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Abstract. Porous media and conduit coupled systems are heavily used in a vari-
ety of areas. A coupled dual-porosity-Stokes model has been proposed to simu-
late the fluid flow in a dual-porosity media and conduits coupled system. In this 
paper, we propose an implementation of this multi-physics model. We solve the 
system with the automated high performance differential equation solving envi-
ronment FEniCS. Tests of the convergence rate of our implementation in both 
2D and 3D are conducted in this paper. We also give tests on performance and 
scalability of our implementation. 

Keywords: Domain decomposition, Finite element method, Multi-Physics, Par-
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1 Introduction 

The coupling of porous media flow and free flow is of importance in multiple areas, 
including groundwater system, petroleum extraction, and biochemical transport [1,2,3]. 
The Stokes-Darcy equation is widely applied in these areas and has been studied thor-
oughly over the past decade [4,5,6]. Variants of Stokes-Darcy mode, have also been 
studied extensively [7,8,9,10]. 

In a traditional Stokes-Darcy system, Darcy’s law is applied to the fluid in porous 
media. Darcy’s law, along with its variants, is great in modeling single porosity model 
with limited Reynolds number, and is widely used in hydrogeology and reservoir engi-
neering. However, for a porous medium with multiple porosities, for example a natu-
rally fractured reservoir, the accuracy of Darcy’s law is limited. In contrast, a dual-
porosity model assumes two different systems inside a porous media: the matrix system 
and the microfracture system. These two systems have significantly different fluid stor-
age and conductivity properties. It gives a better representation of the fractured porous 
media encountered in hydrology, carbon sequestration, geothermal systems, and petro-
leum extraction [11,12,13]. 
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The dual-porosity model itself fails to consider large conduits inside porous media. 
Thus, the need of coupling both a dual-porosity model with free flow arises [14]. 

Our paper expands on a coupled Dual-Porosity-Stokes model [15]. Similar to the 
Stokes-Darcy model, this coupled model contains two nonoverlapping but contiguous 
regions: one filled with porous media and the other represents conduits. The dual-po-
rosity model describes the porous media and the Stokes equation governs the free flow 
in the conduits. 

In Section 2, we define the Dual-Porosity-Stokes model. The equations are presented 
as well as the variational form. In Section 3, we describe the numerical implementation 
using FEniCS. In Section 4, we analyze the accuracy, speed performance, memory us-
age, and scalability of our implementation. In Section 5, we draw some conclusions and 
discuss future work. 

2 Dual-Porosity-Stokes Model 

The Dual-Porosity-Stokes model was first presented in [15]. This paper demonstrated 
the well-posedness of the model and derived a numerical solution in 2D using a finite 
element method. Several numerical experiments are also in the paper. In this section 
we will demonstrate this model in detail as well as present the variational form. 

To better understand the model, let us first take a look at a simple 2D example pre-
sented in Fig. 1. The model consists of a dual-porosity subdomain Ω" and a conduit 
subdomain Ω#, with an interface Γ#" in between. Two subdomains are non-overlapping, 
and only communicate to each other through the interface Γ#". Γ" and Γ# are boundaries 
of each subsystem. 
 

 

Fig. 1. Coupled Model in 2D 

Two fluid pressures are presented in Ω", 𝑝& and 𝑝', for fluids in matrix and fractures 
respectively. The 𝑚 subscript stands for matrix and 𝑓 is for fracture. We use these two 
subscripts for other model parameters. The dual-porosity model can be expressed as: 
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𝜙&𝐶&,
𝜕𝑝&
𝜕𝑡 − ∇ ⋅

𝑘&
𝜇 ∇𝑝& = −𝑄	, (1)

𝜙'𝐶',
𝜕𝑝'
𝜕𝑡 − ∇ ⋅

𝑘'
𝜇 ∇𝑝' = 𝑄 + 𝑞=	. (2)

 

The constant 𝜎 is a shape factor ranging from 0 to 1. It measures the connectivity be-
tween the microfracture and the matrix. 𝜇 is the dynamic viscosity. 𝑘 is the intrinsic 
permeability. 𝜙 denotes the porosity. 𝐶&, and 𝐶', denote the total compressibility for 
the two systems respectively. 𝑞= is the sink/source term. 𝑄 is the mass exchange be-
tween matrix and microfracture systems and can be derived from 𝑄 = ABC

D
	E𝑝& − 𝑝'F. 

