
An Implementation of a Coupled Dual-Porosity-Stokes
Model with FEniCS

Xiukun Hu1 and Craig C. Douglas2

1 University of Wyoming Department of Mathematics and Statistics
Laramie, WY 82071-3036, USA
xiukun.hu@outlook.com

2 University of Wyoming School of Energy Resources and Department of Mathematics and
Statistics

Laramie, WY 82071-3036, USA
craig.c.douglas@gmail.com

Abstract. Porous media and conduit coupled systems are heavily used in a vari-
ety of areas. A coupled dual-porosity-Stokes model has been proposed to simu-
late the fluid flow in a dual-porosity media and conduits coupled system. In this
paper, we propose an implementation of this multi-physics model. We solve the
system with the automated high performance differential equation solving envi-
ronment FEniCS. Tests of the convergence rate of our implementation in both
2D and 3D are conducted in this paper. We also give tests on performance and
scalability of our implementation.

Keywords: Domain decomposition, Finite element method, Multi-Physics, Par-
allel computing, FEniCS.

1 Introduction

The coupling of porous media flow and free flow is of importance in multiple areas,
including groundwater system, petroleum extraction, and biochemical transport [1,2,3].
The Stokes-Darcy equation is widely applied in these areas and has been studied thor-
oughly over the past decade [4,5,6]. Variants of Stokes-Darcy mode, have also been
studied extensively [7,8,9,10].

In a traditional Stokes-Darcy system, Darcy’s law is applied to the fluid in porous
media. Darcy’s law, along with its variants, is great in modeling single porosity model
with limited Reynolds number, and is widely used in hydrogeology and reservoir engi-
neering. However, for a porous medium with multiple porosities, for example a natu-
rally fractured reservoir, the accuracy of Darcy’s law is limited. In contrast, a dual-
porosity model assumes two different systems inside a porous media: the matrix system
and the microfracture system. These two systems have significantly different fluid stor-
age and conductivity properties. It gives a better representation of the fractured porous
media encountered in hydrology, carbon sequestration, geothermal systems, and petro-
leum extraction [11,12,13].

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_5

https://dx.doi.org/10.1007/978-3-030-22747-0_5

2

The dual-porosity model itself fails to consider large conduits inside porous media.
Thus, the need of coupling both a dual-porosity model with free flow arises [14].

Our paper expands on a coupled Dual-Porosity-Stokes model [15]. Similar to the
Stokes-Darcy model, this coupled model contains two nonoverlapping but contiguous
regions: one filled with porous media and the other represents conduits. The dual-po-
rosity model describes the porous media and the Stokes equation governs the free flow
in the conduits.

In Section 2, we define the Dual-Porosity-Stokes model. The equations are presented
as well as the variational form. In Section 3, we describe the numerical implementation
using FEniCS. In Section 4, we analyze the accuracy, speed performance, memory us-
age, and scalability of our implementation. In Section 5, we draw some conclusions and
discuss future work.

2 Dual-Porosity-Stokes Model

The Dual-Porosity-Stokes model was first presented in [15]. This paper demonstrated
the well-posedness of the model and derived a numerical solution in 2D using a finite
element method. Several numerical experiments are also in the paper. In this section
we will demonstrate this model in detail as well as present the variational form.

To better understand the model, let us first take a look at a simple 2D example pre-
sented in Fig. 1. The model consists of a dual-porosity subdomain Ω" and a conduit
subdomain Ω#, with an interface Γ#" in between. Two subdomains are non-overlapping,
and only communicate to each other through the interface Γ#". Γ" and Γ# are boundaries
of each subsystem.

Fig. 1. Coupled Model in 2D

Two fluid pressures are presented in Ω", 𝑝& and 𝑝', for fluids in matrix and fractures
respectively. The 𝑚 subscript stands for matrix and 𝑓 is for fracture. We use these two
subscripts for other model parameters. The dual-porosity model can be expressed as:

�cd

�d

�d

�d⌦d

�c

�c

�c⌦c

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_5

https://dx.doi.org/10.1007/978-3-030-22747-0_5

3

𝜙&𝐶&,
𝜕𝑝&
𝜕𝑡 − ∇ ⋅

𝑘&
𝜇 ∇𝑝& = −𝑄	, (1)

𝜙'𝐶',
𝜕𝑝'
𝜕𝑡 − ∇ ⋅

𝑘'
𝜇 ∇𝑝' = 𝑄 + 𝑞=	. (2)

The constant 𝜎 is a shape factor ranging from 0 to 1. It measures the connectivity be-
tween the microfracture and the matrix. 𝜇 is the dynamic viscosity. 𝑘 is the intrinsic
permeability. 𝜙 denotes the porosity. 𝐶&, and 𝐶', denote the total compressibility for
the two systems respectively. 𝑞= is the sink/source term. 𝑄 is the mass exchange be-
tween matrix and microfracture systems and can be derived from 𝑄 = ABC

D
	E𝑝& − 𝑝'F.

