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1 Introduction

This paper discusses several problems in dynamical systems and control, where
methods from learning theory are used in the state space of linear systems.
This is in contrast to previous approaches in the frequency domain [21, 8]. We
refer to [8] for a general survey on applications of machine learning to system
identification.

Basically, learning theory allows to deal with problems when only data from
a given system are given. Reproducing Kernel Hilbert Spaces (RKHS) allow to
work in a very large dimensional space in order to simplify the underlying prob-
lem. We will discuss this in the simple case when the matrix A describing a linear
discrete-time system is unknown, but a time series from the underlying linear
dynamical system is given. We propose a method to estimate the underlying
matrix using kernel methods. Applications are given in the stable and unstable
case and for estimating the topological entropy for a linear map. Furthermore, in
the control case, stabilization via linear-quadratic optimal control is discussed.

The emphasis of the present paper is on the formulation of a number of
problems in dynamical systems and control and to illustrate the applicability of
our approach via a series of numerical examples. This paper should be viewed as a
preliminary step to extend these results to nonlinear discrete-time systems within
the spirit of [3, 4] where the authors showed that RKHSs act as “linearizing
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spaces” and offers tools for a data-based theory for nonlinear (continuous-time)
dynamical systems. The approach used in these papers is based on embedding a
nonlinear system in a high (or infinite) dimensional reproducing kernel Hilbert
space (RKHS) where linear theory is applied. To illustrate this approach, consider
a polynomial in R, p(x) = α + βx + γx2 where α, β, γ are real numbers. If
we consider the map φ : R → R3 defined as φ(x) = [1xx2]T then p(x) =
α · [1xx2]T = α · φ(x) is an affine polynomial in the variable φ(x). Similarly,
consider the nonlinear discrete-time system x(k+1) = x(k)+x2(k). By rewriting

it as x(k+1) = [1 1]

[
x(k)
x(k)2

]
, the nonlinear system becomes linear in the variable

[x(k) x(k)2].
The contents is as follows: In Section 2 the problem is stated formally and

an algorithm based on kernel methods is given for the stable case. In Section
3 the algorithm is extended to the unstable case. In particular, the topological
entropy of linear maps is computed (which boils down to computing unstable
eigenvalues). Section 4 draws some conclusions from the numerical experiments.
For the reader’s convenience we have collected in the appendix basic concepts
from learning theory as well as some hints to the relevant literature.

2 Statement of the problem

Consider the linear discrete-time system

x(k + 1) = Ax(k), (1)

where A = [ai,j ] ∈ Rn×n. We want to estimate A from the time series x(1) + η1,
· · · , x(N) + ηN where the initial condition x(0) is known and ηi are distributed
according to a probability measure ρx that satisfies the following condition (this
is the Special Assumption in [12]).

Assumption The measure ρx is the marginal on X = Rn of a Borel measure
ρ on X × R with zero mean supported on [−Mx,Mx],Mx > 0.

One obtains from (1) for the components of the time series that

xi(k + 1) =

n∑
j=1

aijxj(k). (2)

For every i we want to estimate the coefficients aij , j = 1, · · · , n. They are
determined by the linear maps f∗i : Rn → R given by

(x1, ..., xn) 7→
n∑
j=1

aijxj . (3)

This problem can be reformulated as a learning problem as described in the
Appendix where f∗i in (3) plays the role of the unknown function (36) and
(x(k), xi(k + 1) + ηi) are the samples in (38).
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We note that in [12], the authors do not consider time series and that we
apply their results to time series.

