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Abstract. A Weak Constraint Gaussian Process (WCGP) model is pre-
sented to integrate noisy inputs into the classical Gaussian Process pre-
dictive distribution. This follows a Data Assimilation approach i.e. by
considering information provided by observed values of a noisy input in
a time window. Due to the increased number of states processed from
real applications and the time complexity of GP algorithms, the problem
mandates a solution in a high performance computing environment. In
this paper, parallelism is explored by defining the parallel WCGP model
based on domain decomposition. Both a mathematical formulation of the
model and a parallel algorithm are provided. We prove that the parallel
implementation preserves the accuracy of the sequential one. The algo-
rithm’s scalability is further proved to be O(p2) where p is the number
of processors.

Keywords: Gaussian Processes · Data Assimilation · Domain Decom-
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1 Introduction and Motivations

Gaussian processes have been widely used since the 1970’s in the fields of geo-
statistics and meteorology. In geostatistics, prediction with Gaussian processes
is termed Kriging, named after the South African mining engineer D. G. Krige
by Matheron [10]. Naturally in spatial statistics the inputs to the process are
the two or three space dimensions, however, Over the past decade or so, there
has been much work on Gaussian processes in the machine learning community,
typically over higher dimensionality spaces.

GPs have had substantial impact in technologies including geostatistics [3]
and feature reduction [12]. Current applications are in diverse fields such as geo-
physics, medical imaging, multi-sensor fusion [13, 19, 21] and sensor placement
[8]. The latter of these is well suited application for the GP model we propose in
this paper. For example, this could allow the study of optimal sensor placement
for collecting air pollution data in big cities.

The main limitations of traditional GP regression are its sensitivity to noisy
input and the computational complexity. The contribution of this paper is a new
GP algorithm that overcomes these limitations simultaneously. By considering
the inputs to the GP as noisy observations and reformulating the GP, we create
a new model in which inputs are assimilated to estimate the true values of
inputs. We further demonstrate that our method is highly suitable for parallel
processing, both formally and with experimental results.
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2 Background and contribution

In [7], the authors expand the Gaussian process around the input mean (delta
method), assuming the random input is normally distributed and they derive a
new process whose covariance function accounts for the randomness of the input.
In [11] the input noise variances are inferred from the data as extra hyperpa-
rameters. Instead, we develop a Weak Constraint Gaussian Process (WCGP)
model to be used to improve the accuracy of the classical Gaussian process pre-
dictive distribution [15]. Noisy inputs are integrated into the Gaussian process
through a data assimilation approach - i.e. by considering information provided
by observed values of the noisy input. As the “assimilated observations” are not
verified exactly [1], we may consider this a weak constraint over the inputs. The
resulting model (which we call WCGP) is still a GP model with modified mean
and variance - as we will demonstrate in section 3. The number of processed data
points for this model is increased with respect the classical GP and we show the
GP time complexity is O(N3).

An approach to reduce the time complexity is to introduce approximation
methods. In [18] the covariance matrix is approximated by the Nystrom extension
of a smaller covariance matrix evaluated on M training observations (M << N).
Approximation methods help to reduce the computation cost from O(N3) to
O(NM2) and make makes running less expensive, but parameters must still be
selected a-priori, and, consequently, important sensitivities may be missed [2].

Due to the large number of states required in real applications plus the
time complexity of GP algorithms, the problem mandates the solution in a high
performance computing environment. In [22] a scalable Sparse Gaussian pro-
cess (GP) regression [16] and Bayesian Gaussian process latent variable model
(GPLVM) [17] are presented. This work represents the the first distributed infer-
ence algorithm which is able to process datasets with millions of points. However,
even with sparse approximations it is inconceivable to apply GPs to training set
sizes of data sets of size more thanO(107). In [4] a distributed Gaussian processes
model is introduced. Their key idea is to recursively distribute computations to
independent computational units and, subsequently, recombine them to form an
overall result. Local predictions are recombined by a parent node, which subse-
quently may play the role of an expert at the next level of the model architecture.
Even if this approach allows us to face problems with large data sets, the in-
teraction between the local and the parent node introduces a bottleneck which
affects the efficiency of processing for datasets which may be considered “big
data”.