In the conduit subdomain, we use the linear incompressible Stokes equation to de-
scribe the free flow:

G𝒖I
G,
− ∇ ⋅ 𝕋(𝒖#, 𝑝) = 𝒇	, (3)

∇ ⋅ 𝒖# = 0	. (4)

The flow velocity 𝒖# and pressure 𝑝 together describe the free flow. 𝜈 is the kinematic
viscosity. 𝒇 is a general source term. 𝕋(𝒖#	, 𝑝) ≔ 	2𝜈𝔻(𝒖#) − 𝑝𝕀 is the stress tensor,
where 𝔻(𝒖#) ≔

S
T
	(∇𝒖# + ∇U𝒖#) is the deformation tensor, and 𝕀 is the 𝑁 ×𝑁 iden-

tity matrix.
On the interface Γ#", a no-exchange condition between the matrix and the conduit is

used,

−
𝑘&
𝜇 ∇𝑝& ⋅ (−𝒏#") = 0	, (5)

where 𝒏#" is the unit normal vector on the interface pointing toward Ω". This equation
forces the fluid in the matrix to stay in the porous media. It is based on the fact that the
permeability of the matrix system is usually 10Z to 10[times smaller than the micro-
fracture permeability [16,17,18,19].

Three more interface conditions are derived from Stokes-Darcy model:

𝒖# ⋅ 𝒏#" = −
𝑘'
𝜇 ∇𝑝' ⋅ 𝒏#"	,

(6)

	−𝒏#"U 𝕋(𝒖#, 𝑝)𝒏#" =
𝑝'
𝜌 	,

(7)

−ℙ`(𝕋(𝒖#, 𝑝)𝒏#") =
𝛼𝜈√𝑁

ctrace(𝚷)
j𝒖# +

𝑘'
𝜇 ∇𝑝'k	.

(8)

𝜌 is the density of the fluid. ℙ` is the projection operator onto the local tangent plane
of the interface Γ#". 𝛼 is a dimensionless parameter which depends on the properties of
the fluid and the permeable material, 𝑁 is the space dimension, and 𝚷 = 𝑘'𝕀 is the in-
trinsic permeability of the fracture media. Condition (6) is the conservation of mass on

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_5

https://dx.doi.org/10.1007/978-3-030-22747-0_5

4

the interface. Equation (7) represents the balance of forces on the interface [20,21].
Equation (8) is the Beavers-Joseph interface condition [22].

If we introduce a vector valued test function 𝒗nn⃗ = p𝜓&,𝜓', 𝒗U, 𝑞r
U
, the variational

form for our model can be written as

s t𝜙&𝐶&,
𝜕𝑝&
𝜕𝑡 𝜓& +

𝑘&
𝜇 ∇𝑝& ⋅ ∇𝜓& +

𝜎𝑘&
𝜇 E𝑝& − 𝑝'F𝜓&u dΩ

wx
	 (9a)

+s j𝜙'𝐶',
𝜕𝑝'
𝜕𝑡 𝜓' +

𝑘'
𝜇 ∇𝑝' ⋅ ∇𝜓' +

𝜎𝑘&
𝜇 E𝑝' − 𝑝&F𝜓'k

wx
𝑑Ω (9b)

+𝜂s t
𝜕𝒖#
𝜕𝑡 ⋅ 𝒗 + 2𝜈𝔻

(𝒖#):𝔻(𝒗) − 𝑝∇ ⋅ 𝒗u
wI

𝑑Ω (9c)

+𝜂s j
1
𝜌 𝑝'𝒗 ⋅ 𝒏#" +

𝛼𝜈√𝑁
ctrace(𝚷)

ℙ` j𝒖# +
𝑘'
𝜇 ∇𝑝'k ⋅ 𝒗k~Ix

𝑑Γ (9d)

+𝜂s ∇ ⋅ 𝒖#𝑞
wI

𝑑Ω −s 𝒖# ⋅ 𝒏#"𝜓'
~Ix

𝑑Γ (9e)

= 𝜂s 𝒇 ⋅ 𝒗
wI

𝑑Ω + s 𝑞=𝜓'
wx

𝑑Ω	. (9f)

𝜂 is a scale factor applied to equations in the conduit subdomain to ensure the whole
system is of the same scale.