In order to approximate f∗i , we minimize the criterion in (41). For a positive
definite kernel K let fi be the kernel expansion of f∗i in the corresponding RKHS
HK . Then fi =

∑∞
j=1 ci,jφj with certain coefficients cij ∈ R and

||fi||HK =

∞∑
j=1

c2i,j
λj

, (4)

where (λj , φj) are the eigenvalues and eigenfunctions of the integral operator
LK : L2

ν(X ) → C(X ) given by (LKf)(x) =
∫
K(x, t)f(t)dν(t) with a Borel

measure ν on X . Thus LKφj = λjφj for j ∈ N∗ and the eigenvalues λj ≥ 0.
Then we consider the problem of minimizing over (ci,1, · · · , ci,N ) the func-

tional

Ei =
1

N

N∑
k=1

(yi(k)− fi(x(k)))2 + γi||fi||2HK , (5)

where yi(k) := xi(k+1)+ηi = f∗i (x(k))+ηi and γi is a regularization parameter.
Since we are dealing with a linear problem, it is natural to choose the linear

kernel k(x, y) = 〈x, y〉. Then the solution of the above optimization problem is
given by the kernel expansion of xi(k + 1), i = 1, · · · , n,

yi(k) := xi(k + 1) =

N∑
j=1

cij〈x(j), x(k)〉, (6)

where the cij satisfy the following set of equations: xi(1)
...

xi(N)

 =

(
NλId + K

) ci1...
ciN

 , (7)

with

K : =


∑n
`=1 x`(1)x`(0) · · ·

∑n
`=1 x`(N)x`(0)

... · · ·
...∑n

`=1 x`(1)x`(N − 1) · · ·
∑n
`=1 x`(N)x`(N − 1)

 . (8)

This is a consequence of Theorem 2.
From (2), we have

xi(k + 1) =

N∑
j=1

cij〈x(j), x(k)〉 =

N∑
j=1

cijx(j)T · x(k) =

N∑
j=1

n∑
`=1

cijx`(j)x`(k)

=

n∑
`=1

N∑
j=1

cijx`(j)x`(k).
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Then an estimate of the entries of A is given by

âi` =

N∑
j=1

ci,jx`(j). (9)

This discussion leads us to the following basic algorithm.

Algorithm A: If the eigenvalues of A are all within the unit circle, one proceeds
as follows in order to estimate A. Given the time series x(1), · · · , x(N) solve the
system of equations (7) to find the numbers cij and then compute âi` from (9).

Before we present numerical examples and modifications and applications
of this algorithm, it is worthwhile to note the following preliminary remarks
indicating what may be expected.

The stability assumption in algorithm A is imposed, since otherwise the time
series will diverge exponentially. Then, already for a moderately sized number
of data points (N ≈ 102) equation (7) will be ill conditioned. Hence for unstable
A, modifications of algorithm A are required.

While for test examples one can compare the entries of the matrix A and its
approximation Â, it may appear more realistic to compare the values x(1), · · · , x(N)
of the data series and the values x̂(1), · · · , x̂(N) generated by the iteration of
the matrix Â.

In general, one should not expect that increasing the number of data points
will lead to better approximations of the matrix A. If the matrix A is diag-
onalizable, for generic initial points x(0) ∈ Rn the data points x(k) will ap-
proach for N → ∞ the eigenspace for the eigenvalue with maximal modulus.
For general A and generic initial points x(0) ∈ Rn, the data points x(N) will
approach for N →∞ the largest Lyapunov space (i.e., the sum of the real gen-
eralized eigenspaces for eigenvalues with maximal modulus). Thus in the limit
for N →∞, only part of the matrix can be approximated. A detailed discussion
of this (well known) limit behavior is, e.g., given in Colonius and Kliemann [6].
A consequence is that a medium length of the time series should be adequate.

This problem can be overcome by choosing the regularization parameter γ
in (5) and (7) using the method of cross validation described in [10]. Briefly,
in order to choose γ, we consider a set of values of regularization parameters:
we run the learning algorithm over a subset of the samples for each value of
the regularization parameter and choose the one that performs the best on the
remaining data set. Cross validation helps also in the presence of noise and to
improve the results beyond the training set.