As claimed in [6], the partitioning problem (i.e, decomposability: to break the
problem into small enough independent less complex subproblems) is a universal
source of scalable parallelism. In [14] a domain decomposition approach for the
classical GP or [20] applied to urban flows simulation are presented based on
the definition of boundary conditions for the subproblems. While the introduced
approach allows “big data” problems to be tackled, there is a subsequent loss to
solution accuracy.
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In this paper, we formally address the parallelism problem by defining the
parallel Weak Constraint GP (WCGP) model based on the previously intro-
duced domain decomposition approach. The accuracy of the proposed approach
is proved by showing that the solution obtained by the parallel algorithm is the
same as obtained by the sequential one. In particular, a parallel algorithm to
be implemented on a distributed computing architecture is presented. Also, the
algorithm’s scalability is studied taking into account both the execution time
(i.e. the time complexity) and the communication overhead given by the imple-
mentation of the algorithm on a parallel and distributed computing architecture.
Finally, an upper bound on the achievable performance gain is provided, which
turns out to be independent of the computing architecture utilised.

This paper is structured as follows. In Section 3 the Weak Constraint Gaus-
sain Process model is described. Then, the Domain Decomposition based Weak
Constraint Gaussian Process is introduced in Section 4. In this section we inves-
tigate the accuracy of the introduced method and a theorem demonstrating the
conservation of accuracy is presented. In Section 5 the scalability of the result-
ing algorithm is discussed and experimental results are provided in Section 6.
Conclusion and future work is summarised in Section 7.

3 Weak Contraint Gaussian Process

A spatial noisy input GP regression is formulated as follows: given a training
data set D = {(xi, yi), i = 1, . . . , N} of n pairs of noisy inputs xi and noisy
observations yi , obtain the predictive distribution for the realization of a latent
function at a test point x∗ , denoted by f∗ = f(x∗). We assume that the latent
function comes from a zero-mean Gaussian random field with a covariance func-
tion k(·, ·) on a domain Ω ⊂ <N×N and the noisy input xi and observations yi
are given by

yi = f(xi + exi) + eyi (1)

where exi = N (0, σ2
x) and eyi = N (0, σ2

y).

Gaussian Process: Denote

x = [x1, x2, . . . , xN ]T

and
y = [y1, y2, . . . , yN ]T .

The joint distribution of (f∗, y) is

(f∗, y) = N
(

0,

[
kx∗x∗ kTxx∗
kxx∗ σ

2
yI +Kxx

])
(2)

where kxx∗ = (k(x1, x∗), . . . , k(xN , x∗))
T and Kxx is an N × N matrix Kxx =

{k(xi, xj)}i=1,...,N ;j=1,...,N . By the conditional distribution for Gaussian vari-
ables, the predictive distribution of f∗ given y is

P (f∗|y) = N
(
kTxx∗A

−1y, kx∗x∗ − kTxx∗A
−1kxx∗

)
(3)
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where

A = σ2
yI +Kxx (4)

Data Assimilation: At each step i, i = 1, . . . , N (see Figure 1), let o = H(x)
be the observations vector o = {oi}i=1,...,N where H is a non-linear operator
collecting the assimilated observations at each step. The aim of DA problem is
to find an optimal tradeoff between the current estimate of the system state
(background) defined in (3) and the available assimilated observations. Let R
be a covariance matrix whose elements provide the estimate of the errors1 on o,
the assumption of input noise and the assimilation of it by a data assimilation
approach (see Chapter 5 of [9]) introduce a corrective term

O = HTR−1H (5)

to the output noise. Then the resulting Gaussian process is

P (f∗|y, o) = N
(
kTxx∗Â

−1y, kx∗x∗ − kTxx∗Â
−1kxx∗

)
(6)

where

Â = A+O (7)

with A and O defined in (4) and (5) respectively, and where we assume that
each input dimension is independently corrupted by noise, thus R is diagonal:

R = σ2
xI (8)

The predictive mean kTxx∗Â
−1y gives the point prediction of f(x) at lo-

cation x∗, whose uncertainty is measured by the predictive variance kx∗x∗ −
kTxx∗Â

−1kxx∗ . The point prediction given above is the best linear unbiased pre-
dictor in the following sense [14]. Consider all linear predictors

µ(x∗) = u(x∗)
ty, (9)

satisfying the unbiasedness requirement E[µ(x∗)] = 0. We want to find the vector
u(x∗) which minimizes the mean squared prediction error E[µ(x∗) − f(x∗)]

2.
Since E[µ(x∗)] = 0 and E[f(x∗)] = 0, the mean squared prediction error equals
the error variance var[µ(x∗)− f(x∗)] and can be expressed as