3 Implementation

Hou et al [15] numerically solved such a system in 2D using a finite element method
with Taylor-Hood elements for the conduit domain and demonstrated the stability and
convergence rate of their method.

In this section we describe an implementation of a finite element solver based on
FEniCS [23,24], which allows us to run our model in both 2D and 3D, in parallel, and
can be easily modified and extended. FEniCS is a popular open source computing plat-
form for solving partial differential equations (PDEs). The automatic code generation
of FEniCS enables people to implement a FEM code using the Unified Form Language
(UFL) [25], which is close to a mathematical description of the variational form.

Many multi-physics models have been implemented using FEniCS, e.g., the adaptive
continuum mechanics solver Unicorn (Unified Continuum modeling) [26,27]. It can
solve continuum mechanics with moving meshes adaptively. As the coupled systems
Unicorn solves always consist of moving meshes, subsystems are solved independently
and iteratively until a satisfied error is reached. In our case, we prefer to solve the cou-
pled system as a whole as they together form a linear system and can be solved directly.

A solution to the coupled Navier-Stokes-Darcy model has been implemented with
FEniCS by Ida Norderhaug Drøsdal [28]. In the coupled Navier-Stokes-Darcy model,
the conduit subdomain and the porosity subdomain contain the same two variables:
fluid velocity and pressure. The solver regards the two subsystems as a whole and the

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_5

https://dx.doi.org/10.1007/978-3-030-22747-0_5

5

variables exist on both subdomains. The interface conditions then are implemented by
interior facet integration. However, in our coupled Stokes-Dual-Porosity model, we
have two scalar variables 𝑝' and 𝑝& in the dual-porosity domain, but one vector varia-
ble 𝒖# and one scalar variable 𝑝 in the conduit domain.

The disagreement of the variable dimensions on the two subdomains differentiates
our model from Navier-Stokes-Darcy model. Here we expand every variable to the
whole system and force them to be zero in the opposite subdomain.

3.1 Implementation with FEniCS

Our implementation in Python is described in this section. Since our model involves
interior interface integration, adjacent cells need to share information from the common
facet. In order for our implementation to run in parallel, the following parameter in
FEniCS needs to be set correctly.

from fenics import *
parameters['ghost_mode'] = 'shared_facet'

For any given mesh object mesh, with any geometric dimension, our function space can
be created as:

Given mesh and degree
velem = VectorElement('CG', mesh.ufl_cell(), degree)
selem = FiniteElement('CG', mesh.ufl_cell(), degree)
pelem = FiniteElement('CG', mesh.ufl_cell(), degree-1)

V = FunctionSpace(mesh, MixedElement(selem,selem,
 velem,pelem))

The four ordered elements selem, selem, velem, pelem in the last statement are
for 𝑝',	𝑝&, 𝒖# and 𝑝 respectively. Note that since the Taylor-Hood method is applied,
the degree of 𝑝 should be less than that of 𝒖#.

Initiate constants phim = 𝜑𝑚, phif = 𝜑𝑓, km	= 𝑘𝑚, kf	= 𝑘' , mu	= 𝜇, nu	= 𝜈,
rho	= 𝜌, sigma = 𝜎, Cmt	= 𝐶𝑚𝑡, Cft = 𝐶',, alpha = 𝛼, and eta = 𝜂,	and func-
tion expressions qp	= 𝑞= and f	= 𝒇. Also define initial conditions for all variables,
interpolated into our function space V, and stored in the variable x0. The variational
form can be defined in UFL as below. Note the one-to-one correspondence between the
variational form below and the one presented in (9a)–(9f).

n = FacetNormal(V.mesh()) # 𝒏#"
proj = lambda u: u-dot(u,n('+'))*n('+') # ℙ`
pm0, pf0, u0, p0 = x0.split()
avN = alpha*nu/math.sqrt(kf) # αν√N)/√(trace(Π)
pm, pf, u, p = TrialFunctions(V)
psim, psif, v, q = TestFunctions(V)
F = ((phim*Cmt*(pm-pm0)/dt*psim