In the conduit subdomain, we use the linear incompressible Stokes equation to de-
scribe the free flow: 

G𝒖I
G,
− ∇ ⋅ 𝕋(𝒖#, 𝑝) = 𝒇	, (3)

∇ ⋅ 𝒖# = 0	. (4)
 

The flow velocity 𝒖# and pressure 𝑝 together describe the free flow. 𝜈 is the kinematic 
viscosity. 𝒇 is a general source term. 𝕋(𝒖#	, 𝑝) ≔ 	2𝜈𝔻(𝒖#) − 𝑝𝕀 is the stress tensor, 
where 𝔻(𝒖#) ≔

S
T
	(∇𝒖# + ∇U𝒖#) is the deformation tensor, and 𝕀 is the 𝑁 ×𝑁 iden-

tity matrix. 
On the interface Γ#", a no-exchange condition between the matrix and the conduit is 

used, 

−
𝑘&
𝜇 ∇𝑝& ⋅ (−𝒏#") = 0	, (5) 

where 𝒏#" is the unit normal vector on the interface pointing toward Ω". This equation 
forces the fluid in the matrix to stay in the porous media. It is based on the fact that the 
permeability of the matrix system is usually 10Z to 10[ times smaller than the micro-
fracture permeability [16,17,18,19]. 

Three more interface conditions are derived from Stokes-Darcy model: 

𝒖# ⋅ 𝒏#" = −
𝑘'
𝜇 ∇𝑝' ⋅ 𝒏#"	,

(6)

	−𝒏#"U 𝕋(𝒖#, 𝑝)𝒏#" =
𝑝'
𝜌 	,

(7)

−ℙ`(𝕋(𝒖#, 𝑝)𝒏#") =
𝛼𝜈√𝑁

ctrace(𝚷)
j𝒖# +

𝑘'
𝜇 ∇𝑝'k	.

(8)

 

𝜌 is the density of the fluid. ℙ` is the projection operator onto the local tangent plane 
of the interface Γ#". 𝛼 is a dimensionless parameter which depends on the properties of 
the fluid and the permeable material, 𝑁 is the space dimension, and 𝚷 = 𝑘'𝕀 is the in-
trinsic permeability of the fracture media. Condition (6) is the conservation of mass on 
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the interface. Equation (7) represents the balance of forces on the interface [20,21]. 
Equation (8) is the Beavers-Joseph interface condition [22].  

If we introduce a vector valued test function 𝒗nn⃗ = p𝜓&,𝜓', 𝒗U, 𝑞r
U
, the variational 

form for our model can be written as 

s t𝜙&𝐶&,
𝜕𝑝&
𝜕𝑡 𝜓& +

𝑘&
𝜇 ∇𝑝& ⋅ ∇𝜓& +

𝜎𝑘&
𝜇 E𝑝& − 𝑝'F𝜓&u dΩ

wx
	 (9a)

+s j𝜙'𝐶',
𝜕𝑝'
𝜕𝑡 𝜓' +

𝑘'
𝜇 ∇𝑝' ⋅ ∇𝜓' +

𝜎𝑘&
𝜇 E𝑝' − 𝑝&F𝜓'k

wx
𝑑Ω (9b)

+𝜂s t
𝜕𝒖#
𝜕𝑡 ⋅ 𝒗 + 2𝜈𝔻

(𝒖#):𝔻(𝒗) − 𝑝∇ ⋅ 𝒗u
wI

𝑑Ω (9c)

+𝜂s j
1
𝜌 𝑝'𝒗 ⋅ 𝒏#" +

𝛼𝜈√𝑁
ctrace(𝚷)

ℙ` j𝒖# +
𝑘'
𝜇 ∇𝑝'k ⋅ 𝒗k~Ix

𝑑Γ (9d)

+𝜂s ∇ ⋅ 𝒖#𝑞
wI

𝑑Ω −s 𝒖# ⋅ 𝒏#"𝜓'
~Ix

𝑑Γ (9e)

= 𝜂s 𝒇 ⋅ 𝒗
wI

𝑑Ω + s 𝑞=𝜓'
wx

𝑑Ω	. (9f)

 

𝜂 is a scale factor applied to equations in the conduit subdomain to ensure the whole 
system is of the same scale. 

