
Efficient Parallel Associative Classification based
on Rules Memoization

Michel Pires1,3, Nicollas Silva3, Leonardo Rocha2, Wagner Meira3, and Renato
Ferreira3

1 Centro Federal de Educação Tecnológica de Minas Gerais, Divinópolis MG, Brasil
michel@cefetmg.br

2 Universidade Federal de São João del-Rei, São João del-Rei MG, Brasil
lcrocha@ufsj.edu.br

3 Universidade Federal de Minas Gerais, Belo Horizonte MG, Brasil
{michelpires,ncsilvaa,meira,renato}@dcc.ufmg.br

Abstract. Associative classification refers to a class of algorithms that
is very efficient in classification problems. Data in such domain are mul-
tidimensional, with data instances represented as points of a fixed-length
attribute space, and are exploited from two large sets: training and test-
ing datasets. Models, known as classifiers, are mined in the training set
by class association rules and are used in eager and lazy strategies for
labeling test data instances. Because test data instances are indepen-
dent and evaluated by sophisticated and high costly computations, an
expressive overlap among similar data instances may be introduced. To
overcome such drawback, we propose a parallel and high-performance
associative classification based on a lazy strategy, which partial com-
putations of similar data instances are cached and shared efficiently. In
this sense, a PageRank-driven similarity metric is introduced to reorder
computations by affinity, improving frequent-demanded association rules
memoization in typical cache strategies. The experiments results show
that our similarity-based metric maximizes the reuse of rules cached and,
consequently, improve application performance, with gains up to 60% in
execution time and 40% higher cache hit rate, mainly in limited cache
space conditions.

Keywords: Parallel Associative Classification ·Memoization · Class As-
sociation Rules

1 Introduction

Classification is an important task in data mining, and the associative classifi-
cation (ACs) its branch that describes a class of algorithms based on two well-
known mining paradigms, pattern classification and association rules mining [4].
Pattern classification assigns a class label to a given data input instance by a
specific model named classifier, and association rules mining is the task that dis-
covers correlations or other relationships in large datasets to turned classification
process accurate [5].

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_3

https://dx.doi.org/10.1007/978-3-030-22747-0_3

2 M. Pires et al.

Several efforts have shown that ACs are capable of building efficient and
accurate classification systems, by three typical steps. Firstly, class association
rules (CARs) are mined from attribute space through a training dataset. Such
CARs are weighted according to a given function, and support and confidence
thresholds pruning weak rules to make up a frequent item set. Posteriorly, fre-
quent items are assumed as part of a classifier into eager or lazy approaches to
associate classes for unlabeled input data instances of a test data set [15].

In order to achieve accurate classifiers, eager strategies look at frequent items
by a global searching into attribute space. An expressive number of useless rules
may be introduced due to weak similarity among part of generated rules and
unlabeled data attribute space. To overcome such problem, lazy approaches, as
the lazy associative classification (LAC) [21], investigates the attribute space by
local searches during the classification time, whenever a novel unlabeled data in-
put is provided. Thus, suitable models are afforded for each data instance while
a higher similarity between classifiers and data attribute space is ensured [22].

The local models look at into attribute space by a large variability of descrip-
tions or subproblems, which it can afford a better global approximation of target
function [21,22], which leads to a specific advantage in relation to traditional
classification models, such as decision trees and rule induction [16,5]. Because
local models are designed independently for each unlabeled data instance, an
expressive computation overlap between similar classifiers may be introduced.
This is because different classifiers overlap on the attribute space, which leads
to a costly rework under a significant amount of similar CARs. Indeed, an op-
portunity to employ typical cache strategies to overcome such drawback, since
CARs can be efficiently cached. Further, because classifiers are independent, the
classification process can be exploited within parallel execution models.

In this paper, we propose a parallel and high-performance LAC execution
model based on MapReduce concepts in that a list of unlabeled data instances is
orchestrated toward an effective CARs memoization. We propose modeling un-
labeled data instances attribute space as a weighted graph in which vertices are
drawn as attributes and edges as correlations among them. The weight in each
edge exposes the number of times that each relationship between two vertices
occurs. Because the local models are designed based on the attribute space, we
evaluate the relationship of different data instances by a similarity metric based
on PageRank. Basically, we use PageRank to discover relevant attributes and,
the eigenvectors and eigenvalues yielded by it for clustering data instances in
an attempt to ensure high cohesion and low coupling among CARs demanded
by classifiers. PageRank is used to discover correlated Web pages with a high-
accuracy, we use such accuracy to identify data instances with high-similar at-
tribute subsets keeping them close to each other, which translates in local models
with the high relationship of CARs. In our experiments, the results show that our
similarity-based metric maximizes the number of rules reused in the cache and,
consequently, improve application performance, with gains up to 60% in execu-
tion time and 40% in the cache hit rate, mainly in limited cache space conditions.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_3

