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Abstract. The graph computing is often used to analyze complex rela-
tionships in the interconnected world, and the strongly connected compo-
nents (SCC) detection in digraphs is a basic problem in graph computing.
As graph size increases, many parallel algorithms based on GPUs have
been proposed to detect SCC. The state-of-the-art parallel algorithms of
SCC detection can accelerate on various graphs, but there is still space
for improvement in: (1) Multiple traversals are time-consuming when
processing real-world graphs; (2) Pivot selection is less accurate or time-
consuming. We proposed an SCC detection method with multi-partition
that optimizes the algorithm process and achieves high performance. Un-
like existing parallel algorithms, we select a pivot and traverse it forward,
and then select a vice pivot and traverse the pivot and the vice pivot
backwards simultaneously. After updating the state of each vertex, we
can get multiple partitions to parallelly detect SCC. At different phases
of our approach, we use a vertex with the largest degree product or a
random vertex as the pivot to balance selection accuracy and efficiency.
We also implement weakly connected component (WCC) detection and
2-SCC to optimize our algorithm. And the vertices marked by the WCC
partition are selected as the pivot to reduce unnecessary operations. We
conducted experiments on the NVIDIA K80 with real-world and syn-
thetic graphs. The results show that the proposed algorithm achieves an
average detection acceleration of 8.8 × and 21 × when compared with
well-known algorithms, such as Tarjan’s algorithm and Barnat’s algo-
rithm.

Keywords: Strongly connected components detection · GPU · Multi-
partition scheme · Real-world graphs.

? This work was supported by the National Natural Science Foundation of China
(No. 61601458) and the National Key Research and Development Program of China
(2016YFB0801305).

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_2

https://dx.doi.org/10.1007/978-3-030-22747-0_2


2 J. Hou et al.

1 Introduction

In the interconnected world, many practical applications need to explore large-
scale data sets represented by graphs. The strongly connected components (SCC)
detection is a fundamental graph computing algorithm that is widely used in
many applications, such as network analysis based on web archives, scientific
computing [1] and model checking [2].

In a digraph, SCC is the largest subgraph in which any two vertices are mu-
tually reachable. In the early, many efficient algorithms on SCC detection have
been proposed including Tarjan’s [3], Dijkstra’s [4] and Kosaraju’s [5]. However,
these algorithms are based on depth-first search (DFS) traversal that is difficult
to accelerate by parallelization [6]. Barnat et al. [7] introduced three distributed
algorithms for detecting SCC: forward and backward (FB) algorithm, Coloring
algorithm, and forward and backward with OWCTY elimination (OBF) algo-
rithm. Shrinvas et al. [8] analyzed these algorithms by implementing them on
GPU, and summarized that the FB algorithm is better than the other two al-
gorithms. Fleischer et al. first proposed FB algorithm [9], which can obtain one
SCC and three subgraphs in each traversal, then continue to iteratively detect
SCC on each subgraph. McLendon et al. [10] designed the FB-Trim algorithm
that improves the efficiency of SCC detection by trimming the 1-SCCs before
forward and backward BFS.

Parallel SCC detection on real-world graphs is difficult because the vertices in
real-world graphs obey the power-low distribution [13]. Hong et al. [11] proposed
a two-phase algorithm to detect SCCs of different sizes, and they also detect
weakly connected component (WCC) and the SCC consisting of two vertices (2-
SCC) to optimize the algorithm. Li et al. [12] further propose data-level parallel
scheme in the phase of large-scale SCC detection and the task-level parallel
scheme in the phase of small-scale SCC detection. Shrinivas et al. [13] proposed
an algorithm that selects the vertex with the largest product of in-degree and
out-degree as the pivot to ensure the selected pivot is on the largest SCC. Li et al.
[14] reduce the traversals by dividing the original graph into multiple partitions
and parallel detect on them, but it requires more processing of the vertices on
the partition boundary. Aldegheri et al. [15] concluded that no algorithm can
beat all other algorithms on various types of graphs. They combine multiple
algorithms and use the trained model to adjust their order for different graphs.

We propose a scheme that reduces the traversals by selecting vice pivot to
increase the partitions generated on each iteration, and we also optimize some
other operations. The contributions are as follows:

(1) We add a vice pivot selection between the pivot’s forward and backward
traversal. Therefore, the backward traversals of the vice pivot and the pivot
are performed simultaneously. In parallel algorithms [9–15], detection on each
partition generates one SCC and three partitions. Our approach can generate one
SCC and five partitions, which can effectively reduce the number of traversals
and significantly accelerate the algorithm.