3 Implementation 

Hou et al [15] numerically solved such a system in 2D using a finite element method 
with Taylor-Hood elements for the conduit domain and demonstrated the stability and 
convergence rate of their method. 

In this section we describe an implementation of a finite element solver based on 
FEniCS [23,24], which allows us to run our model in both 2D and 3D, in parallel, and 
can be easily modified and extended. FEniCS is a popular open source computing plat-
form for solving partial differential equations (PDEs). The automatic code generation 
of FEniCS enables people to implement a FEM code using the Unified Form Language 
(UFL) [25], which is close to a mathematical description of the variational form. 

Many multi-physics models have been implemented using FEniCS, e.g., the adaptive 
continuum mechanics solver Unicorn (Unified Continuum modeling) [26,27]. It can 
solve continuum mechanics with moving meshes adaptively. As the coupled systems 
Unicorn solves always consist of moving meshes, subsystems are solved independently 
and iteratively until a satisfied error is reached. In our case, we prefer to solve the cou-
pled system as a whole as they together form a linear system and can be solved directly. 

A solution to the coupled Navier-Stokes-Darcy model has been implemented with 
FEniCS by Ida Norderhaug Drøsdal [28]. In the coupled Navier-Stokes-Darcy model, 
the conduit subdomain and the porosity subdomain contain the same two variables: 
fluid velocity and pressure. The solver regards the two subsystems as a whole and the 
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variables exist on both subdomains. The interface conditions then are implemented by 
interior facet integration. However, in our coupled Stokes-Dual-Porosity model, we 
have two scalar variables 𝑝' and 𝑝& in the dual-porosity domain, but one vector varia-
ble 𝒖# and one scalar variable 𝑝 in the conduit domain.  

The disagreement of the variable dimensions on the two subdomains differentiates 
our model from Navier-Stokes-Darcy model. Here we expand every variable to the 
whole system and force them to be zero in the opposite subdomain.  

3.1 Implementation with FEniCS 

Our implementation in Python is described in this section. Since our model involves 
interior interface integration, adjacent cells need to share information from the common 
facet. In order for our implementation to run in parallel, the following parameter in 
FEniCS needs to be set correctly. 

from fenics import * 
parameters['ghost_mode'] = 'shared_facet'  

For any given mesh object mesh, with any geometric dimension, our function space can 
be created as: 

# Given mesh and degree 
velem = VectorElement('CG', mesh.ufl_cell(), degree) 
selem = FiniteElement('CG', mesh.ufl_cell(), degree) 
pelem = FiniteElement('CG', mesh.ufl_cell(), degree-1) 
 
V = FunctionSpace(mesh, MixedElement(selem,selem, 
                                     velem,pelem)) 

The four ordered elements selem, selem, velem, pelem in the last statement are 
for 𝑝',	𝑝&, 𝒖# and 𝑝 respectively. Note that since the Taylor-Hood method is applied, 
the degree of 𝑝 should be less than that of 𝒖#. 

Initiate constants phim = 𝜑𝑚, phif = 𝜑𝑓, km	= 𝑘𝑚, kf	= 𝑘' , mu	= 𝜇, nu	= 𝜈, 
rho	= 𝜌, sigma = 𝜎, Cmt	= 𝐶𝑚𝑡, Cft = 𝐶',, alpha = 𝛼, and eta = 𝜂,	and func-
tion expressions qp	= 𝑞= and f	= 𝒇. Also define initial conditions for all variables, 
interpolated into our function space V, and stored in the variable x0. The variational 
form can be defined in UFL as below. Note the one-to-one correspondence between the 
variational form below and the one presented in (9a)–(9f). 