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_5

https://dx.doi.org/10.1007/978-3-030-22747-0_5

6

 + km/mu*dot(grad(pm), grad(psim))
 + sigma*km/mu*(pm-pf)*psim)*dD # (9a)
 + (phif*Cft*(pf-pf0)/dt*psif
 + kf/mu*dot(grad(pf), grad(psif))
 + sigma*km/mu*(pf-pm)*psif)*dD # (9b)
 + eta*
 (dot((u-u0)/dt,v)
 + 2*nu*inner(epsilon(u),epsilon(v))
 - p*div(v))*dC # (9c)
 + eta*
 (1/rho*pf('-')*dot(v('+'),n('+'))
 + avN*dot(proj(u('+')+kf/mu*grad(pf('-'))),
 v('+')))*dI # (9d)
 + (eta*(div(u)*q)*dC
 - dot(u('+'),n('+'))*psif('-')*dI) # (9e)
 - eta*dot(f, v)*dC - qp*psif*dD) # (9f)
a, L = lhs(F), rhs(F)

Note that the backward Euler scheme can be easily extended to 𝜃 method. dC, dD and
dI are predefined Measure objects in UFL, and represents integrations on Ω#, Ω" and
Γ#" respectively. Note that the sign in n('+') needs to be adjusted for different do-
main structures. The signs of other variables for interface integration terms are not af-
fecting the result of the model in any of our test cases.

Now we constrain 𝑝&,	𝑝', 𝒖#, 𝑝 on opposite subdomains by defining the following
Dirichlet boundary conditions.

fix_pm = DirichletBC(V.sub(0), Constant(0),
 on_conduit_but_not_interface,
 method='pointwise')
fix_pf = DirichletBC(V.sub(1), Constant(0),
 on_conduit_but_not_interface,
 method='pointwise')
fix_u = DirichletBC(V.sub(2), Constant([0]*N),
 on_dual_but_not_interface,
 method='pointwise')
fix_p = DirichletBC(V.sub(3), Constant(0),
 on_dual_but_not_interface,
 method='pointwise')
fix_bcs = [fix_pm, fix_pf, fix_u, fix_p]

The boundary markers on_conduit/dual_but_not_interface, as their
names might suggest, should not include the interface Γ#". Note that we need to use
the method “pointwise” for these special “boundary” conditions.

After creating other Dirichlet boundary conditions bcs, we can solve the PDE as
follows.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_5

https://dx.doi.org/10.1007/978-3-030-22747-0_5

7

A, b = assemble(a), assemble(L)
for bc in fix_bcs + bcs:
 bc.apply(A, b)
solver = KrylovSolver(A, method='bicgstab',
 preconditioner='hypre_euclid')
now = 0
while now <= T: # T is endtime
 now += dt # dt is length of timestep
 for expr in [pm, pf, u, p, qp, f]:
 expr.t = now
 b = assemble(L)
 for bc in bcs:
 bc.apply(b)
 solver.solve(x.vector(), b)
 x0.assign(x)

Due to the interface conditions our matrix	𝐴	is nonsymmetric. Hence, methods like con-
jugate gradients and Cholesky decomposition might not work as expected.

4 Result

The implementation works in 2D and 3D with the same code. Here we test our imple-
mentation on a unit cubic mesh defined by Ω = [0, 1] × [0, 1] × [0, 1] . Let Ω" =
{ (𝑥, 𝑦, 𝑧) ∈ Ω ∣∣ 𝑥 ≤ 𝑦 }, Ω# = { (𝑥, 𝑦, 𝑧) ∈ Ω ∣∣ 𝑥 ≥ 𝑦 }. We simulate our model on the
time interval [0,1].

For the constants, we let 𝑘& = 0.1 and all the rest be 1. We set up our coefficients
and essential boundary conditions so that the following is our solution:

𝑝& =
1
5 sin

(𝑥 + 𝑦 + 𝑧) cos(𝜋𝑡)

𝑝' = −2𝜋 sin(𝜋𝑡) sin(𝑥 + 𝑦 + 𝑧) +
4
5 sin

(𝑥 + 𝑦 + 𝑧) cos(𝜋𝑡)

𝒖# =

⎣
⎢
⎢
⎢
⎢
⎡2𝜋 sin(𝜋𝑡) cos(3𝑥 − 𝑦 + 𝑧) −

4
5 cos

(𝜋𝑡) cos(3𝑦 − 𝑥 + 𝑧)

