids in a set of unlabelled data. The number of desired clusters (k)
has to be chosen in advance and k-means proceeds iteratively by moving the cluster
centroids in order to minimize the total within cluster variance. Given an initial set of
centroids, k-means alternates between i) identifying the data points that are closer to
each cluster centroid and ii) updating the centroids by computing the average of the
points in each cluster (each cluster centroid is the vector of the feature means for the
points in the cluster). The algorithm iterates until convergence. K-means aims to find
a good set of non-overlapping clusters. And the main intuition is that a good cluster is
one for which its points do not differ much from each other.

Cluster quality. There are different methods for choosing the optimal number of clus-
ters. Next, we describe some of them. The Elbow method [19] runs k-means for a range
of values of k and for each value of k computes the total within-cluster sum of squares
(WSS). Such an approach estimates the compactness of the clustering from the pair-
wise squared Euclidean distances between the points in the cluster. The Elbow method
plots WSS against the number of clusters and suggests to choose the number of clusters
so that adding another cluster does not reduce much the total WSS. To meet this aim,
the presence of an elbow or knee in the plot is considered as an indicator of the ideal
number of clusters.

Silhouette plots [18] are alternative displays for interpreting and validating cluster-
ings. They graphically represent clusters by a silhouette, which depicts the tightness and
separation of the clusters. For each point, its silhouette score measures how similar the
point is to its own cluster (cohesion) compared to the other clusters (separation). This
score ranges into [−1,+1] and a score close to 1 means that the point fits well with its
cluster and it is dissimilar to the other clusters.

Caliński and Harabasz [4] proposed another criterion to evaluate the quality of clus-
terings. It evaluates cluster validity based on the mean between- and within-cluster sum
of squares. Davies and Bouldin [5] presented a measure that can be also used to infer the
appropriateness of cluster partitions. Their measure incorporates well-accepted features
employed in cluster analysis and its design was driven by certain heuristic criteria.

Our tool implements the four clustering quality measures described above. These
four estimates can be used to automatically filter out bad partitions. However, the out-
put of a given clustering configuration requires human interpretation and, thus, our tool
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is flexible and allows the user to specify the number of clusters, analyze the results, vi-
sualize the campaigns associated to each cluster, etc. As a matter of fact, this subjective
analysis, done by the domain expert, should shed light on what is to be considered a
good cluster of marine situations.

Dimensionality reduction. The high number of dimensions or features in the cam-
paign vectors makes it difficult to visualize clustering results. We therefore adopted
some standard dimensionality reduction methods that are used for presenting the output
of the clustering in three-dimensional graphs.

Principal Component Analysis (PCA) [15] is a traditional way to do dimensionality
reduction. It is a statistical method based on orthogonal transformation that converts
a set of points represented with possibly correlated features into a set of points rep-
resented with a set of linearly uncorrelated features (known as principal components).
The transformation is performed in such a way that the first component accounts for
as much of the variability in the data as possible, the next component has the highest
variance under the constraint that it is orthogonal to the first component, and so forth.

In exploratory data analysis, PCA is often employed for visualization purposes.
High-dimensional datasets cannot be easily explored and analyzed by humans. PCA
supplies the user with low-dimensional representations. These representations, which
can retain as much of the variance of the original representation as possible, can be
plotted on informative graphs. Our tool uses PCA to generate visually amenable graphs
that better communicate the clusterings to the domain expert.

3 Experiments

The dataset was built from the measures obtained from eight stations in one Galician
estuary (“Ría de Vigo”). More specifically, we got data from the stations labelled as EF,
V1, V2, V3, V4, V5, V6, and V7 in Figure 1. We analyzed the database provided by
INTECMAR and selected an initial sample of dates (years 2015 and 2016). The overall
number of campaigns in this sample (e.g. the number of points to be clustered) is 80.
This is a small sample but it helps us to make initial tests with the tool. In the future,
we plan to extend this cluster analysis to many more data points (larger range of dates,
more campaigns and more stations from other Galician locations).

Given the characteristics of the eight stations (maximum depths of the measuring
exercises), each data point was represented by a vector with 254 features (127 tem-
peratures + 127 salinities). On average, each station contributed with about 16 depth
levels.