n = FacetNormal(V.mesh()) # 𝒏#" 
proj = lambda u: u-dot(u,n('+'))*n('+') # ℙ`  
pm0, pf0, u0, p0 = x0.split() 
avN = alpha*nu/math.sqrt(kf)  # αν√N)/√(trace(Π) 
pm, pf, u, p = TrialFunctions(V)   
psim, psif, v, q = TestFunctions(V)   
F = ((phim*Cmt*(pm-pm0)/dt*psim    
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     + km/mu*dot(grad(pm), grad(psim))   
     + sigma*km/mu*(pm-pf)*psim        )*dD # (9a) 
  + (phif*Cft*(pf-pf0)/dt*psif   
     + kf/mu*dot(grad(pf), grad(psif))   
     + sigma*km/mu*(pf-pm)*psif        )*dD # (9b) 
  + eta*   
    (dot((u-u0)/dt,v)   
     + 2*nu*inner(epsilon(u),epsilon(v))   
    - p*div(v)                         )*dC # (9c) 
  + eta*   
    (1/rho*pf('-')*dot(v('+'),n('+'))   
     + avN*dot(proj(u('+')+kf/mu*grad(pf('-'))),    
               v('+'))                 )*dI # (9d) 
  + (eta*(div(u)*q)*dC    
     - dot(u('+'),n('+'))*psif('-')*dI)     # (9e) 
  - eta*dot(f, v)*dC - qp*psif*dD    )      # (9f)   
a, L = lhs(F), rhs(F)   

Note that the backward Euler scheme can be easily extended to 𝜃 method. dC, dD and 
dI are predefined Measure objects in UFL, and represents integrations on Ω#, Ω" and 
Γ#" respectively. Note that the sign in n('+') needs to be adjusted for different do-
main structures. The signs of other variables for interface integration terms are not af-
fecting the result of the model in any of our test cases. 

Now we constrain 𝑝&,	𝑝', 𝒖#, 𝑝 on opposite subdomains by defining the following 
Dirichlet boundary conditions. 

fix_pm = DirichletBC(V.sub(0), Constant(0),    
                     on_conduit_but_not_interface,   
                     method='pointwise')   
fix_pf = DirichletBC(V.sub(1), Constant(0),    
                     on_conduit_but_not_interface,   
                     method='pointwise')   
fix_u = DirichletBC(V.sub(2), Constant([0]*N),   
                    on_dual_but_not_interface,    
                    method='pointwise')   
fix_p = DirichletBC(V.sub(3), Constant(0),   
                    on_dual_but_not_interface,   
                    method='pointwise')   
fix_bcs = [fix_pm, fix_pf, fix_u, fix_p]   

The boundary markers on_conduit/dual_but_not_interface, as their 
names might suggest, should not include the interface Γ#". Note that we need to use 
the method “pointwise” for these special “boundary” conditions. 

After creating other Dirichlet boundary conditions bcs, we can solve the PDE as 
follows. 
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A, b = assemble(a), assemble(L)   
for bc in fix_bcs + bcs:   
    bc.apply(A, b)   
solver = KrylovSolver(A, method='bicgstab',    
                      preconditioner='hypre_euclid') 
now = 0 
while now <= T:  # T is endtime 
    now += dt    # dt is length of timestep 
    for expr in [pm, pf, u, p, qp, f]:   
        expr.t = now   
    b = assemble(L)   
    for bc in bcs:   
        bc.apply(b)   
    solver.solve(x.vector(), b)   
    x0.assign(x)   

Due to the interface conditions our matrix	𝐴	is nonsymmetric. Hence, methods like con-
jugate gradients and Cholesky decomposition might not work as expected. 

4 Result 

The implementation works in 2D and 3D with the same code. Here we test our imple-
mentation on a unit cubic mesh defined by Ω = [0, 1] × [0, 1] × [0, 1] . Let Ω" =
{ (𝑥, 𝑦, 𝑧) ∈ Ω ∣∣ 𝑥 ≤ 𝑦 }, Ω# = { (𝑥, 𝑦, 𝑧) ∈ Ω ∣∣ 𝑥 ≥ 𝑦 }. We simulate our model on the 
time interval [0,1]. 