2𝜋 sin(𝜋𝑡) cos(3𝑦 − 𝑥 + 𝑧) −
4
5 cos

(𝜋𝑡) cos(3𝑥 − 𝑦 + 𝑧)

2𝜋 sin(𝜋𝑡) cos(𝑥 + 𝑦 + 𝑧) −
4
5 cos

(𝜋𝑡) cos(𝑥 + 𝑦 + 𝑧) ⎦
⎥
⎥
⎥
⎥
⎤

𝑝 = −8t𝜋 sin(𝜋𝑡) +
2
5 cos

(𝜋𝑡)u (sin(3𝑦 − 𝑥 + 𝑧) + sin(3𝑥 − 𝑦 + 𝑧)) 				

+ 2t
2
5 cos

(𝜋𝑡) − 𝜋 sin(𝜋𝑡)u sin	(𝑥 + 𝑦 + 𝑧)	

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_5

https://dx.doi.org/10.1007/978-3-030-22747-0_5

8

It is not hard to verify that the above solution satisfies equation (1) and (5)-(8). Source
terms 𝑞= and 𝒇 can be calculated from (2) and (3) respectively. However, the diver-
gence of the free flow velocity 𝒖# is not zero, so we need to modify (4) to a more gen-
eral case ∇ ⋅ 𝒖# = 𝑔, and calculate 𝑔 from it.

For the boundary conditions, we apply corresponding essential boundaries for all
variables except for 𝑝.

We tested our implementation on the University of Wyoming’s Teton HPC cluster
[29].

4.1 Convergence

We examine the convergence rate of our implementation for different timestep length
Δ𝑡’s. To make the result reproducible, all of the experiments are run in a single proces-
sor with the direct linear solver MUMPS (Multifrontal Massively Parallel sparse direct
Solver) [30,31]. Piecewise quadratic functions are used for 𝑝&, 𝑝', and 𝒖#. Degree 1
Lagrange elements are used for p.

We examine the convergence rate for both Δ𝑡 = ℎ and Δ𝑡 = ℎT, where ℎ is the cell
size. Recall that our domain is a unit cube. A model with cell size ℎ means our domain
is partitioned into ℎ × ℎ × ℎ small cubes. Each cube contains 6 tetrahedral cells. The
𝐿T norm of each variable’s error at time 𝑇 = 1 is calculated. The convergence rate is
calculated as ln	(𝑒 /𝑒 ¢S)/ln	(ℎ /ℎ ¢S). The result is shown in Table 1 and Table 2.

Table 1. The 𝐿T error at 𝑇 = 1 with Δ𝑡 = ℎ.

ℎ 𝑝& 𝑝' 𝒖# 𝑝
error rate Error rate error rate error Rate

1/2 3.56e-2 0.60 1.46e-1 1.12 3.93e-2 3.78 1.50 56.40
1/4 2.01e-2 0.82 5.64e-2 1.37 1.35e-2 1.54 3.48e-1 2.10
1/8 1.07e-2 0.91 2.17e-2 1.38 4.80e-3 1.49 8.87e-2 1.97
1/16 5.54e-3 0.95 9.04e-3 1.27 1.89e-3 1.34 3.51e-2 1.34

Table 2. The 𝐿T error at 𝑇 = 1 with Δ𝑡 = ℎT.

ℎ 𝑝& 𝑝' 𝒖# 𝑝
error rate error rate error rate error rate

1/2 2.03e-2 1.41 5.59e-2 2.51 1.68e-2 5.01 9.10e-1 57.12
1/4 5.69e-3 1.83 9.38e-3 2.57 2.26e-3 2.90 1.72e-1 2.41
1/8 1.44e-3 1.97 1.95e-3 2.26 4.08e-4 2.47 3.90e-2 2.14
1/16 3.62e-4 2.00 4.58e-4 2.08 9.98e-5 2.16 9.35e-3 2.06

4.2 Performance

The solver consists of two major parts: linear system assembling and linear system
solving. Below we investigate the performance of our implementation in these two parts
separately.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_5

https://dx.doi.org/10.1007/978-3-030-22747-0_5

9

Assembling. Despite that the linear form 𝐿 is assembled at each time step, the assem-
bling of the bilinear form 𝑎 is usually more time consuming. Fig. 2 and Fig. 3 show the
time spent for assembling the bilinear form under different conditions.