https://dx.doi.org/10.1007/978-3-030-22747-0_3

Efficient Parallel Associative Classification based on Rules Memoization 3

To summarize, the main contributions of this paper are: (i) the proposal of
a parallel approach to optimize the data analysis process on LAC for recurrent
and high-cost computations; (ii) a powerful cache implementation in which a
PageRank-driven similarity metric is employed to deal with computation affini-
ties and CARs demand-relationship; (iii) a thorough evaluation based on different
datasets to explain the potential of CAR memoization, as well as execution time
improvements and cache hit rate.
Roadmap. This paper is organized as follows. Section 2 introduces a back-
ground of ACs, LAC, MapReduce, and related works. Section 3 describes our
approach in details, and as LAC job instance is executed in one of the most im-
portant open-source distributed general-purpose engine based on MapReduce,
the Spark. Section 4 presents experiments setup and discuss results around the
number of generated rules, execution time and cache hit rates. Finally, in section
5, we introduce the conclusions.

2 Background

In this section, we introduce basic definitions that are necessary to understand
the associative classification problem, the lazy associative classification approach
and MapReduce programming model over the Spark engine. We also show re-
lated works to the proposed theme and its benefits for the classification process.

2.1 Associative Classification Problem

AC is a data mining branch in which useful patterns are discovered in large data
sets by exploiting class association rules. The first concepts correlated with such
domain were introduced in the paper ”Mining association rules between sets of
items in large databases” by [1]. After that, other techniques have been proposed,
including emerging patterns methods (CAEP) [8], multiple class association rules
(CMAR) [13] and (MCAR) [17], predictive association rules (CPAR) [25], in-
stance centric rule generation (HARMONY) [24]. There are also recent efforts
in which parallel and distributed approaches are investigated [18,12,5].

Formally, we explain such approaches denoting training set as Λ and test set
as Γ . We address ACs as association rules mining cases in which data instances
(also referred to as examples - Λ) are looks at as pairs in the form λi = 〈xi, ci〉.
Each xi is drawn as a point in a fixed-length attribute space, that is, outlined
by an item set 〈a1, a2, . . . , ak〉 with ak as the kth attribute-value mapped in such
space. Each ci is expressed as a value in a discrete and finite set of possibilities
〈v1, v2, . . . , vp〉 with 1 ≤ i ≤ p and designates the class to which λi belongs. The
classification process consists, for the instances of Γ on which ci is unknown,
find a conditional probability distribution P (c|x), mapped of the relationships
between points and classes in Λ by a function in a form F : χ → C. The
performance of a given f ∈ F is expressed by some accuracy criterion using Γ .
Definition 1: An item in Λ and Γ can be described as a combination of attribute
name Ai and value ai, denoted 〈(Ai, ai)〉.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_3

https://dx.doi.org/10.1007/978-3-030-22747-0_3

4 M. Pires et al.

Definition 2: A CAR r, mined in Λ, is denoted as χ→ ci where χ is a itemset
(i.e., a set of pairs 〈(A1, a1), . . . (Ak, ak)〉) and ci the ith class in a discrete and
finite set of possibilities in C.
Definition 3: The incidence of a r (denoted I(r)) is given by the number of
data instances in Λ that have as antecedent r, that is:

I(r) =

|Λ|∑
i=1

λi; ∀λi ⊆ Λ | λi ∈ χ (1)

Definition 4: The support threshold of r or S(r) = S(χ → ci) = P (ci|I(r)) is
referenced as:

S(r) =
|P |
|Λ|

=
I(r)→ ci
|Λ|

. (2)

Definition 5: The confidence threshold of r or E(r) = E(χ→ ci) = P (ci|I(r)),
is represented as:

E(r) =
|P |
|I(r)|

=
S(χ→ ci)

S(χ)
(3)

The main task in a CA is to find rules set able of associating classes with
unlabeled data instances, that is, for pairs drawn as τi = 〈xi, ?〉. In other words,
discovering a target function f ∈ F that express the conditional probability dis-
tribution P (c|x) into a higher accuracy function f(x, c) = τ , for each unlabeled
data instance τ ∈ Γ .

2.2 Lazy Associative Classification

Introduced by [21], LAC is a demand-driven associative classification that uses
local searches in Λ to compose classifiers, whenever an unlabeled data instance
τ ⊆ Γ is provided. Therefore, it is assumed that pairs in Λ are in some sense
related to pairs in Γ , sampled independently and identically by the same distri-
bution P (c|x). Facts that make LAC capable to afford a better global approxi-
mation of the target function F by local models, which leads to greater accuracy
than noticed in traditional classification models [21,19,20]. The classification
process performed by LAC is described in the Algorithm 1.