A theoretical justification of our algorithm is guaranteed by the error esti-
mates in Theorem 5. In fact, for the linear dynamical system (1), we have that
f∗ in (36) is the linear map f∗(x) = fi(x) in (3) and the samples s in (38) are
(x(k), xi(k+ 1) +ηi). Moreover, by choosing the linear kernel k(x, y) = 〈x, y〉 we
get that f∗ ∈ HK . In this case, (46) has the form

||x̂i(k + 1)− xi(k + 1)||2 ≤ 2Cx̄Esamp + 2||x(k + 1)||2K(γ + 8Cx̄∆), (10)
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where ||xi(k + 1)||HK =
∑∞
j=1

c2i,j
λj

.

The first term in the right hand side of inequality (10) represents the error
due to the noise (sampling error) and the second term represents the error due
to regularization (regularization error) and the finite-number of samples (inte-
gration error).

Next we discuss several numerical examples, beginning with the following
scalar equation.

Example 1. Consider x(k + 1) = αx(k) with α = 0.5. With the initial condition
x(0) = −0.5, we generate the time series x(1), · · · , x(100). Applying algorithm A
with the regularization parameter γ = 10−6 we compute α̂ = 0.4997. Using cross
validation, we get that α̂ = 0.5 with regularization parameter γ = 1.5259 · 10−5.
When we introduce an i.i.d perturbation signal ηi ∈ [−0.1, 0.1], the algorithm
does not behave well when we fix the regularization parameter. With cross valida-
tion, the algorithm works quite well and the regularization parameter adapts to
the realization of the signal ηi. Here, for e(k) = x(k)−x̂(k) with x(k+1) = αx(k)

and x̂(k + 1) = α̂x̂(k), we get that ||e(300)|| =
√∑300

i=1 e
2(i) = 0.0914 and√∑300

i=100 e
2(i) = 1.8218 · 10−30.

We observe an analogous behavior of the algorithm when the data are gen-
erated from x(k + 1) = αx(k) + εx(k)2 where the algorithm works well in the
presence of noise and structural perturbations when using cross validation. When
ε = 0.1 and with an i.i.d perturbation signal ηi ∈ [−0.1, 0.1], α̂ varies between

0.38 and 0.58 depending on the realization of ηi but ||e(300)|| =
√∑300

i=1 e
2(i) =

0.2290 and
√∑300

i=100 e
2(i) = 2.8098·10−30 which shows that the error e decreases

exponentially and the generalization properties of the algorithm are quite good.

3 Unstable case

Consider

x(k + 1) = Ax(k) with A ∈ Rn×n, (11)

where some of the eigenvalues of A are outside the unit circle. Again, we want
to estimate A when the following data are given,

x(1), x(2), ..., x(N), (12)

which are generated by system (11), thus x(k) = Ak−1x(1).
As remarked above, a direct application of the algorithm A will not work,

since the time series diverges fast. Instead we construct a new time series from
(12) associated to an auxiliary stable system.

For a constant σ > 0 we define the auxiliary system by y(k+1) = Ãy(k) with Ã :=
1
σA. Thus y(k) =

(
A
σ

)k−1
y(1) and with y(1) = x(1) one findsy(k) = 1

σk−1A
k−1x(1) =

1
σk−1x(k). If we choose σ > 0 such that the eigenvalues of Aσ are in the unit circle,
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we can apply algorithm A to this stable matrix and hence we would obtain an
estimate of Aσ and hence of A. However, since the eigenvalues of the matrix A are
unknown, we will be content with a somewhat weaker condition than stability
of A

σ .

The data (12) for system (11) yield the following data for system (3):y(1) :=
x(1), y(2) := 1

σx(2), ..., y(N) := 1
σN−1x(N). We propose to choose σ as follows:

Define

σ := max

{
‖x(k + 1)‖
‖x(k)‖

, k ∈ {0, 1, ..., N}
}
. (13)

Clearly the inequality σ ≤ ‖A‖ holds. We apply algorithm A to the time series
y(k). This yields an estimate of A

σ and hence an estimate Â of A.