Fig. 2 shows the assembling time when using a single CPU versus degrees of free-
dom (DoF) of our system. We can see that the assembling time is linear to total DoF.

Fig. 3 presents the performance of assembling along different number of processors.
Each line presents the scalability with fixed problem size. We can see that assembling
scales well when the problem size is large enough. However, too many processors may
lead to a performance drop.

Solving. For our time-dependent model, the same linear system is solved at each
timestep with varying right hand side. In this case, direct linear solvers can benefit from
reuse of decompositions, as we will see in Fig. 4 and Fig. 5.

A collection of high performance solvers and preconditioners are available (callable)
from FEniCS, assuming it was built with corresponding packages. To reduce complex-
ity, we choose the ILU preconditioner hypre_euclid from Livermore’s HYPRE
package [32] for all iterative solvers we use.

For a single solve, direct solvers like MUMPS and superlu_dist (Supernodal
LU [33,34]) is slower than iterative solvers, as shown in Fig. 4. But if we simulate for
100 steps, the direct solver MUMPS can overpass iterative solvers in not too large sys-
tems.

However, we can see in both figures, superlu_dist suffers from scalability. For
large systems, a direct solver can still be slower and is much more memory consuming.

Memory Usage. Fig. 6 and Fig. 7 present the memory usages of our model under dif-
ferent situations. All memory usages are measured as the “Resident Set Size” of running
processes. The memory usage is measured by the Resident Set Size used when running
a simulation for Δ𝑡 = 0.01, 𝑡 ∈ [0,1], with specific solver. Note that the memory usage
for iterative solvers are very similar: all their lines are overlapped with each other and
some becomes invisible.

For large systems, the memory usages of iterative solvers are about linear with re-
spect to DoF and are worse than linear for direct solvers. In the case of ℎ = 1/32, the
total memory usage of a system with superlu_dist is about 7 times as large as that
of a system with an iterative solver, as shown in Fig. 6.

Fig. 7 shows how memory usage scales if we add more processors. The memory
usage is the memory used by a single processor.

5 Conclusions and Future Work

We have presented an implementation of a coupled dual-porosity-Stokes model using
the automated FEM solver FEniCS. We proposed a solution to modeling the coupled
interface by using FEniCS’ built-in interface integration and expanding variables to the
whole domain. This approach enables us to simulate both 2D and 3D models in parallel

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_5

https://dx.doi.org/10.1007/978-3-030-22747-0_5

10

with minimum coding. Future work will include adding data assimilation from active
sensors and experimenting with different interface conditions to see better solutions can
be computed. Another approach is to implement one of the non-iterative domain de-
composition methods that have been developed for Stokes-Darcy systems [35,36],
which can decompose our asymmetric matrix into two small symmetric matrices and
reduce communications between two subsystems.

Acknowledgment: This research was supported in part by NSF grant 1722692.

Fig. 2. Assembling time is linear to DoF.

Fig. 3. Assembling scales well in large systems.

24 27 210 213 216 219 222 225

Degrees of Freedom

2�4

2�2

20

22

24

26

28

A
ss

em
b
li
n
g

ti
m

e
(s

)

20 21 22 23 24 25 26

Number of processors

2�4

2�2

20

22

24

26

28

A
ss

em
b
li
n
g

ti
m

e
(s

)

of cells

6

48

384

3072

24576

196608

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_5

https://dx.doi.org/10.1007/978-3-030-22747-0_5

11

Fig. 4. Time for solving a single step.

Fig. 5. Time for solving 100 steps.

2�3

20

23

26

29

h = 1/4
3770 DoF

h = 1/8
25294 DoF

20 21 22 23 24 25 26

23

26

29

212

h = 1/16
184598 DoF

20 21 22 23 24 25 26

23

26

29

212

h = 1/32
1409062 DoF

Number of processors

E
la

p
se

d
T

im
e

(s
)

Solver

bicgstab

gmres

minres

mumps

superlu

21

23

25

h = 1/4
3770DoFs

23

25

27

29

h = 1/8
25294DoFs

20 21 22 23 24 25 26

26

28

210

h = 1/16
184598DoFs

20 21 22 23 24 25 26

29

210

211

212

213

h = 1/32
1409062DoFs

Number of processors

E
la

p
se

d
T

im
e

(s
)

Solver

bicgstab

gmres

minres

mumps

superlu

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_5

https://dx.doi.org/10.1007/978-3-030-22747-0_5

12

Fig. 6. Memory usage versus degrees of freedom.