The tool we developed is written in Python. This facilitates the incorporation of
multiple data analysis libraries and toolkits. Furthermore, it is a language that is cur-
rently employed in several INTECMAR projects and, thus, the tool can be later adapted
and maintained by INTECMAR analysts. Unsupervised learning is driven by a number
of libraries and classes from scikit-learn [16].
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3.1 Preliminary Tests

We first performed a number of experiments designed to set the main configuration op-
tions of the clustering algorithm. We worked with two versions of k-means, k-means
and MiniBatchKMeans3. The first is a standard k-means implementation, while the
latter is a variant that uses mini-batches to reduce the computation time. MiniBatchK-
Means optimizes the same objective function as k-means but drastically reduces the
computational effort required to converge to a solution. Mini-batches are sub-samples
of the input data that are randomly selected at each training iteration. In contrast to
other solutions that reduce k-means’ computational time, mini-batch k-means outputs
results that are generally only slightly worse than k-means’ results. With the current
dataset, computational time is not a major concern and, therefore, we did not observe
substantial differences between both algorithms. We decided to adopt k-means for the
subsequent experiments. However, our tool can be easily configured to work with Mini-
BatchKMeans (if needed for performing large-scale experiments with massive datasets
of marine situations).

Next, we varied a number of parameters and observed the results obtained. More
specifically, we tested some initialization parameters and a parameter related to the
maximum number of iterations. K-means finds a local optimum rather than a global
optimum. As a result, the final output depends on the initial set of centroids. For this
reason, it is customary to run k-means multiple times from different initial configura-
tions. This is governed by the parameter n_init, which we set to 1000. This means
that the final results reported will be the best output (minimum within-cluster sum of
squares) of 1000 consecutive runs of k-means. For each execution of the algorithm, the
maximum number of iterations was set to 1000 (max_iter = 1000). We also experi-
mented with different initialization choices: i) a random selection of centroids, which
chooses k data points at random for the initial centroids, and ii) k-means++ [2], a
more sophisticated selection of seed centroids, which selects initial centroids in a smart
way to speed up convergence. Although there was no much overall difference, we fi-
nally selected the following configuration for the subsequent experiments:

KMeans(init=‘k-means++’, n_init=1000, max_iter=1000)

3.2 Ideal number of clusters

First, the experimentation focused on selecting the number of clusters. To meet this
aim, we experimented with clusterings with up to 12 clusters and we computed the
metrics described in section 2.3. Figure 2 depicts the results of the Elbow method.
Although there is not a clear knee, it appears that the most consistent solutions are
clusterings with a number of clusters in the range from 3 to 7. Next, we proceeded to
compute the Silhouette, Caliński-Harabasz and Davies-Bouldin metrics. Table 1 reports
the suggested number of clusters of the three best configurations according to these
metrics. The results are a mixed bag. They seem to suggest a high number of clusters
(greater than 5) but there is not a clear choice.

3 The corresponding scikit-learn classes are sklearn.cluster.KMeans and
sklearn.cluster.MiniBatchKMeans, respectively.
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Fig. 2. Elbow method. The X axis represents the number of clusters and the Y axis represents the
corresponding sum of squared errors.

best configuration 2nd best configuration 3rd best configuration
Silhouette 8 5 10
Caliński-Harabasz 6 7 8
Davies-Bouldin 5 10 11

Table 1. The three best configurations according to Silhouette, Caliński-Harabasz and Davies-
Bouldin metrics. The figures in the table are numbers of clusters.

Figures 3 and 4 show the Silhouette graphs for clustering configurations from 2
to 10 clusters. This graphical presentation helps to shed light on the ideal number of
clusters. For each plot, the X axis represents the Silhouette scores of the data points
(the higher the better). Data points with Silhouette scores close to 0 are on the border
between two clusters. The dashed vertical line represents the average silhouette score
of all the values in the plot. Each plot contains a certain number of clusters, where
each cluster is represented by a bar graph with the Silhouette scores of the data points
in the cluster. The bar graph of each cluster is labeled with a number (from 0 to the
number of clusters minus 1). The thicker the bar graph, the larger the cluster (more
data points were assigned to the cluster). A number of observations can be derived
from this visual analysis. First, cluster configurations with 5 or more clusters tend to
produce clusterings where some clusters have very few data points. For example, with
5 clusters, cluster #3 is tiny. The same happens for cluster #5 (6 clusters plot) or cluster
#0 (8 clusters plot). These partitions do not seem reliable as these tiny clusters hardly
reflect a real group of similar marine conditions. Furthermore, many of these cluster
configurations (for example, all cases with 7 or more clusters) show data points with
negative Silhouette scores, reflecting far from ideal cluster partitions (some points do
not fit well with their cluster). Clusterings with 2, 3 or 4 clusters look better. However,
the 2 and 4-cluster plots show also some negative scores. This suggests that the 3-cluster
partition is the most natural choice. This outcome was discussed with a domain expert,
who analyzed the groups and confirmed that a 3-cluster solution is rational and the three
groups could be associated with three typical environmental conditions. We therefore
adopted 3 clusters as our configuration for the rest of the analysis.
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Fig. 3. Silhouette graphs (2-5 clusters)
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Fig. 4. Silhouette graphs (6-10 clusters).
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Fig. 5. 3D visualization of the proposed clustering