In Algorithm 1, Λ is accommodated into hash tables ηX and ηC . ηX describe
the relationship between items and transaction indexes in the dataset. Each item,
defined as a key of the hash, is linked to transactions indexes in which the item’s
pair is addressed, that is, 〈(Ai, ai)〉 → λi ∀λi ⊆ Λ | 〈(Ai, ai)〉 ⊆ λi. Similarly, ηC
is modeled to express the classes associations.

For each unlabeled data instance τ , a target function f ∈ F is modeled
through a projection of τ in ηX . Only keys in ηX directly related to τ are
considered for classification. CARs are mined by the aforementioned definitions
3, 4 and 5 to extract the relevant rules, named frequent itemset. Thus, each τ
is labeled sorting the frequent itemset and finding the higher class threshold in
ηC .

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_3

https://dx.doi.org/10.1007/978-3-030-22747-0_3

Efficient Parallel Associative Classification based on Rules Memoization 5

Algorithm 1: Lazy Associative Classification [21]

input : ηX hash of items
input : ηC hash of classes
input : Γ set of unlabeled data instances
output: τ → ci for each τ ⊆ Γ
for τ ∈ Γ do

Given ητ the projection of τ in ηX
Given χητ CARs mining in ητ and submitted to equations 2 and 3
Sort χητ by thresholds of each ci ⊆ ηC ∧ χητ
Get better ci ∈ ηC and use it to classify τ

end

2.3 MapReduce Over Spark

MapReduce is a concept for processing a large amount of data in parallel and
distributed environments based on a functional programming [7]. Proposed by
Google in 2004, its computational flow is based on two core constructions, map
and reduce. The idea behind such construction is providing means to partition
data instances of a dataset into independent tasks, while distributing its compu-
tations on a cluster, avoiding communications and possible failures, at the same
time that ensures an efficient disk usage and partial results arrangements [23].

In a MapReduce execution, a dataset is automatically partitioned into inde-
pendent subsets and each one processed by an independent machine with a copy
of user program. One copy is denoted as a master and is used to schedules and
handles such subsets for other ones that perform them, named workers.

In last years, several efforts have been employed to deal with large datasets
over MapReduce concepts. One of such efforts has led to a fast and general engine
for large-scale data processing, named Spark [26]. In Spark, the programming
model, based on MapReduce, is extended to introduce a data-sharing abstraction
denoted as resilient distributed datasets (RDDs), which are fault-tolerant objects
distributed across the cluster that can be handled in parallel. In addition, Spark
introduces a large range of novel actions and transformation functions, as well as,
explicit support for data sharing among computations, such as accumulator and
broadcast variables. Advantages that allows introducing high-performance min-
ing in a wide range of workloads whose composition and size until then required
separate engines.

2.4 Related Works

ACs are gaining more and more attention as an ever-increasing amount of data
are becoming available about many interesting events of everyday life and, clas-
sify such data is an important task of science and engineering. In this sense,
the MapReduce is a well-known paradigm addressed for more than one decade
that deals with data parallelization in a large number of machines by a series
of popular and open-source engines. In recent years, efforts have been directed

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_3

https://dx.doi.org/10.1007/978-3-030-22747-0_3

6 M. Pires et al.

attention to improving performance for different AC algorithms, many of these
based on MapReduce [18,12,9,5,2]. It is also possible to observe a significant
trend to improve performance for MapReduce applications by the sophisticated
aware-resource usage strategies [11,27] and data schedulers [14,6].

Several researches, e.g., [5,10], show MapReduce applications performance de-
pends on cluster configurations and jobs, as well as, input data. According to [3],
an effectively data-scheduling is the major challenges in MapReduce frameworks.
Thus, important observations have been comparing First-in-First-Out (FIFO)
data scheduler performance with more sophisticated strategies, some of these
based on data locality [11,27].

In [11], an extensive investigation of data locality is reported and, data-
scheduling issues addressed by a mathematical model and theoretical analysis in
which impacts from cluster configurations and tasks are observed. In the same
way, [27] investigate a cache strategy and looks at results reuse under a per-
spective of the Map transformations. Effective solutions for many applications,
though is not adequate for situations where results produced by each data in-
stance overlaps in random times during execution, which often happens when a
näıve execution order is adopted.