For general A, this choice of σ certainly does not guarantee that the eigen-
values of A

σ are within the unit circle. However, as mentioned above, a generic
data sequence x(k), k ∈ N, will converge to the eigenspace of the eigenvalue

with maximal modulus. Hence ‖x(k+1)‖
‖x(k)‖ will approach the maximal modulus of

an eigenvalue, thus this choice of σ will lead to a matrix A
σ which is not “too

unstable”.

Example 2. Consider x(k+1) = αx(k) with α = 11.46. With the initial condition
x(0) = −0.5, we generate the time series x(1), · · · , x(100). The algorithm above
with the regularization parameter γ = 10−6 yields the estimate α̂ = 11.4086.
Cross validation leads to the regularization parameter γ = 9.5367 · 10−7 and
the estimate α̂ = 11.4599. In the presence of a small noise η ∈ [−0.1, 0.1], cross
validation yields the regularization parameter γ = 0.002 and the slightly worse
estimate α̂ = 11.1319.

We observe the same behavior in higher dimensional systems where the eigen-
values are of the same order of magnitude.

The next example is an unstable system with a large gap between the eigen-
values.

Example 3. Consider the system x(k + 1) = Ax(k) with A =

[
20 0
0 −0.1

]
. With

the initial condition x(0) = [−1.9, 1], we generate the time series x(1), · · · , x(100).

The algorithm above yields the (excellent) estimate Â =

[
20.0000 0.0000
−0.0000 −0.1000

]
,

In the presence of noise of maximal amplitude 10−4 , the algorithm approxi-
mates well only the large entry a11 = 20: For a first realization of ηi and with

cross validation, we get Â =

[
19.9997 −0.0111
0.0000 −0.1104

]
, with γ1 = 1.5259 · 10−5 and

γ2 = 220. However another realization of ηi leads to Â =

[
19.9994 −0.0011
0.0000 −0.0000

]
,

with γ1 = 3.0518 · 10−5 and γ2 = 2.8147 · 1014. This is due to the fact that
the data converge to the eigenspace generated by the largest eigenvalue λ = 20.
However, the eigenvalues of A− Â are within the unit disk with small amplitude

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_14

https://dx.doi.org/10.1007/978-3-030-22747-0_14


Kernel Methods for Discrete-Time Linear Equations 7

which guarantees that the error dynamics of e(k) = x(k)− x̂(k) converges to the
origin quite quickly. We observe the same phenomenon with

A =

[
−0.5 0

0 25

]
. (14)

Here, in the absence of noise, we obtain the estimate

Â =

[
−0.5000 0.0000
−0.0000 25.0000

]
, (15)

with γ1 = γ2 = 0.9313·10−9. In the presence of noise ηi with amplitude 10−4, the
data converge to the eigenspace corresponding to the largest eigenvalue λ = 25:
for some realization of ηi one obtains the estimate

Â =

[
−0.4809 0.0008
0.0164 24.9960

]
, (16)

while for another realization of η

Â =

[
−0.0000 −0.0000
−1.0067 24.8696

]
. (17)

The regularization parameters γ1 and γ2 adapt to the realization of the noise.

As already remarked in the end of Section 2, we see that “more data” does
not always necessarily lead to better results, since the data sequence converges
to the eigenspace generated by the largest eigenvalue. However, whether with
or without noise, the approximations of A are good enough to reduce the error
between x(k + 1) = Ax(k) and x̂(k + 1) = Âx̂(k) outside of the training exam-
ples, since cross-validation determines a good regularization parameter γ that
balances between good fitting and good prediction properties.

The next example has an eigenvalue on the unit circle.