3.3 3D Visualization

To further analyze the quality of this clustering, we proceeded to apply PCA on the data.
This transformation was done for visualization purposes and, thus, it is performed after
clustering the original dataset (the dataset is clustered using the original set of features
and, next, the data points are transformed into a reduced PCA space of features). With
three principal components, the PCA transformation of the dataset maintains 86% of
the variance. This suggests that visualizing the clusters using the three PCA principal
components does not lose much information. Figure 5 shows the results. This graph
confirms that a 3-cluster configuration partitions the data in a rational way, with no
much overlapp among the three cluster regions.

3.4 Domain-adapted visualizations

Although the visual analysis described above helps to understand the relative quality of
the clusterings, it is still not very informative to domain experts. To better communicate
the results obtained, we designed a number of domain-adapted visualizations. First,
we focused on understanding the main characteristics of the groups found. To meet
this aim, we obtained the three cluster centroids and we created centroid visualizations
amenable to analysis by domain experts. More specifically, we employed the centroids
as obtained in the original set of dimensions (no PCA) and we separately presented the
patterns of temperatures and salinities. The resulting visualization is shown in Figure 6.
The vector was divided by station, and sorted from the inner stations (top profiles), to the
outer stations (bottom profiles). The casts are presented as usual in the oceanographic
style, where depth is shown in the y-axis. Left profiles correspond to temperature and
right ones to salinity. Each cluster is represented by a line. This graph was analyzed
by the domain expert and he found it highly informative. For example, we found that
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Fig. 6. Temperature (left graph) and Salinity (right graph) patterns associated to the three cluster
centroids.

cluster #2 (green dotted line) represents a typical winter condition, where temperatures
are lower and constant for each profile. The salinity is lower for the surface layers,
mainly in the inner stations, due to the high river discharges during this season. The
orange dashed line (cluster #1) can be representing upwelling events, with temperatures
in the bottom layers very low (even lower than in the winter cluster #2 situation in
the deepest stations: EF and V5) and high temperatures at the surface (because of sun
radiation). The salinity profiles are mostly constant and high as corresponding with a
lower river runoff. Only in the inner stations, the surface fresh water signal is significant.
The blue solid line (cluster #0) is related to a downwelling/mixed situation, warmer than
the situation described above, mainly in the surface layers and with significant presence
of freshwater in the inner stations.
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Fig. 7. Chronological visualization of the clusters. The X axis represents the dates of the cam-
paigns and the Y axis represents the cluster assignment (0, 1 or 2)

In order to explore the correspondence of these cluster with the individual cam-
paigns, figure 7 shows the cluster assignment (Y-axis) for each campaign date. Cluster
#2 is associated to winter dates (February and March, which are months with high
river runoffs). In 2015, upwelling-downwelling situations alternated over the rest of
the months. In 2016, upwelling events were grouped mostly during summer and early
autumn, and downwelling during the last months of the year.

4 Conclusions

We designed and developed a new tool that employs clustering and PCA to group hy-
drographic events. Using this new tool, K-means clustering effectively organized data
measures obtained from marine campaigns. With a 3-clustering setting and using data
from two years of CTD weekly campaigns in the Ría de Vigo, the tool recognized typ-
ical situations described in the literature (upwelling, donwelling events and transition
between them [13]). Furthermore, the influence of the river runoff during winter and
the surface radiation during summer was also detected and visualized.

This work represents our first attempt to use machine learning to understand hydro-
graphic situations. This research needs to be extended in a number of ways: a) to enlarge
the study to datasets associated to larger periods of time; b) to apply this methodology
to other rias and c) to test a higher number of clusters. By considering and analyzing a
larger number of clusters, we might be able to discover specific situations that are not
fully described in the literature. Furthermore, the centroids of these classes could be
indicative of unknown circumstances, such as deviations or defects in CTD campaigns
or new trends in the ria.
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