For the constants, we let 𝑘& = 0.1 and all the rest be 1. We set up our coefficients 
and essential boundary conditions so that the following is our solution: 

𝑝& =
1
5 sin

(𝑥 + 𝑦 + 𝑧) cos(𝜋𝑡) 

𝑝' = −2𝜋 sin(𝜋𝑡) sin(𝑥 + 𝑦 + 𝑧) +
4
5 sin

(𝑥 + 𝑦 + 𝑧) cos(𝜋𝑡) 

𝒖# =

⎣
⎢
⎢
⎢
⎢
⎡2𝜋 sin(𝜋𝑡) cos(3𝑥 − 𝑦 + 𝑧) −

4
5 cos

(𝜋𝑡) cos(3𝑦 − 𝑥 + 𝑧)

2𝜋 sin(𝜋𝑡) cos(3𝑦 − 𝑥 + 𝑧) −
4
5 cos

(𝜋𝑡) cos(3𝑥 − 𝑦 + 𝑧)

2𝜋 sin(𝜋𝑡) cos(𝑥 + 𝑦 + 𝑧) −
4
5 cos

(𝜋𝑡) cos(𝑥 + 𝑦 + 𝑧) ⎦
⎥
⎥
⎥
⎥
⎤

 

𝑝 = −8t𝜋 sin(𝜋𝑡) +
2
5 cos

(𝜋𝑡)u (sin(3𝑦 − 𝑥 + 𝑧) + sin(3𝑥 − 𝑦 + 𝑧)) 				

+ 2t
2
5 cos

(𝜋𝑡) − 𝜋 sin(𝜋𝑡)u sin	(𝑥 + 𝑦 + 𝑧)	 
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It is not hard to verify that the above solution satisfies equation (1) and (5)-(8). Source 
terms 𝑞= and 𝒇 can be calculated from (2) and (3) respectively. However, the diver-
gence of the free flow velocity 𝒖# is not zero, so we need to modify (4) to a more gen-
eral case ∇ ⋅ 𝒖# = 𝑔, and calculate 𝑔 from it. 

For the boundary conditions, we apply corresponding essential boundaries for all 
variables except for 𝑝. 

We tested our implementation on the University of Wyoming’s Teton HPC cluster 
[29]. 

4.1 Convergence 

We examine the convergence rate of our implementation for different timestep length 
Δ𝑡’s. To make the result reproducible, all of the experiments are run in a single proces-
sor with the direct linear solver MUMPS (Multifrontal Massively Parallel sparse direct 
Solver) [30,31]. Piecewise quadratic functions are used for 𝑝&, 𝑝', and 𝒖#. Degree 1 
Lagrange elements are used for p. 

We examine the convergence rate for both Δ𝑡 = ℎ and Δ𝑡 = ℎT, where ℎ is the cell 
size. Recall that our domain is a unit cube. A model with cell size ℎ means our domain 
is partitioned into ℎ × ℎ × ℎ small cubes. Each cube contains 6 tetrahedral cells. The 
𝐿T norm of each variable’s error at time 𝑇 = 1 is calculated. The convergence rate is 
calculated as ln	(𝑒 /𝑒 ¢S	)/ln	(ℎ /ℎ ¢S). The result is shown in Table 1 and Table 2. 

Table 1. The 𝐿T error at 𝑇 = 1 with Δ𝑡 = ℎ. 

ℎ 𝑝& 𝑝' 𝒖# 𝑝 
error rate Error rate error rate error Rate 

1/2 3.56e-2 0.60 1.46e-1 1.12 3.93e-2 3.78 1.50 56.40 
1/4 2.01e-2 0.82 5.64e-2 1.37 1.35e-2 1.54 3.48e-1 2.10 
1/8 1.07e-2 0.91 2.17e-2 1.38 4.80e-3 1.49 8.87e-2 1.97 
1/16 5.54e-3 0.95 9.04e-3 1.27 1.89e-3 1.34 3.51e-2 1.34 

Table 2. The 𝐿T error at 𝑇 = 1 with Δ𝑡 = ℎT. 