Example 4. Consider x(k + 1) = Ax(k) with

A =


2.2500 −1.2500 1.2500 −49.5500
3.7500 −2.7500 13.1500 −20.6500

0 0 10.4000 −32.3000
0 0 0 −21.9000

 . (18)

The set of eigenvalues of A is spec(A) = {−1.5000, 1.0000, 10.4000,−21.9000}.
In the absence of noise and initial condition x = [−0.9, 15, 1.5.2.5] with N = 100
points, we compute the estimate

Â =


2.2500 −1.2500 1.2498 −49.5499
3.7500 −2.7500 13.1498 −20.6499
0.0000 0.0000 10.3998 −32.2999
0.0000 0.0000 −0.0001 −21.8999

 , (19)
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and regularization parameters γ1 = γ2 = 0.9313 · 10−9. In this case, the set of
eigenvalues of Â is

spec(Â) = {−21.9000, 10.3999,−1.5000, 1.0000}. (20)

For a given realization of η ∈ [−10−4, 10−4], we obtain the estimate

Â =


2.2551 −1.2490 1.2187 −49.5304
3.7554 −2.7489 13.1175 −20.6297
0.0055 0.0011 10.3669 −32.2794
0.0053 0.0010 −0.0325 −21.8797

 (21)

with γ1 = 0.0745 · 10−7 and γ2 = 0.1490 · 10−7. The eigenvalues of A− Â are of
the order of 10−4 which guarantees that the error dynamics converges quickly
to the origin. However, the set of eigenvalues of Â is

spec(Â) = {−21.8996, 10.3999,−1.5026, 1.0134}. (22)

Hence an additional unstable eigenvalue occurs.

Example 5. Consider x(k + 1) = Ax(k) with

A =


−0.8500 0.4500 −0.4500 −77.8500
−1.3500 0.9500 14.3500 −11.6500

0 0 15.3000 −55.3000
0 0 0 −40.0000

 . (23)

The eigenvalues of A are given by

spec(A) = {−0.4000, 0.5000, 15.3000,−40.0000}. (24)

For an initial condition x = [−0.9; 15; 1.5; 2.5] and with N = 100 data points,
we get

Â =


−0.8498 0.4501 −0.4499 −77.8504
−1.3499 0.9500 14.3501 −11.6502
0.0001 0.0001 15.3001 −55.3004
−0.0004 −0.0002 −0.0004 −39.9987

 (25)

with eigenvalues given by

spec(Â) = {−40.0000,−0.3974, 0.4982, 15.3008}. (26)

Here we used γi = 10−12, i = 1, · · · , 4. Moreover, the eigenvalues of A − Â are
quite small and such that the error dynamics converges quickly to the origin. In
the presence of noise η, the algorithm approximates the largest eigenvalues of A
but does not approximate the smaller (stable) ones. For example, for a particular
realization of noise with amplitude 10−4, we get the estimate

Â =


−2.1100 −0.0993 −1.3259 −74.4543
−1.7053 0.7777 13.9397 −10.5308
−0.8277 −0.3692 14.6466 −52.9920
−0.8283 −0.3694 −0.6539 −37.6904

 (27)
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and spec(Â) = {−40.0009, 0.1620± 0.8438i, 15.3008}.
For another realization of noise with amplitude 10−2, we get the estimate

Â =


−138.0893 −60.7052 −105.8111 301.5029
−0.2435 0.9101 12.9638 −12.6745
−71.1408 −31.9557 −40.3842 142.3170
−71.1408 −31.9557 −55.6843 157.6172

 (28)

and spec(Â) = {−40.1391, 3.9326, 0.9601, 15.3002}.
The algorithm introduced above also allows us to compute the topological

entropy of linear systems, since it is determined by the unstable eigenvalues.
Recall that the topological entropy of a linear map on Rn is defined in the
following way:

Fix a compact subset K ⊂ Rn, a time τ ∈ N and a constant ε > 0. Then a
set R ⊂ Rn is called (τ, ε)-spanning for K if for every y ∈ K there is x ∈ R with∥∥Ajy −Ajx∥∥ < ε for all j = 0, ..., τ. (29)