As above mentioned, advances task-scheduler and efficient use of resources
in MapReduce have been drawn the attention of different research. In AC, so-
lutions employ such advantages to improve the classification step. In [18], a
variation of MCAR (denoted MRMCAR) is presented to search frequent items
in the rule discover step under large training data by proposing a new learning
method that repeatedly transforms the data spaces. In the work presented by
[12], a similar idea is used to develop an online algorithm for performing frequent
items discover in a data streaming. In another hand, [9,5,2] use parallelization
benefits of MapReduce to introduce classifications strategies that treat with typ-
ical methods toward to the big data solutions. In this sense, a fuzzy associative
classifier [9], a FP-Growth [5] parallel approach and a new storage format are
presented. Solutions that involve several perspectives of performance under dif-
ferent research fields with great results in computational resource and execution
time maximization. However, to our best knowledge, such efforts do not consider
a pre-analysis of data instances to predict computations and results before ex-
ecutions to achieve high-performance. In addition, many such research fields do
not evaluate the overlap among partial computations of different data instances
to maximize result reuse as part of their performance goals.

In summary, methods and strategies discussed have shown relevance and
great benefits to different research fields. However, such efforts deal with per-
formance through solutions that promote more responsible execution time for
applications by an individual analysis of each data instance on execution time,
making it the singular point of attention. According to our investigations, dif-
ferent approaches present performance variations if the execution order of data
instances changes, in particular, there are significant impacts in the relevance
of partial computations under data locality principle when cache strategies are
considered. In this sense, we perceived a lack of alternatives that addressed these

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_3

https://dx.doi.org/10.1007/978-3-030-22747-0_3

Efficient Parallel Associative Classification based on Rules Memoization 7

issues without requiring a costly redefinition of concepts and application under
novel paradigms, which led us to discuss our parallel LAC approach, as presented
in next section.

3 Parallel Lazy Associative Classification

In the aforementioned section, we discussed the importance of associative classi-
fication in current days and some of their problems, concentrating our attention
in the lazy associative classification demand driven-basis approach – LAC. We
demonstrated the advantages of such an approach when we described the ability
of the local models generating well-approximations of the target function F in
classification time. We explained MapReduce concepts and their benefits in a
recent open-source solution named Spark. Now, we describe an approach that
combines LAC and Spark advantages in a parallel AC in which computations of
similar data instances can be cached and shared efficiently.

Our insight to propose such a solution is the drawback imposed by sequential
LAC execution process, in which similar classifiers introduce an expressive com-
putation overlap in the classification time. A condition caused by similar CARs
used to label classes for distinct but related unknown data instances. Because
CARs of independent local models are directly related to the attribute space of
Γ , we propose a two-step based strategy to improve execution performance dur-
ing classifications. For explain it, let us consider τ1 to τ4 as four data instances of
Γ with some similarity and a 5-dimensional attribute space as shown in Figure 1.

a01

a05 a03

a04 a02

a01

a02 a09

a03 a06

a01

a09 a08

a07 a10

a01

a08 a12

a10 a11

τ1 τ3 τ2 τ4

Fig. 1. A toy example of the modeling stage for attribute relationships in Γ using four
data instances with some overlap on a 5-dimensional attribute space.

In Figure 1, attributes are described as vertices and edges are drawn to show
the relationship between each attribute pair, in a model designed as undirected
and weighted graph G = {V,E}. Each data instance is reported as a complete
graph with a high-correlation among their attributes. In another hand, edges are
mapped in an adjacency matrix M , with Mn,m ∈ R corresponding to the rela-
tionship weight between nth and mth attributes, that is, the number of incidences
of each attribute pair in the attribute space of Γ .

Considering a naive execution order as τ1, τ2, τ3 and τ4, CARs yielded by τ1
will prematurely leave the cache since τ2 not overlapping them and cache space
is naturally limited. As a consequence, an expressive re-work is employed on

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_3

https://dx.doi.org/10.1007/978-3-030-22747-0_3

8 M. Pires et al.

classification time. However, in G there are some subsets of higher relationship
attributes (i.e, linked by dotted edges), that is, τ1 and τ3, as well as τ2 and τ4
drawn greater overlap than τ1 and τ2 or τ2 and τ3. Thus, if Γ data instances are
reordered by such high-correlation, we believe that it is possible to reduce the
re-work on CARs mining process. Consequently, an outperform execution time
is achieved. In this sense, we introduce a PageRank-driven similarity metric to
compose a pre-analysis that investigates the relevance for each attribute pair in
G and, from such relevance, decides the data execution order. As G is a weighted
graph with similar representativeness than Web pages relationship description,
such a strategy can be used toward an execution order effective.