Fig. 7. Memory usage versus number of processors.

28 210 212 214 216 218 220

DoF

228

230

232

234

236

M
em

or
y

U
sa

ge
(B

y
te

s)

Solver

bicgstab

gmres

minres

mumps

superlu

228

229

h = 1/4
143DoFs

h = 1/8
652DoFs

20 21 22 23 24 25 26

229

231

233

235

237 h = 1/16
3770DoFs

20 21 22 23 24 25 26

229

231

233

235

237 h = 1/32
25294DoFs

Number of processors

M
em

or
y

u
sa

ge
(B

y
te

s)

Solver

bicgstab

gmres

minres

mumps

superlu

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_5

https://dx.doi.org/10.1007/978-3-030-22747-0_5

13

References

1. Çeşmelioğlu, A., Rivière, B.: Primal discontinuous Galerkin methods for time-dependent
coupled surface and subsurface flow. Journal of Scientific Computing 40(1–3), 115–140
(2009)

2. Arbogast, T., Brunson, D.: A computational method for approximating a Darcy–Stokes
system governing a vuggy porous medium. Computational geosciences 11(3), 207–218
(2007)

3. Cao, S., Pollastrini, J., Jiang, Y.: Separation and characterization of protein aggregates and
particles by field flow fractionation. Current pharmaceutical biotechnology 10(4), 382–390
(2009)

4. Babuška, I., Gatica, G.: A residual-based a posteriori error estimator for the Stokes–Darcy
coupled problem. SIAM Journal on Numerical Analysis 48(2), 498–523 (2010)

5. Badea, L., Discacciati, M., Quarteroni, A.: Numerical analysis of the Navier–Stokes/Darcy
coupling. Numerische Mathematik 115(2), 195–227 (2010)

6. Boubendir, Y., Tlupova, S.: Domain decomposition methods for solving Stokes--Darcy
problems with boundary integrals. SIAM Journal on Scientific Computing 35(1), B82–B106
(2013)

7. Badia, S., Codina, R.: Unified stabilized finite element formulations for the Stokes and the
Darcy problems. SIAM journal on Numerical Analysis 47(3), 1971–2000 (2009)

8. Bernardi, C., Hecht, F., Pironneau., O.: Coupling Darcy and Stokes equations for porous
media with cracks. ESAIM: Mathematical Modelling and Numerical Analysis 39(1), 7–35
(2005)

9. Amara, M., Capatina, D., Lizaik, L.: Coupling of Darcy–Forchheimer and compressible
Navier–Stokes equations with heat transfer. SIAM Journal on Scientific Computing 31(2),
1470–1499 (2009)

10. Dawson, C.: Analysis of discontinuous finite element methods for ground water/surface
water coupling. SIAM Journal on Numerical Analysis 44(4), 1375–1404 (2006)

11. Arbogast, T., Douglas, J., Hornung, U.: Derivation of the double porosity model of single
phase flow via homogenization theory. SIAM Journal on Mathematical Analysis 21(4), 823–
836 (1990)

12. Carneiro, J.: Numerical simulations on the influence of matrix diffusion to carbon
sequestration in double porosity fissured aquifers. International Journal of Greenhouse Gas
Control 3(4), 431–443 (2009)

13. Gerke, H., Genuchten., M.: Evaluation of a first‐order water transfer term for variably
saturated dual‐porosity flow models. Water Resources Research 29(4), 1225–1238 (1993)

14. Douglas, C., Hu, X., Bai, B., He, X., Wei, M., Hou, J.: A Data Assimilation Enabled Model
for Coupling Dual Porosity Flow with Free Flow. In: 2018 17th International Symposium
on Distributed Computing and Applications for Business Engineering and Science
(DCABES), Wuxi, pp.304–307 (2018)

15. Hou, J., Qiu, M., He, X., Guo, C., Wei, M., Bai, B.: A Dual-Porosity-Stokes Model and
Finite Element Method for Coupling Dual-Porosity Flow and Free Flow., B710–B739
(2016)

16. Bello, R., Wattenbarger, R.: Multi-stage hydraulically fractured horizontal shale gas well
rate transient analysis. In: North Africa technical conference and exhibition (2010)