By compactness of K, there are finite (τ, ε)-spanning sets. Let R be a (τ, ε)-
spanning set of minimal cardinality #R = rmin(τ, ε,K). Then

htop(K,A, ε) := lim
τ→∞

1

τ
log rmin(τ, ε,K), htop(K,A) := lim

ε→0+
htop(K, ε). (30)

(the limits exist). Finally, the topological entropy of A is

htop(A) := sup
K
htop(K,A), (31)

where the supremum is taken over all compact subsets K of Rn.
A classical result due to Bowen (cf. [19, Theorem 8.14]) shows that the topo-

logical entropy is determined by the sum of the unstable eigenvalues, i.e.,

htop(A) =
∑

max(1, |λ|), (32)

where summation is over all eigenvalues of A counted according to their algebraic
multiplicity.

Hence, when we approximate the unstable eigenvalues of A by those of the
matrix Â, we also get an approximation of the topological entropy.

Example 6. For Example 4, we get that htop(A) = 34.80 while for the estimate

Â one obtains htop(Â) = 34.7999. For Example 5, we get that htop(A) = 55.30

and htop(Â) = 55.3008. These estimates appear reasonably good.

4 Conclusions

This paper has introduced the algorithm A based on kernel methods to identify
a stable linear dynamical system from a time series. The numerical experiments
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give excellent results in the absence of noise and structural perturbations. In the
presence of noise and structural perturbations the algorithm works well in the
stable case. In the unstable case, a modified algorithm works quite well in the
presence of noise but cannot handle structural perturbations.

Then we have extended algorithm A to identify linear control systems. In
particular, we have used estimates obtained by kernel methods to stabilize lin-
ear systems using linear-quadratic control and the algebraic Riccati equation.
Here the numerical experiments seem to indicate that the same conclusions on
applicability of the algorithm apply.

Extensions of the considered algorithms to nonlinear systems appear feasible
and are left to future work,.

A Appendix: Elements of Learning Theory

In this section, we give a brief overview of Reproducing Kernel Hilbert Spaces
(RKHS) as used in statistical learning theory. The discussion here borrows heav-
ily from Cucker and Smale [7], Wahba [18], and Schölkopf and Smola [17]. Early
work developing the theory of RKHS was undertaken by I.J. Schoenberg [14–16]
and then N. Aronszajn [2]. Historically, RKHS came from the question, when it
is possible to embed a metric space into a Hilbert space.

Definition 1. Let H be a Hilbert space of functions on a set X which is a closed
subset of Rn. Denote by 〈f, g〉 the inner product on H and let ||f || = 〈f, f〉1/2 be
the norm in H, for f and g ∈ H. We say that H is a reproducing kernel Hilbert
space (RKHS) if there exists K : X × X → R such that

i. K has the reproducing property, i.e., f(x) = 〈f(·),K(·, x)〉 for all f ∈ H.
ii. K spans H, i.e., H = span{K(x, ·)|x ∈ X}.

K will be called a reproducing kernel of H and HK will denote the RKHS H
with reproducing kernel K.

Definition 2. Given a kernel K : X × X → R and inputs x1, · · · , xn ∈ X , the
n× n matrix

k := (K(xi, xj))ij , (33)

is called the Gram Matrix of k with respect to x1, · · · , xn. If for all n ∈ N and
distinct xi ∈ X the kernel K gives rise to a strictly positive definite Gram matrix,
it is called strictly positive definite.

Definition 3. (Mercer kernel map) A function K : X × X → R is called a
Mercer kernel if it is continuous, symmetric and positive definite.

The important properties of reproducing kernels are summarized in the fol-
lowing proposition.

Proposition 1. If K is a reproducing kernel of a Hilbert space H, then
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i. K(x, y) is unique.
ii. For all x, y ∈ X , K(x, y) = K(y, x) (symmetry).

iii.
∑m
i,j=1 αiαjK(xi, xj) ≥ 0 for αi ∈ R and xi ∈ X (positive definitness).

iv. 〈K(x, ·),K(y, ·)〉H = K(x, y).
v. The following kernels, defined on a compact domain X ⊂ Rn, are Mercer

kernels: K(x, y) = x · y> (Linear), K(x, y) = (1 + x · y>)d, d ∈ N (Poly-

nomial), K(x, y) = e−
||x−y||2

σ2 , σ > 0 (Gaussian).