As incidence values of each attribute pair in G are mapped in M with Mi,j

showing occurrence value of some pair, we introduce the PageRank to getting
an eigenvalue for each attribute in G, which is used as score for mapping data
instances in Γ in a pre-analysis stage that uses the following equation:

τk =
∑

ai∧aj∈τk

Gvi,vj (4)

such that, ∀i ∧ ∀j | Mi,j > 0 with ai and aj as ith and jth items of the data
instance k.

Data instances are sorted in descending order by representativeness look at
attribute-eigenvalues that designed it on the attribute space. Considering the
toy example of Figure 1, data instances are performed as τ1, τ3, τ2, τ4, ensuring a
effective CAR memoization. In addition, a process performed in a second stage
through a parallel execution model with a typical cache strategy is employed to
reducing computations among similar classifiers and improve classification time
outperform. A high-level scheme of such parallel execution model is described in
the Figure 2.

In our parallel execution model, each partition defined by Spark scheduler is
executed in the workers from threefold fundamental stages. Firstly, local searches
identify well-associate items between both Λ and Γ , in a filter step. A map trans-
formation is then used to generate a temporary item set for each τ ∈ Γ . Then,
the generated item sets are performed in a parallel flow in which CARs are min-
ing and shared them in a cache structure. Finally, a filter gets the better ci for
each τ and a reduce action consolidates results on the master, as well as, up-
dates the cache with the frequent CARs. To ensure adequate CARs sharing, the
cache structure is designed from accumulators and broadcast variables. Accumu-
lators are employed to storing novel CARs while broadcast variables spread them
to the workers. Thus, when each novel task partition is performed, the similar
CARs are sharing and reused among classifiers avoiding costly computations on
classification time by effective memoization. The performance of our proposal
is reported based on observations of different näıve execution performed by the
same parallel classification model through a FIFO execution order.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_3

https://dx.doi.org/10.1007/978-3-030-22747-0_3

Efficient Parallel Associative Classification based on Rules Memoization 9

Fig. 2. Execution flow of LAC in Apache Spark programming model in which each
unlabeled data partition is performed in threefold core stages: (1) projection, (2) CARs
mining and class score, and (3) cache update with frequent CARs.

4 Experimental Results

In order to evaluate the effectiveness of the proposed parallel LAC and mea-
surement the impacts of our similarity metric in memoization of frequent CARs,
we investigated the Round-Robin (RR) and Least Recently Used (LRU) cache
policies to different CARs storage spaces. For each list of unlabeled data in-
stance evaluated, we performed initial computations, without data collection,
to generate training models and cache buffers. Training models, containing data
produced in the pre-processing step, were employed in all experiments. The cache
buffers, in turn, were used to create a baseline to demonstrate, from 100% ad-
vance knowledge of the CARs, how far the executions with caches of smaller size,
i.e., 20%, 40%, 60%, and 80%, and without previous initialization are optimal.
Initial computations were executed with a thread as master and worker while
the parallel evaluation addressed by one master and twelve worker threads.

To baseline for our evaluations, we addressed a First-Come-First-Served (FIFO)
with the same cache sizes but without reordering the data instances. We evaluate
our proposal (i.e., PageRank), denoted in the graphics as T3, comparing the re-
sults achieved by it with the results of FIFO execution with the same data input
but randomly organized in three different manners, expressed as T0 , T1, and
T2. The architecture used to generating the experiments was constituted from
four quad-core machines with a 2.7 GHz Intel i5 processor, 16 GB of RAM, an

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_3

https://dx.doi.org/10.1007/978-3-030-22747-0_3

10 M. Pires et al.

HD of 1TB, and Linux OS. As our goal is to provide an inherent maximization
of frequent CARs memoized in the cache, we considering such architecture more
than enough.

We evaluated LAC behavior in the Spark and configurations above proposed
using typical datasets treated by [21,22,19,20], availables in UCI machine learn-
ing repository 4 with 50% for training and the remainder as test data instances.
For each dataset, the support and confidence were instantiated as 0, and the
maximum size of CARs in 3. We measurement the number of rules produced on
classification time as well as the runtime and hits on the cache. The number of
rules is shown in Figure 3.

Fig. 3. Experiments overview for the number of rules produced using a typical cache
Least Recently Used (LRU) and different data distributions based on FIFO (T0 to T2)
and PageRank (T3) execution order.

The results expressed in Figure 3 make it clear that an expressive reduction
in CAR generation is achieved and, as a consequence, relevant gains are acquired
to memoization of frequent itemset. Because PageRank produces greater coher-
ence of frequent CARs on the cache, an outperform in the execution time and
cache hit rate can be achieved. The Figures 4 and 5 present such gains.