σ(x∗) = u(x∗)
tE(yyt)u(x∗)− 2u(x∗)

tE(yf∗) + E(f2∗ )

= u(x∗)
t(σ2

yI +Kxx +HTR−1H)u(x∗)− 2u(x∗)
tkxx∗ + kx∗x∗ (10)

Equation (10) is a quadratic form in u(x∗). It is easy to see σ(x∗) is mini-
mized if and only if u(x∗) is chosen to be (σ2

yI +Kxx +HTR−1H)−1. Based on
the above discussion, the mean of the predictive distribution in (6) or the best

1 i.e., the assimilated observations are not verified exactly, it is a weak constraint over
the inputs to the Gaussian Process
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linear unbiased predictor can be obtained by solving the following minimization
problem: for x∗ ∈ Ω, compute

ū(x∗) = argminu(x∗)∈<NJ(u(x∗)) (11)

with

J(u(x∗), σy,Kxx, H,R,Ω) = u(x∗)
t(σ2

yI +Kxx +HTR−1H)u(x∗)− 2u(x∗)
tkxx∗
(12)

To compute the minimum of J in (12), the Jacobian of J has to satisfy the
condition ∇J = 0 which implies the solution of a linear system of the matrix Â.
Due the ill conditioning of the matrix Kxx, the matrix Â is ill conditioned as well,
then is mandatory to introduce a preconditioning [15]. Since Kxx is symmetric
and positive definite, it is possible to compute its Cholesky factorization Kxx =
V V t. Let be µ(·) denote the condition number, by this way it is:

µ(Kxx) = µ(V )−
1
2

i.e., the Cholesky factorization of the covariance matrix Kxx mitigates the ill
conditioning of the minimization problem. Let be v = V +u, where + denotes the
generalised inverse of the matrix V . After the preconditioning the minimization
problem in (11) and (12) is written as:

v̄(x∗) = argminv(x∗)∈<NJ(v(x∗)) (13)

with

J(v(x∗), σy, V,H,R,Ω) = vtV t(I + σ2
yI +HTR−1H)V v − 2vtV tkxx∗ (14)

The exact treatment of this function would require the consideration of a dis-
tribution over Taylor expansions. Due the high computational load, several ap-
proximations are usually introduced in order to face this issue [11, 7]. Here we
face the problem concerning the high computational cost by introducing a do-
main decomposition approach into the mathematical model. In next sections we
provide a proof that the solution obtained by the decomposed problem we are
introducing is the same solution of the sequential problem. Also, it is proved
that the time complexity is reduced as well.

4 Domain Decomposition based Weak Constraint
Gaussian Process

In this section a synthetic mathematical formalization of the weak constraint GP
model based on a domain decomposition approach is presented. Local functions
are introduced. These functions are defined on subdomains which constitute a
partitioning DD(Ω) of the domain Ω ⊂ <N with overlapping as described in
Figure 2 and such that:

DD(Ω) = {Ωi}i=1,...,p (15)

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_9

https://dx.doi.org/10.1007/978-3-030-22747-0_9


6 Arcucci, Mcilwraith, Guo

Fig. 1. Graphical model (chain graph) for
a WCGP for regression. Squares repre-
sent observed variables and circles repre-
sent unknowns. Dotted squares represent
innovation with respect a classical GP [4].

Fig. 2. Domain Decomposition based
Weak Constraint Gaussian Process

with Ωi ⊂ <ri , ri ≤ N and for i = 1, . . . , p, it is such that Ω =
⋃p
i=1Ωi with

Ωi ∩Ωj = Ωij 6= ∅
The local WCGP function describes the local WCGP problem on a sub-domain
Ωi of the domain decomposition. It is obtained restricting the WCGP function
J to the sobdomain Ωi and by adding a local constraint onto the overlap region
between adjacent domains Ωi and Ωj such that:

JΩi
(vi) = vtiV

t
i (Ii + σ2

yIi +HT
i R
−1
i Hi)Vivi − 2vtiVikxx∗ + |vij − vji| (16)

where vi, Vi, Ii, Ri and Hi are restrictions on Ωi of vectors and matrices in (12),
and vij = vi/Ωij , vji = vj/Ωij , are restriction on Ωij = Ωi ∩ Ωj of vi and vj
respectively, ∀j such that Ωi ∩Ωj 6= ∅.