Theorem 1. Let K : X ×X → R be a symmetric and positive definite function.
Then there exists a Hilbert space of functions H defined on X admitting K as a
reproducing Kernel. Moreover, there exists a function Φ : X → H such that

K(x, y) = 〈Φ(x), Φ(y)〉H for x, y ∈ X . (34)

Φ is called a feature map.
Conversely, let H be a Hilbert space of functions f : X → R, with X compact,

satisfying

For all x ∈ X there is κx > 0, such that |f(x)| ≤ κx||f ||H. (35)

Then H has a reproducing kernel K.

Remark 1. i. The dimension of the RKHS can be infinite and corresponds to
the dimension of the eigenspace of the integral operator LK : L2

ν(X )→ C(X )
defined as (LKf)(x) =

∫
K(x, t)f(t)dν(t) if K is a Mercer kernel, for f ∈

L2
ν(X ) and ν a Borel measure on X .

ii. In Theorem 1, and using property [iv.] in Proposition 1, we can take Φ(x) :=
Kx := K(x, ·) in which case F = H – the “feature space” is the RKHS. This
is called the canonical feature map.

iii. The fact that Mercer kernels are positive definite and symmetric shows that
kernels can be viewed as generalized Gramians and covariance matrices.

iv. In practice, we choose a Mercer kernel, such as the ones in [v.] in Proposition
1, and Theorem 1, that guarantees the existence of a Hilbert space admitting
such a function as a reproducing kernel.

RKHS play an important role in learning theory whose objective is to find
an unknown function

f∗ : X → Y (36)

from random samples

s = (xi, yi)|mi=1, (37)

In the following we review results from [12] (for a more general setting, cf.
[7]) in the special case when the data samples s are such that the following
assumption holds.

Assumption 1: The samples in (37) have the special form

S : s = (x, yx)|x∈x̄, (38)
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12 Boumediene Hamzi and Fritz Colonius

where x̄ = {xi}|d+1
i=1 and yx is drawn at random from f∗(x) + ηx, where ηx is

drawn from a probability measure ρx.

Here for each x ∈ X, ρx is a probability measure with zero mean, and its
variance σ2

x satisfies σ2 :=
∑
x∈x̄ σ

2
x < ∞. Let X be a closed subset of Rn and

t̄ ⊂ X is a discrete subset. Now, consider a kernel K : X ×X → R and define a
matrix (possibly infinite) Kt̄,t̄ : `2(t̄)→ `2(t̄) as

(Kt̄,t̄a)s =
∑
t∈t̄

K(s, t)at, s ∈ t̄, a ∈ `2(t̄), (39)

where `2(t̄) is the set of sequences a = (at)t∈t̄ : t̄ → R with 〈a, b〉 =
∑
t∈t̄ atbt

defining an inner product. For example, we can take X = R and t̄ = {0, 1, · · · , d}.
In the case of a linear dynamical system (1), we are interested in learning

the map x(k) 7→ x(k + 1). Here we can apply the following results.

The problem to approximate a function f∗ ∈ HK from samples s of the form
(37) has been studied in [12, ?]. It is reformulated as the minimization problem

f̄s,γ := argminf∈HK,t̄

{∑
x∈x̄

(f(x)− yx)2 + γ||f ||2K
}
, (40)

where γ ≥ 0 is a regularization parameter. Moreover,when x̄ is not defined by a
uniform grid on X, the authors of [12] introduced a weighting w := {wx}x∈x̄ on
x̄ with wx > 04. Let Dw be the diagonal matrix with diagonal entries {wx}x∈x̄.
Then, ||Dw|| ≤ ||w||∞.