As can be seen in above results (i.e., Figures 4 and 5), our PageRank-driven
similarity metric can offer significant gains in CAR memoization (i.e., high hit
rate), which consequently improves outperform to the total execution time and
turned low re-work with costly computations (i.e., Figure 3). An improvement
that occurs because our proposal is able to exploit correlations among items in
attribute space in each dataset given as input. Furthermore, the most meaningful
results are observed when the cache size is more restrictive, a typical condition
in many applications and real computational structures.

As communication is a significant factor for distributed applications, we
drawn twofold scenarios to evaluate the impacts of the cache structure. We evalu-
ated a local cache in each worker (i.e, inside LAC structure) and we compared its

4 https://archive.ics.uci.edu/ml/datasets.html

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_3

https://dx.doi.org/10.1007/978-3-030-22747-0_3

Efficient Parallel Associative Classification based on Rules Memoization 11

Fig. 4. Experiments overview to LAC execution time on Apache Spark broadcast and
accumulators variables, Round-Robin (RR) and Least Recently Used (LRU) typical
caches, based on FIFO (T0 to T2) and PageRank (T3) execution orders.

Fig. 5. Experiments overview to LAC cache hit rate on Apache Spark broadcast and
accumulators variables, Round-Robin (RR) and Least Recently Used (LRU) typical
caches, based on FIFO (T0 to T2) and PageRank (T3) execution orders.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_3

https://dx.doi.org/10.1007/978-3-030-22747-0_3

12 M. Pires et al.

performance with a global strategy. As expected, the local cache avoids a signif-
icant communication overhead between nodes and our similarity metric ensures
high cache hit rates, equivalent those obtained in global accumulators-based
structure and broadcast variables available on the Spark engine. Demonstrating
that our proposal is adequate and that it induces significant benefits on classifi-
cation time and memoization of CARs, without leads to a high communication
among distinct workers.

5 Conclusions
In this paper, we presented a parallel and suitable approach of associative clas-
sification that employs exploration and analysis of unlabeled data instances by
a similarity metric based on the PageRank concepts, in particular for the lazy
associative classification. We discussed that computational overlap among simi-
lar classifiers can be solved ordering input data instances according to attribute
space, and demonstrated a parallel implementation of the lazy associative classi-
fication can benefits from such order toward to an execution time outperforming.
The main contribution of the proposed approach is the embedded similarity met-
ric that can be used to maximize the memoization of computed rules (i.e, CARs).
Different similarity metrics can be integrated under our approach to coordinate
the distribution and execution of data instances, as well as to treat CARs into
typical cache strategies since our metric does not produce any additional cost
for the parallel implementation design.

We conducted a series of experimental evaluations and shown that our paral-
lel LAC, idealized on the Spark engine, not only improves response time for differ-
ent datasets but also leads to considerable improvements in the cache data local-
ity, especially under severe space limitations. Furthermore, we have shown that
handling appropriately CARs in associative classification prevents a considerable
amount of re-work in consecutive unlabeled data instances. Indeed, for many
cases, this tends to be the most significant factor between high-performance
behavior and a costly and underutilized execution.

We are currently working on three concepts that are directly derived from
this work: (1) we consider the situation in which the application receives data
instances interactively at run-time, so there is no way to order the entire set of
instances, and we should consider ordering partial views in connection with the
current state of the cache, (2) performing a global optimization in scenarios with
large datasets, and (3) for different data mining applications. In such scenarios,
we have an additional concern about how to distribute the computation between
several workers, while we maintaining high cache utilization on each of them.
Lastly, we will tackle the problem in a dynamic scenario in which data instances
are created at run-time while at the same time workers come and go, with their
respective caches. Further, we have also begun conducting evaluations for larger
scenarios and massively parallel environments.

Acknowledgements
This work was partially funded by INCT Cyber, MASWeb, CAPES, CNPq,
Finep, FAPEMIG, and CEFET-MG, as well as EUBRA-BigSea and Atmosphere
projects.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_3

https://dx.doi.org/10.1007/978-3-030-22747-0_3

Efficient Parallel Associative Classification based on Rules Memoization 13

References

1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. In: Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data. pp. 207–216. SIGMOD ’93, ACM, New York,
NY, USA (1993). https://doi.org/10.1145/170035.170072, http://doi.acm.org/10.
1145/170035.170072

2. Almasi, M., Saniee Abadeh, M.: A new mapreduce associative classifier based
on a new storage format for large-scale imbalanced data. Cluster Computing
21(4), 1821–1847 (Dec 2018). https://doi.org/10.1007/s10586-018-2812-9, https:
//doi.org/10.1007/s10586-018-2812-9