4.1 Accuracy of the decomposition approach

In this section the accuracy of the introduced DDWCGP model is studied. An
important point is to ensure that the introduction of a decomposition among the
dataset does not introduce errors which affects the accuracy of the GP solution.
Let v̄i = argminviJΩi

(vi) denote the minimum of JΩi
and let ṽ denote extension

vector defined as the sum of the extensions of v̄i ∀i, to the domain Ω:

ṽi =

{
v̄i in Ωi
0 in Ω −Ωi

and ṽ =

p∑
i=1

ṽi (17)

A theorem which ensures that the solution obtained by the parallel algorithm ṽ is
the same as obtained by the sequential one v̄ is proved here. First, some prelim-
inary observations are introduced in order to help the mathematical description
of the restriction and the extension of the function among the subdomains and
the global domain respectively. Let J̃i denote the extension function of JΩi

to
Ω:

J̃i =

{
JΩi

in Ωi
0 in Ω −Ωi

(18)
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Even if the functions J̃i are defined on Ω, we consider here the subscript i to
denote the starting subdomain. We can observe that

p∑
i=1

J̃i = J. (19)

Theorem 1. Let DD(Ω) be a decomposition of the domain Ω. Also, let ṽ de-
fined in (17) and v̄ = v̄(x∗) defined in (13), it follows that:

ṽ = v̄.

Proof: Let v̄i be the minimum of JΩi
on Ωi, it is

∇JΩi
[v̄i] = 0, ∀i : Ωi ∈ DD(Ω). (20)

From (20) it follows that
∑
i∇JΩi [v̄i] = 0 which gives from the property of the

gradient:

∇
∑
i

JΩi
[v̄i] = 0 (21)

Let consider the extension vector and the extension function as defined in (17)
and (18) respectively, from the (21) follows

∇
∑
i

J̃i(ṽi) = 0 (22)

which gives from the (19) and the second in (17):

∇J(ṽ) = 0 (23)

then, from (23) follows that ṽ is a stationary point for J . As v̄ as defined in (13)
is the global minimum, it follows that J(v̄) ≤ J(ṽ). We prove that v̄ = ṽ, then
J(v̄) = J(ṽ), by reduction to the absurd. Infact, by assuming

J(v̄) < J(ṽ), (24)

on Ω the (24) gives J(v̄(xj)) < J(ṽ(xj)) for all xj ∈ Ω. In particular, let Ωi be
a subset of Ω, then J(v̄(xj)) < J(ṽ(xj)) for all xj ∈ Ωi. Hence, considering the
restriction to Ωi, ∀i and by assuming the (24) we have

JΩi
(v̄/Ωi) < JΩi

(ṽ/Ωi), ∀i : Ωi ⊂ Ω (25)

which gives from (17):
JΩi

(v̄/Ωi) < JΩi
(v̄i). (26)

Equation (26) is an absurd. In fact, if v̄/Ωi 6= v̄i, the (26) says that there exists
a point such that the value of the function in that point is smaller than the values
of the function in the point of global minimum. Then the theorem is proved.

This result ensures that v̄ (the global minimum of J) can be obtained by
patching together all the vectors v̄i (global minimums of the operators JΩi), i.e.
by using the domain decomposition, the global minimum of the operator J can
be obtained by patching together the minimums of the local functionals JΩi

.
This result has important implications from the computational viewpoint as it
will be explained in the next section.
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5 The DD based WCGP algorithm (DDWCGP)

An algorithm to implement the minimization problem in (13) and (14) is pre-
sented as Algorithm 1. Hereafter it is assumed that the number of computing
processors equals the number of subdomains p which constitutes the decompo-
sition as described in (15).

Algorithm 1 A(Ωi, p): The DD based WCGP algorithm for each subdomain
Ωi of a partition of Ω in p subdomains

1: Input: {(xi, yi)}i=0,...,N , {oi}i=0,...,N and x∗
2: Input: L . define the number of points which constitutes the overlapping region
3: Define σy , Ri and Kxx . define the covariances
4: Compute V ← Cholesky(Kxx) . compute the Cholesky factorization of the

covariance matrix Kxx

5: Compute Di ← Ii + σ2
yIi

6: Define Hi . define the interpolation function
7: Compute D̂i ← Ai +HT

i R
−1
i Hi

8: Compute Âi ← V T
i D̂iVi . compute Â as defined in (7)

9: Define the initial value of ui

10: Compute vi = V +
i ui

11: While (convergence on vi is obtained) . start of the minimization steps
12: Send and Receive L overlapping values from the adjacent domains
13: Compute Ji ← Ji(vi) . Defined in (16)
14: Compute new values for vi
15: Compute ui = Vivi

5.1 Complexity and Scalability

In this section we provide an estimate of the scalability of our approach through
a study of time complexity. We also estimate the performance gain achievable by
implementing the algorithm on a parallel and distributed computing architec-
ture. First we provide the following definition of Scaling factor, which measures
the performance gain in terms of time complexity reduction, as the ratio

Sp =
τ (A(Ω, 1))

p τ(A(Ωi, p))
. (27)

where A denotes the parallel algorithm, p is the size of the partition which
constitutes the decomposition of Ω and τ(A) denotes the time complexity of the
algorithm.

