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Abstract. We discuss surrogate models based on machine learning as
approximation to the solution of an ordinary differential equation. Neural
networks and a multivariate linear regressor are assessed for this appli-
cation. Both of them show a satisfactory performance for the considered
case study of a damped perturbed harmonic oscillator. The interface of
the surrogate model is designed to work similar to a solver of an ordi-
nary differential equation, respectively a simulation unit. Computational
demand and accuracy in terms of local and global error are discussed.
Parameter studies are performed to discuss the sensitivity of the method
and to tune the performance.
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1 Introduction

Machine learning techniques are successful in many fields such as image and
pattern recognition. In recent years, interest increases in applying these tech-
niques also to other fields of science, which are conventionally dominated by e.g.
physically motivated models. The success of these techniques is usually tied to
the amount and quality of data available for training the model. In engineering
and science, these data can be generated using measurements or simulations.

The present paper discusses machine learning techniques in the context of
simulations based on ordinary differential equations. These are are often used
to describe physical or engineering systems. Solving these equations can be ex-
pensive in practice, in particular for complex systems and when solutions are
required repeatedly, like in optimization problems. The computational costs en-
countered are often too high, e.g. when combining these models with the real
world, like in cyber-physical systems, where real-time performance is required.
The purpose of model order reduction or surrogate models is to reduce the com-
putational costs, taking into account some limited reduction of accuracy.

A prominent method for model order reduction is proper orthogonal decom-
position, which was successfully applied already many years ago, e.g. to analyze
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turbulent flows [I]. In the present work, we follow a different approach, adopting
the perspective of co-simulation. Co-simulation denotes the dynamic coupling
of various simulation units, which exchange information during simulation time,
for a review see [2, [3]. Several co-simulation interfaces have been defined and im-
plemented, e.g. the Functional Mock-Up Interface standard [4], for a discussion
see [5]. A discussion and comparison was performed e.g. in [6]. Typically, in such
a setup the computational costs are dominated by only few of the individual
simulation units. It is intriguing to replace only the costly simulation units by
cheaper surrogate models using machine learning techniques. The framework of
co-simulation might be exploited in this context in a way that the master algo-
rithm is left unaltered. However, as models generated by machine learning do
not explicitly incorporate a solver, the meaning of co-simulation fades and one
could use a notion of model-coupling instead.

Machine learning has been applied to differential equations before, some work
dates back more than twenty years, but a considerable boost appeared very re-
cently. Artificial neural networks have been proposed to derive analytical solu-
tions for differential equations by reformulating them as optimization problem
[7]. Deep reinforcement learning was suggested for general non-linear differen-
tial equations, where the network consists of an actor that outputs solution
approximations policy and a critic that outputs the critic of the actor’s output
solution [§]. An approximation model for real-time prediction of non-uniform
steady laminar flow based on convolutional neural networks are proposed in [9].
Considering the simulation of buildings, several efforts have been made to re-
duce the computation costs, in particular within the IBPSA 1 project [10]. The
input and output data of simulators is used to train neural networks in a co-
simulation setting (referred to as “intelligent co-simulation”), and the model is
compared to model order reduction by proper orthogonal decomposition [IT].
A similar approach called “component-based machine learning”, for the same
field of application, is pursued in [I2]. The same setting was investigated using
deep-learning neural-networks [I3], where a considerable computational speedup
over the physical model at similar accuracy is claimed.

The present work focuses on simple case studies where extensive parameter
studies are feasible and more insights related to the structure of the method and
the case study can be achieved. A first discussion in this respect, considering
neural networks for the Dahlquist equation and the Van der Pol oscillator was
presented in [14]. The main contribution of this work is as follows:

The general method for using data models to approximate solutions of ordi-
nary differential equations is discussed.

A neural network and a multi-variate regressor are introduced as specific
examples.

— Accuracy and computational costs are discussed.

Parameter studies are performed to discuss the sensitivity of the method.
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2 Method

Data models shall be trained as surrogate model for a simulation unit. The
surrogate model obtains the same input and output variables as the original
simulation unit. The input variables are represented as explicit function of time.
For simplicity, the output shall be the state variable itself. Output variables
as functions of the state variable mean a straightforward generalization of the
method. The data model contains short-term memory units to store previous
values of the state variable. These serve as inputs for the calculation in addition
to the present value and the explicit function of time to predict the next value
of the state variable.