3. Althebyan, Q., Jararweh, Y., Yaseen, Q., AlQudah, O., Al-Ayyoub, M.: Evalu-
ating map reduce tasks scheduling algorithms over cloud computing infrastruc-
ture. Concurrency and Computation: Practice and Experience 27(18), 5686–
5699 (2015). https://doi.org/10.1002/cpe.3595, https://onlinelibrary.wiley.com/
doi/abs/10.1002/cpe.3595

4. Antonelli, M., Ducange, P., Marcelloni, F., Segatori, A.: A novel as-
sociative classification model based on a fuzzy frequent pattern min-
ing algorithm. Expert Systems with Applications 42(4), 2086 – 2097
(2015). https://doi.org/https://doi.org/10.1016/j.eswa.2014.09.021, http://www.
sciencedirect.com/science/article/pii/S0957417414005600

5. Bechini, A., Marcelloni, F., Segatori, A.: A mapreduce solution for associa-
tive classification of big data. Information Sciences 332, 33 – 55 (2016).
https://doi.org/https://doi.org/10.1016/j.ins.2015.10.041

6. Cheng, D., Rao, J., Guo, Y., Zhou, X.: Improving mapreduce performance in het-
erogeneous environments with adaptive task tuning. In: Proceedings of the 15th In-
ternational Middleware Conference. pp. 97–108. Middleware ’14, ACM, New York,
NY, USA (2014). https://doi.org/10.1145/2663165.2666089, http://doi.acm.org/
10.1145/2663165.2666089

7. Dean, J., Ghemawat, S.: Mapreduce: Simplified data process-
ing on large clusters. Commun. ACM 51(1), 107–113 (Jan 2008).
https://doi.org/10.1145/1327452.1327492, http://doi.acm.org/10.1145/1327452.
1327492

8. Dong, G., Zhang, X., Wong, L., Li, J.: CAEP: Classification by Aggregating Emerg-
ing Patterns, pp. 30–42. Springer Berlin Heidelberg, Berlin, Heidelberg (1999)

9. Ducange, P., Marcelloni, F., Segatori, A.: A mapreduce-based fuzzy associa-
tive classifier for big data. In: 2015 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE). pp. 1–8 (Aug 2015). https://doi.org/10.1109/FUZZ-
IEEE.2015.7337868

10. Gautam, J.V., Prajapati, H.B., Dabhi, V.K., Chaudhary, S.: Empirical study of job
scheduling algorithms in hadoop mapreduce. Cybernetics and Information Tech-
nologies 17(1), 146 – 163 (2017), https://content.sciendo.com/view/journals/cait/
17/1/article-p146.xml

11. Guo, Z., Fox, G., Zhou, M.: Investigation of data locality in mapreduce. In: 2012
12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(ccgrid 2012). pp. 419–426 (May 2012). https://doi.org/10.1109/CCGrid.2012.42

12. Lakshmi, K.P., Reddy, C.R.K.: Fast Rule-Based Prediction of Data Streams Using
Associative Classification Mining. In: 2015 5th International Conference on IT
Convergence and Security (ICITCS). pp. 1–5. IEEE (2015)

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_3

https://doi.org/10.1145/170035.170072
http://doi.acm.org/10.1145/170035.170072
http://doi.acm.org/10.1145/170035.170072
https://doi.org/10.1007/s10586-018-2812-9
https://doi.org/10.1007/s10586-018-2812-9
https://doi.org/10.1007/s10586-018-2812-9
https://doi.org/10.1002/cpe.3595
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3595
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3595
https://doi.org/https://doi.org/10.1016/j.eswa.2014.09.021
http://www.sciencedirect.com/science/article/pii/S0957417414005600
http://www.sciencedirect.com/science/article/pii/S0957417414005600
https://doi.org/https://doi.org/10.1016/j.ins.2015.10.041
https://doi.org/10.1145/2663165.2666089
http://doi.acm.org/10.1145/2663165.2666089
http://doi.acm.org/10.1145/2663165.2666089
https://doi.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
https://doi.org/10.1109/FUZZ-IEEE.2015.7337868
https://doi.org/10.1109/FUZZ-IEEE.2015.7337868
https://content.sciendo.com/view/journals/cait/17/1/article-p146.xml
https://content.sciendo.com/view/journals/cait/17/1/article-p146.xml
https://doi.org/10.1109/CCGrid.2012.42
https://dx.doi.org/10.1007/978-3-030-22747-0_3