Theorem 2. (Scaling factor estimation) The scaling factor of Algorithm 1
is such that

Sp = p2, ∀p (28)

Proof. The time complexity of a classical GP (i.e. when no decompositions are
introduced) is O(N3). Then it is

τ(A(Ω, 1)) = N3 (29)
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By introducing the domain decomposition of Ω as defined in Definition ??, and
by considering a partition of size p, we are going to solve, by A, p subproblems
of size about N/p, i.e. the time complexity is related to the subproblems and it is

τ(A(Ωi, p)) =

(
1

p
N

)3

(30)

From (27), (29), and (30) we have that

Sp =
N3

p
(

1
pN
)3 =

1(
1
p

)2 = p2

then (28) follows.

The parameter p in (27) denotes the rank of the partition which constitutes
the decomposition. If we consider the DDWCGP model implemented in an al-
gorithm on a parallel computing architecture of p processors (i.e. such that p
denotes the rank of the partition as well as the number of processors involved,
one subset Ωi of the partition for each processor), we may evaluate the execution
time of the algorithm running on the computing architecture and then estimate
the Measured Scaling factor :

Measured Sp =
T 1
A(N)

p T pA(N)
. (31)

where p is here the number of computing processors and T pA(N) denotes the
execution time for solving a problem of size N with p processors.
The execution time T pA(N) can be mainly expressed as the sum of the time
necessary for computation and the time necessary for communication. Then it
is

T pA = T pflop(N) + T pcomm(N) (32)

Regard T pflop(N), by denoting with tflop the time required by one floating point
operation, it is

T pflop(n) = τ(A(Ω, p)) tflop (33)

In an ideal case, in absence of communication among the processors, by using
(32) and (33) in (31) we clearly obtain Measured Sp = Sp. In reality, the
estimation provided by (28) represents an upper bound of the performance gain
we may obtain by implementing A on a parallel computing architecture due an
overhead produced by the communication. The Communication overhead is the
proportion of time the processors spend communicating with each other instead
of computing:

T pover(N) =
T pcomm(N)

T pflop(N)
(34)

where N denotes the size of the problem. The following results hold:
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Theorem 3 (Estimation of the Measured Scaling factor).

Measured Sp = Cpover Sp (35)

where Cpover is a quantity which depends on the communication overhead defined
in (34). Moreover, Cpover < 1, which gives

Measured Sp < Sp. (36)

Proof. From (31) and (32), it is

Measured Sp =
T 1
flop(N)

pT pflop(
N
p ) + pT pcomm(Np )

(37)

dividing by pT pflop(
N
p ), we have

Measured Sp =

T 1
flop(N)

pTp
flop

(N
p )

1 +
pTp

comm(N
p )

pTp
flop

(N
p )

also, by using (33), it can be written as

Measured Sp =
1

1 +
Tp
comm(N

p )

Tp
flop

(N
p )

τ(A(Ω, p)) tflop
p τ(A(Ω, p)) tflop

which, from (27), gives

Measured Sp =
1

1 +
Tp
comm(N

p )

Tp
flop

(N
p )

Sp (38)

then, from (34), we have that

Measured Sp =
1

1 + Tover(
N
p )

Sp (39)

and for

Cpover =
1

1 + Tover(
N
p )

(40)

then (35) follows. Moreover, as in (40) Tover(
N
p ) > 0, it follows that Cpover < 1,

which gives (36).

The communication overhead Tover(
N
p ) in (39) can be estimated by using the

so called surface-to-volume ratio [5] (denoted as S/V ) which is a measure of
the amount of data exchange (proportional to surface area of domain) per unit
operation (proportional to volume of domain). The goal is to minimize this ratio.
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Lemma 1. Concerning Algorithm 1, the surface-to-volume ratio equals to

S

V
=

2Lp3

(N + 2Lp)3
(41)

Proof. In Algorithm 1 the amount of data exchange (see Step 12) at each it-
eration is S = 2L. The amount of operations for each processor corresponds
to the time complexity of the sub problem solved by the processor. Then it is

V =
(

1
pN + 2L

)3
. From these estimations of S and V , we have that (41) holds.