This way, the model builds a trajectory, where errors can easily accumulate,
which is typical for solutions of differential equations. As training data, we make
use of the solution to differential equations generated by a traditional solver. For
the latter, we employ the routine odeint from the python package scipy [15].

For the neural network, the multi-layer perceptron of the package scikit-
learn is chosen [I6]. Unless stated otherwise, we use one hidden layer with one
neuron, a tolerance of 10~ and the solver “Ibfgs”. Model selection on a test data
set is used to apply 100 different random seeds in the optimizer of the neural
network, which is common practice and crucial here to obtain a satisfactory
validation. While this is satisfactory, note that it can be expected that the true
optimum is not found, and hence some “random” additional error is found in the
validation when comparing different settings. The multivariate linear regressor
is constructed using the Moore-Penrose pseudo-inverse from the python package
numpy. The regressor is limited to linear functions for the case study considered
in the present work. An extension to polynomials is very straightforward but not
necessary if the underlying differential equation is linear.

The method is designed to allow for generalization in several respects to
be considered in future. In particular, a wrapper for simulation units in a co-
simulation can encapsulate the method as a surrogate model. In such applica-
tions, it might be better to take more arbitrary snapshots of the data for training,
which means a further extension to the consecutive data in simulation time con-
sidered here. Finally, for the simple cases considered here, the output coincides
with the state variables of the model. In actual applications, only the output
as some function of the state variable might be available for training the data
model.

3 Model / Case Study

For testing the method, we consider a damped harmonic oscillator amended by
an explicit function of time as perturbation,

i+ 0.19 + y + 0.1 sin? (\/it) ~0, (1)

with the initial condition y(0) = 1 and ¢(0) = 0. The damping and the pertur-
bation are chosen such that the behaviour of y(t) changes significantly from the
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training to the validation phase, which is supposed to challenge the method. For
the same purpose, the frequencies of the harmonic oscillator and the perturba-
tion are chosen differently. Note, however, that the model is chosen such that
the solution y(t) is bounded for all ¢ within a range which can easily be covered
during the training phase. Hence, even though the y(t) changes qualitatively
from training to validation, the data model can be considered to remain within
the “’interpolation” range, where the training data should provide a good basis
for prediction. The perturbation term represents an input for a simulation unit
in a co-simulation scenario of an actual application, e.g. weather data in case of
a building performance simulation.

4 Results
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Fig. 1. Training results. The blue curve shows the “exact” solution generated by the
traditional solver, the orange curve shows the result for the data model. If only one
curve is visible, the predicted one lies one top of the “exact” solution. Left: neural
network; right: linear regressor. Neither model shows a significant deviation.

We choose the interval ¢ € [0,100) and 1000 time steps. ¢ € [0,30) is used for
training, ¢ € [30,50) as testing for potential model selection and ¢ € [50,100) for
validation. The Figures shown in this section always show results for the neural
network on the left hand side and results for the linear regressor on the right
hand side.

Results for training, testing and validation are shown in Figure [l Figure
and Figure |3] respectively. For the chosen parameters, the validation works very
well. Note how the behaviour of the function y(t) changes qualitatively from
the training to the test and to the validation phase. It is remarkable that the
prediction during the validation phase, dominated by the perturbation term, is
satisfactory even though the perturbation is barely visible for the eye during the
training phase.