14 M. Pires et al.

13. Li, W., Han, J., Pei, J.: Cmar: Accurate and efficient classification based on mul-
tiple class-association rules. In: Proceedings of the 2001 IEEE International Con-
ference on Data Mining. pp. 369–376. ICDM ’01, IEEE Computer Society, Wash-
ington, DC, USA (2001), http://dl.acm.org/citation.cfm?id=645496.657866

14. Lin, C., Guo, W., Lin, C.: Self-learning mapreduce scheduler in multi-job environ-
ment. In: 2013 International Conference on Cloud Computing and Big Data. pp.
610–612 (Dec 2013). https://doi.org/10.1109/CLOUDCOM-ASIA.2013.95

15. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In:
1998 Knowledge Discovery and Data Mining Conference (KDD). pp. 80–86 (1998)

16. Qureshi, M.N., Aldheleai, H.F.H., Tamandani, Y.K.: An improved docu-
ments classification technique using association rules mining. In: 2015
IEEE International Conference on Research in Computational Intelli-
gence and Communication Networks (ICRCICN). pp. 460–465 (Nov 2015).
https://doi.org/10.1109/ICRCICN.2015.7434283

17. Thabtah, F., Cowling, P., Peng, Y.: Mcar: multi-class classification
based on association rule. In: The 3rd ACS/IEEE International Con-
ference onComputer Systems and Applications, 2005. (Jan 2005).
https://doi.org/10.1109/AICCSA.2005.1387030

18. Thabtah, F., Hammoud, S.: Parallel Associative Classification Data Mining Frame-
works Based MapReduce. Parallel Processing . . . 25(02), 1550002 (2015)

19. Veloso, A., Meira, W., Gonalves, M., Almeida, H.M., Zaki, M.: Cali-
brated lazy associative classification. Information Sciences 181(13), 2656 –
2670 (2011). https://doi.org/https://doi.org/10.1016/j.ins.2010.03.007, http://
www.sciencedirect.com/science/article/pii/S0020025510001192, including Special
Section on Databases and Software Engineering

20. Veloso, A., Meira Jr, W., Gonçalves, M., Almeida, H.M., Zaki, M.: Calibrated lazy
associative classification. Information Sciences 181(13), 2656–2670 (jul 2011)

21. Veloso, A., Meira Jr, W., Zaki, M.J.: Lazy associative classification. In: ICDM ’06:
Proceedings of the Sixth International Conference on Data Mining. pp. 645–654.
IEEE Computer Society (dec 2006)

22. Veloso, A.A.: Classificao Associativa sob Demanda. Ph.D. thesis, Universidade
Federal de Minas Gerais (march 2009)

23. Wang, J., Li, X.: Task scheduling for mapreduce in heterogeneous networks. Cluster
Computing 19(1), 197–210 (Mar 2016). https://doi.org/10.1007/s10586-015-0503-
3, https://doi.org/10.1007/s10586-015-0503-3

24. Wang, J., Karypis, G.: Harmony: Efficiently mining the best rules for classification.
In: In Proc. of SDM. pp. 205–216 (2005)

25. Yin, X., Han, J.: Cpar: Classification based on predictive association rules. In:
Proceedings of the Int. Conf. on Data Mining. SIAM (2003)

26. Zaharia, M., Xin, R.S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X.,
Rosen, J., Venkataraman, S., Franklin, M.J., Ghodsi, A., Gonzalez, J., Shenker, S.,
Stoica, I.: Apache spark: A unified engine for big data processing. Commun. ACM
59(11), 56–65 (Oct 2016). https://doi.org/10.1145/2934664, http://doi.acm.org/
10.1145/2934664

27. Zhao, Y., Wu, J., Liu, C.: Dache: A data aware caching for big-data applications
using the mapreduce framework. Tsinghua Science and Technology 19(1), 39–50
(Feb 2014). https://doi.org/10.1109/TST.2014.6733207

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_3

http://dl.acm.org/citation.cfm?id=645496.657866
https://doi.org/10.1109/CLOUDCOM-ASIA.2013.95
https://doi.org/10.1109/ICRCICN.2015.7434283
https://doi.org/10.1109/AICCSA.2005.1387030
https://doi.org/https://doi.org/10.1016/j.ins.2010.03.007
http://www.sciencedirect.com/science/article/pii/S0020025510001192
http://www.sciencedirect.com/science/article/pii/S0020025510001192
https://doi.org/10.1007/s10586-015-0503-3
https://doi.org/10.1007/s10586-015-0503-3
https://doi.org/10.1007/s10586-015-0503-3
https://doi.org/10.1145/2934664
http://doi.acm.org/10.1145/2934664
http://doi.acm.org/10.1145/2934664
https://doi.org/10.1109/TST.2014.6733207
https://dx.doi.org/10.1007/978-3-030-22747-0_3