ℎ 𝑝& 𝑝' 𝒖# 𝑝 
error rate error rate error rate error rate 

1/2 2.03e-2 1.41 5.59e-2 2.51 1.68e-2 5.01 9.10e-1 57.12 
1/4 5.69e-3 1.83 9.38e-3 2.57 2.26e-3 2.90 1.72e-1 2.41 
1/8 1.44e-3 1.97 1.95e-3 2.26 4.08e-4 2.47 3.90e-2 2.14 
1/16 3.62e-4 2.00 4.58e-4 2.08 9.98e-5 2.16 9.35e-3 2.06 

4.2 Performance 

The solver consists of two major parts: linear system assembling and linear system 
solving. Below we investigate the performance of our implementation in these two parts 
separately. 
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Assembling. Despite that the linear form 𝐿 is assembled at each time step, the assem-
bling of the bilinear form 𝑎 is usually more time consuming. Fig. 2 and Fig. 3 show the 
time spent for assembling the bilinear form under different conditions. 

Fig. 2 shows the assembling time when using a single CPU versus degrees of free-
dom (DoF) of our system. We can see that the assembling time is linear to total DoF. 

Fig. 3 presents the performance of assembling along different number of processors. 
Each line presents the scalability with fixed problem size. We can see that assembling 
scales well when the problem size is large enough. However, too many processors may 
lead to a performance drop. 

Solving. For our time-dependent model, the same linear system is solved at each 
timestep with varying right hand side. In this case, direct linear solvers can benefit from 
reuse of decompositions, as we will see in Fig. 4 and Fig. 5. 

A collection of high performance solvers and preconditioners are available (callable) 
from FEniCS, assuming it was built with corresponding packages. To reduce complex-
ity, we choose the ILU preconditioner hypre_euclid from Livermore’s HYPRE 
package [32] for all iterative solvers we use. 

For a single solve, direct solvers like MUMPS and superlu_dist (Supernodal 
LU [33,34]) is slower than iterative solvers, as shown in Fig. 4. But if we simulate for 
100 steps, the direct solver MUMPS can overpass iterative solvers in not too large sys-
tems. 

However, we can see in both figures, superlu_dist suffers from scalability. For 
large systems, a direct solver can still be slower and is much more memory consuming. 

Memory Usage. Fig. 6 and Fig. 7 present the memory usages of our model under dif-
ferent situations. All memory usages are measured as the “Resident Set Size” of running 
processes. The memory usage is measured by the Resident Set Size used when running 
a simulation for Δ𝑡 = 0.01, 𝑡 ∈ [0,1], with specific solver. Note that the memory usage 
for iterative solvers are very similar: all their lines are overlapped with each other and 
some becomes invisible. 

For large systems, the memory usages of iterative solvers are about linear with re-
spect to DoF and are worse than linear for direct solvers. In the case of ℎ = 1/32, the 
total memory usage of a system with superlu_dist is about 7 times as large as that 
of a system with an iterative solver, as shown in Fig. 6. 

Fig. 7 shows how memory usage scales if we add more processors. The memory 
usage is the memory used by a single processor. 

5 Conclusions and Future Work 

We have presented an implementation of a coupled dual-porosity-Stokes model using 
the automated FEM solver FEniCS. We proposed a solution to modeling the coupled 
interface by using FEniCS’ built-in interface integration and expanding variables to the 
whole domain. This approach enables us to simulate both 2D and 3D models in parallel 
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with minimum coding. Future work will include adding data assimilation from active 
sensors and experimenting with different interface conditions to see better solutions can 
be computed. Another approach is to implement one of the non-iterative domain de-
composition methods that have been developed for Stokes-Darcy systems [35,36], 
which can decompose our asymmetric matrix into two small symmetric matrices and 
reduce communications between two subsystems. 
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Fig. 2. Assembling time is linear to DoF. 

 
Fig. 3. Assembling scales well in large systems. 
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Fig. 4. Time for solving a single step. 

 

 

Fig. 5. Time for solving 100 steps. 
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Fig. 6. Memory usage versus degrees of freedom. 

 

 
Fig. 7. Memory usage versus number of processors. 
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