After successful training, the predictive quality of a data model relates to
the similarity of the input data for training and prediction. This similarity can
be discussed in terms of distance between the data, as shown in Figure ] The
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Fig. 2. Like, Figure [T} but for test results, used for model selection in case of the
neural network. Note that the effect of the perturbation becomes visible as distortion
of the oscillation.
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Fig. 3. Like, Figure but for validation results. Note how the behaviour of the
solution y(t) is qualitatively different from the training phase. For the neural network
(right hand side), we see some small deviation where the blue curve becomes visible
below the orange one. These deviation are better visible in Fig.
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Fig. 4. The distance in theory space from input variables during validation compared
to training data is shown. The distance is defined as Euclidean distance from the nearest
point from the training data set. Left: Results for the neural network. Right: Same as
left, but for the linear regressor.
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Fig. 5. The global integration error generated by the data model along the trajectory,
determined by comparison to a trajectory generated by a traditional solver. Left: Re-
sults for the neural network. Right: Same as left, but for the linear regressor. Note the
different scale on the y-axis in the two plots.
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Fig.6. The mean squared error during the validation, shown versus the number of
neurons for one hidden layer. Left: Results for the neural network with one hidden
layer. Right: Results for the neural network with two hidden layers.

distance is defined as Euclidean distance of the input variables during the val-
idation from the nearest point of the input variables during the training. The
distance does not accumulate over time and the model can be considered as being
interpolation and not extrapolation. The global error of the model can easily be
estimated considering the deviation of the predicted trajectory from the trajec-
tory generated by the traditional solver, shown in Figure |5} Using this measure,
the linear regressor performs considerably better (three orders of magnitude)
than the neural network. We conjecture that the linear regressor performs so
well because the model and the solver are linear except for the perturbation.
The non-linearity of the latter is not modelled by the regressor, since it is used
as one of the input variables.

Parameter studies have been performed to discuss the sensitivity of the
method. The mean square global error during the validation is shown versus
the number of neurons in Figure |§| for one and two hidden layers (each with the
same number of neurons). There is a significant amount of noise, which might
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Fig. 7. Left: Global integration error for the validation of the neural network using
two neurons in one hidden layer, which is the best neural network found in this study
in the sense of least mean squared error, compare Figure [5| and Figure @ Right: The
mean squared error during the validation, shown versus the required tolerance during
the training of the neural network.

relate to the difficulty of finding the global optimum in the training phase, as dis-
cussed earlier. However, a trend is observed for the method to worsen towards a
higher number of neurons, independent of the number of hidden layers. It seems
that superfluously increasing of the complexity of the data model is disadvan-
tageous. Different sources of error might accumulate, including the difficulty of
finding the optimum. This is true at least at this level of accuracy and for simple
models like the considered one here.

The best performing neural network appears to use two neurons in one hidden
layer, for which we show results for the global error in Figure [7] left hand side.
Still, the global error is worse than that of the linear regressor by three orders of
magnitude. The dependence on the tolerance used in the optimizer of the neural
network is shown in Figure [7] right hand side. We conclude that a further im-
provement of the performance of the neural network cannot be achieved by such
measures for this simple case study. However, for more complex applications, it
is expected that larger neural networks will be required.

The computational costs have been measured using the python package
timeit. The traditional solver took about 7 ms, the neural network 31 ms and
the linear regressor 26 ms on a 2.4 GHz Intel Core i5. Note that the computa-
tional costs for training the data model are neglected here. This is reasonable,
as the training could be done offline or at least easily parallelized. The high
computational costs of the data models compared to the traditional solver are
not surprising, as no proper model order reduction is applied. Benefits in terms
of saved computational costs are however expected for more complicated models
where model order reduction is desirable and can be achieved by the proposed
method.
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5 Discussion / Outlook

Machine learning surrogate models for ordinary differential equations have been
investigated considering a neural network and a multivariate linear regressor. A
damped and perturbed harmonic oscillator is introduced as case study to test
the method. It was shown that a rather small neural network can describe these
simple models to fairly good accuracy, and the linear regressor to even better
accuracy. The case study was specifically designed such that the validation phase
differs from the training phase significantly, where the performance of the method
is remarkable. For the neural network, it was crucial to apply various random
seeds for the optimizer of the neural network during the training phase to obtain
satisfactory performance.

As next step, non-linear and hybrid models (discrete/continuous) shall be
discussed, like the Dahlquist’s test equation and the bouncing ball equation.
The method presented here shall then be tested further for more complicated
models, where model order reduction is desired. A realistic case study will be
considered in the field of thermal energy engineering. It will be discussed which
problems are particularly suited for this kind of surrogate models. The method
shall be applied in the context of co-simulation, replacing a simulation unit after
sufficient training on the fly.
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