6 Experimental results

In this section we provide experimental results that demonstrate the applicability
of our approach. In particular, we show experimentally that DDWCGP provides
accurate and scalable results as proved in Theorem 1 and Theorem 2.

In order to point out the expected performance of the parallel Algorithm 1
in terms of scalability and execution time reduction, test cases for N = 100,
N = 1000 andN = 10000 are been studied which correspond to problems of com-
plexity O(106), O(109) and O(1012). We show experimentally that DDWCGP
provides accurate and scalable results over a dataset such that the kernel function

is the Radial Basis Function kernel k(x, x′) = exp

(
− 1

2

(
x−x′
λ

)2)
with λ = 0.1,

the y values (unbeknownst to our model) from our x are such that y = sin(x)
and the input covariance matrix is defined in (8) for σ2

x = 0.5: R = 0.5 I where
I is the identity matrix.

Figure 3 shows results obtained for a number of computing processors ( i.e.
a number of subdomains which constitutes the decomposition described in (15))
equal to p = 1, p = 2 and p = 4. As shown in Figure 3, the result obtained by col-
lecting results on subdomains matches perfectly the result obtained by the code
for the test case without any decomposition. This constitutes an experimental
validation of the accuracy result proved in Theorem 1.

Results in Table 1 show how the performance improves as the size of the
problem increasing. This is explicitly confirmed in Figure 4 shows values of the
ratio

Rp(N) =
Sp

Measured Sp
(42)

this is due to the surface to volume ratio in (41) which is smaller for bigger
domains. Namely, the value of S/V is close to zero when the volume is very big
with respect to the surface (i.e. the computation is very heavy with respect to
the communication). For values of S/V close to zero, the quantity Cpover is close
to 1. In fact, by the definition of S/V it holds that Cpover = 1

1+ S
V

. This is the

reason why, in Table 1, by increasing the problem size, the performance of the
parallel algorithm improves. As confirmed by results in Table 1, the values of p,
up to whom the Measured Sp is very close to the value of Sp, depend on the
problem size.
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Fig. 3. Results of the test case with L = 2 for p = 1, p = 2, p = 4 computing processors
( i.e. for p = 1, p = 2, p = 4 subdomains which constitute the decomposition described
in (15))

Problem size: N = 100 N = 1000 N = 10000

p Sp Measured Sp Measured Sp Measured Sp

2 4 3.9 3.9 4.0

4 16 15.9 15.9 15.9

8 64 63.9 63.9 63.9

16 256 254.1 255.9 255.9

32 1024 994.4 1023.8 1023.9

64 4096 3763.0 4093.0 4095.9

128 16384 13815.3 16314.9 16383.8

256 65536 50694.2 64287.8 65532.2
Table 1. values of Measured Scaling factor (Measured Sp) for N = 100, N = 1000
and N = 10000 compared with the Scaling Factor (Sp) for a number of processors
2 ≤ p ≤ 256

Figure 5 shows the time reduction T pred which is the execution time TPA in (32)
normalized to 1 second. Also in this case, the obtained results underline how the
performance improvement in terms of execution time reduction increases when
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the volume of the data increases. This is still due to the communication overhead
which dominates datasets from smaller domains.

7 Conclusions

In this paper a Weak Constraint Gaussian Process (WCGP) algorithm is pre-
sented to integrate noisy inputs into the classical Gaussian Process predictive
distribution and we have demonstrate the scalability and the accuracy of our
approach. The algorithm developed starts by integrating noisy input into a GP
model before to provide a parallel implementation i.e. by decomposing the do-
main. A mathematical formulation of the model is provided and the mathemati-
cal validity of this formulation is proved. Furthermore, the algorithmic scalability
has been proved to be O(p2) where p is the number of processors. In order to
evaluate the performance of the parallel algorithm, a scaling factor (which mea-
sures the performance gain in terms of time complexity reduction) is introduced
and compared with a measured scaling factor (which measures the performance
gain in terms of execution time reduction). The algorithm has been evaluated on
data sets for 100 ≤ N ≤ 10000. For a fixed number of processors p, results show
how the performance improves as the size of the problem size increases due to
the communication overhead which decreases.
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