17. Brohi, I., Pooladi-Darvish, M., Aguilera, R.: Modeling fractured horizontal wells as dual
porosity composite reservoirs-application to tight gas, shale gas and tight oil cases. In: SPE
Western North American Region Meeting (2011)

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_5

https://dx.doi.org/10.1007/978-3-030-22747-0_5

14

18. Carlson, E., Mercer, J.: Devonian shale gas production: mechanisms and simple models.
Journal of Petroleum technology 43(04), 476–482 (1991)

19. Guo, C., Wei, M., Chen, H., Xiaoming, H., Bai, B.: Improved numerical simulation for shale
gas reservoirs. In: Offshore Technology Conference-Asia (2014)

20. Çeşmelioğlu, A., Rivière, B.: Analysis of time-dependent Navier-Stokes flow coupled with
Darcy flow. Journal of Numerical Mathematics 16(4), 249–280 (2008)

21. Chidyagwai, P., Rivière, B.: On the solution of the coupled Navier--Stokes and Darcy
equations. Computer Methods in Applied Mechanics and Engineering 198(47–48), 3806–
3820

22. Beavers, G., Joseph, D.: Boundary conditions at a naturally permeable wall. Journal of fluid
mechanics 30(1), 197–207 (1967)

23. Alnæs, M., Jan, B., Hake, J., August, J., Kehlet, B., Logg, A., Ring, J., Rognes, M., Wells,
G.: The FEniCS Project Version 1.5. Archive of Numerical Software 3(100) (2015)

24. Logg, A., Mardal, K.-A., Wells, G.: Automated Solution of Differential Equations by the
Finite Element Method. Springer (2012)

25. Logg, A., Mardal, K.-A., Wells, G.: UFL: a finite element form language. In: Automated
Solution of Differential Equations by the Finite Element Method, Volume 84 of Lecture
Notes in Computational Science and Engineering 17. Springer (2012)

26. Hoffman, J., Jansson, J., Degirmenci, C., Jansson, N., Nazarov, M.: Unicorn: A unified
continuum mechanics solver. In: Automated Solution of Differential Equations by the Finite
Element Method, Volume 84 of Lecture Notes in Computational Science and Engineering
18. Springer (2012)

27. Hoffman, J., Jansson, J., Jansson, N.: FEniCS-HPC: Automated predictive high-
performance finite element computing with applications in aerodynamics. In: International
Conference on Parallel Processing and Applied Mathematics, Cham, pp.356–365 (2015)

28. Drøsdal, I.: Porous and viscous modeling of cerebrospinal fluid flow in the spinal canal
associated with syringomyelia. Master's Thesis (2011)

29. Advanced Research Computing Center: Teton Computing Environment, Intel x86_64
cluster. University of Wyoming https://doi.org/10.15786/M2FY47, Laramie (2018)

30. Amestoy, P., Duff, I., Koster, J., L'Excellent, J.-Y.: A fully asynchronous multifrontal solver
using distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Applications
23(1), 15–41 (2001)

31. Amestoy, P., Cuermouche, A., L'Excellent, J.-Y., Pralet, S.: Hybrid scheduling for the
parallel solution of linear systems. Parallel Computing 32(2), 136–156 (2006)

32. Falgout, R., Yang, U.: hypre: A Library of High Performance Preconditioners. In Sloot, P.,
Hoekstra, A., Tan, C., Dongarra, J., eds.: Computational Science — ICCS 2002, Berlin,
pp.631–641 (2002)

33. Li, X., Demmel, J., Gilbert, J., Grigori, i., Yamazaki, M.: SuperLU Users' Guide. Lawrence
Berkeley National Laboratory LBNL-44289 (2005) http://crd.lbl.gov/~xiaoye/SuperLU/.

34. Li, X., Demmel, J.: SuperLU_DIST: A Scalable Distributed-Memory Sparse Direct Solver
for Unsymmetric Linera Systems. ACM Trans. Mathematical Software 29(2), 110–140
(June 2003)

35. Cao, Y., Gunzburger, M., He, X., Wang, X.: Paralle, non-iterative, multi-pysics domain
decomposition methods for time-dependent Stokes-Darcy systems., 1617–1644 (2014)

36. Feng, W., He, X., Wang, Z., Zhang, X.: Non-iterate domain decomposition methods for a
non-stationary Stokes-Darcy model with Beavers-Joseph interface condition., 453–463
(2012)

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_5

https://dx.doi.org/10.1007/978-3-030-22747-0_5