In this case, the regularization scheme (40) becomes

f̄s,γ := argminf∈HK,t̄

{∑
x∈x̄

wx(f(x)− yx)2 + γ||f ||2K
}
, (41)

Theorem 2. Assume f∗ ∈ HK,t̄ and the standing hypotheses with X, K, t̄, ρ
as above, y as in (38). Suppose Kt̄,x̄DwKx̄,t̄ + γKt̄,t̄ is invertible. Define L to
be the linear operator L = (Kt̄,x̄DwKx̄,t̄ + γKt̄,t̄)

−1Kt̄,x̄Dw. Then problem (41)
has the unique solution

fs,γ =
∑
t∈t̄

(Ly)tKt (42)

Assumption 2 : For each x ∈ X, ρx is a probability measure with zero mean
supported on [−Mx,Mx] with Bw := (

∑
x∈x̄ wxM

2
x)

1
2 <∞.

The next theorems give estimates for the different sources of errors.

Theorem 3. (Sample Error) [12, Theorem 4, Propositions 2 and 3] Let As-
sumptions 1 and 2 be satisfied, suppose that Kt̄,x̄DwKx̄,t̄ + γKt̄,t̄ is invertible

4 A suggestion in [12] is to consider the ρX−volume of the Voronoi cell associated with
x̄. Another example is w = 1 or if |x̄| = m <∞, w = 1

m
.
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and let fs,γ =
∑
t∈t̄ ctKt be the solution of (41) given in Theorem 2 by c = Ly.

Define

Lw := (Kt̄,x̄DwKx̄,t̄ + γKt̄,t̄)
−1Kt̄,x̄D

1/2
w

κ := ||Kt̄,t̄|| ||(Kt̄,x̄DwKx̄,t̄ + γKt̄,t̄)
−1||2.

Then for every 0 < δ < 1, with probability at least 1 − δ we have the sample
error estimate

||fs,γ − fx̄,γ ||2K ≤ Esamp := κσ2
wα
−1

(
2||Kt̄,t̄Lw|| ||Lw|| B2

w

κσ2
w

log
1

δ

)
, (43)

where α(u) := (u − 1) log u for u > 1. In particular, Esamp → 0 when γ → ∞
or σ2

w → 0.

Theorem 4. (Regularization Error and Integration Error) [12, Proposition 4
and Theorem 5] Let Assumptions 1 and 2 be satisfied and let X̄ = (Xx)x∈x̄ be
the Voronoi cell of X associated with x̄ and wx = ρX(Xx). Define the Lipschitz

norm on a subset X ′ ⊂ X as ||f ||Lip(X′) := ||f ||L∞(X′) + sups,u∈X
|f(s)−f(u)|
||s−u||`∞(Rn)

and assume that the inclusion map of HK,t̄ into the Lipschitz space satisfies5

Cx̄ := sup
f∈HK,t̄

∑
x∈x̄ wx||f ||2Lip(Xx)

||f ||2K
<∞. (44)

Suppose that x̄ is ∆−dense in X, i.e., for each y ∈ X there is some x ∈ x̄
satisfying ||x− y||`∞(Rn) ≤ ∆.

Then for f∗ ∈ HK,t̄

||fx̄,γ − f∗||2 ≤ ||f∗||2K(γ + 8Cx̄∆) (45)

Theorem 5. (Sample, Regularization and Integration Errors) [12, Corollary 5]
Under the assumptions of Theorems 3 and 4, let X̄ = (Xx)x∈x̄ be the Voronoi cell
of X associated with x̄ and wx = ρx(Xx). Suppose that x̄ is ∆−dense, Cx̄ <∞,
and f∗ ∈ HK,t̄. Then, for every 0 < δ < 1, with probability at least 1 − δ there
holds

||fs,γ − f∗||2 ≤ 2Cx̄Esamp + 2||f∗||2K(γ + 8Cx̄∆), (46)

where Esamp is given in (43).
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