(2) We balance the accuracy and runtime of the pivot selection. In the phase
of large SCC detection, we select the vertex with the maximum product of in-
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degree and out-degree as the pivot to ensure that the selected pivot is on the
largest SCC. In following phase, we use parallel random method to quickly select
pivots and vice pivots.

(3) We combine WCC detection and 2-SCC detection with our algorithm
to speed up the detection of trivial SCCs. After WCC detection, the vertices
marked as WCC labels are directly used as the pivots to reduce a pivot selection
without damaging the selection effect.

The rest of this paper is organized as follows: we illustrate the background
in Section 2. Our proposed design and its operations on different algorithms are
introduced in Section 3. We present the experimental results in Section 4. The
conclusion is given in Section 5.

2 Background

In this section, we briefly introduce the background of SCC detection on directed
graphs.

2.1 Synthetic Graphs and Real-world Graphs

The real-world graphs and synthetic graphs are different in structures, which
may cause algorithms that perform well on synthetic graphs inappropriate for
real-world graphs.

The most outstanding characteristic of real-world graphs is the power law
distribution. Most real-world graphs contain a large SCC and lots of small SCCs.
The number of these SCCs generally obey the power law distribution [19]. The
small-world property is another feature of real-world graphs. It indicates that
the diameter of real-world graph is very small, where the diameter of a graph is
the length of the shortest path between the two most distanced vertices.

Synthetic graphs are directly generated by code to simulate real-world graphs.
Common synthetic graphs methods include Random, R-MAT [17] and SSCA#2
[18]. The Random scheme directly creates vertices and generates directed edges
between any two vertices. R-MAT requires four parameters (a, b, c, d) summed to
1 to respectively represent the probability of selecting four quadrants in the next
iteration. Graphs created by SSCA#2 simulate the real-world graphs according
to the clique characteristics. It uses an adjacency list to represent vertices and
adjacency arrays with auxiliary arrays to store the created edges. It inserts edges
between vertices according the clique parameters set by users.

2.2 Sequential Algorithms of SCC Detection

Most of classic sequential algorithms are based on depth-first search(DFS) traver-
sal for DFS only needs to search each edge once. For example, Tarjan’s algorithm
is inspired by DFS, and it traverses vertices in a way of DFS except for two added
mark arrays Low recording the minimum connected vertex and DFN recording
the accessed order of current vertex. The main difference between Tarjan’s and
DFS is: (1) If the adjacent vertex of the current vertex has not been traversed
or has been stored in the stack, then the Low value of the adjacent vertex is
updated; (2) In the backtracking process, if the Low value and DFN value of
the current vertex are equal, it means that all the vertices whose Low value is
equal to the current vertices form an SCC, and these vertices are sequentially
stored in the stack. Then we can obtain the SCC by popping the stack.
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2.3 Parallel Algorithms of SCC Detection

Parallel SCC detection is mostly based on parallel breadth-first search (BFS)
traversal algorithms, and GPU can significantly accelerate parallel traversal [20].
Barnat et al. [8] classified the parallel SCC detection algorithms as follows: FB
algorithm [21, 9], Coloring algorithm, and Recursive OBF algorithm [21], and
concluded that the FB algorithm is better than the other two algorithms. The
theoretical basis is the following Theorem 1. In Theorem 1, FWG(u) represents
the forward readability closure of vertex u, which is the set of vertices reachable
from u. Correspondingly, BWG(u) represents the backward reachable closure of
vertex u, which is the set of vertices reachable to u.

Theorem 1. Let G = (V,E) be a directed graph with a vertex u ∈ V . Then
FWG(u)∩BWG(u) is an SCC containing u. Moreover, every other SCC in G is
contained in either FWG(u) \BWG(u), BWG(u) \ FWG(u), or V \ (FWG(u) ∪
BWG(u)).

The main process of the algorithms [11–15] based on FB algorithm is selecting
a vertex as the pivot and performing forward BFS and backward BFS from
this vertex. According to subgraphs formed by traversal, it can obtain one SCC
and three partitions, and the next traversal can be performed in each partition
separately until all the SCCs are detected. William et al. [21] proposed the FB-
Trim algorithm, which adds a Trim scheme to detect the 1-SCCs separately.

3 Our Approach

In this paper, we propose an effective parallel algorithm of SCC detection, and
we introduce it in detail in this section.

3.1 Graph Representation

Aligned memory access and merged memory access are the main characteristics
of GPU memory access. And compressed spare row (CSR) is a suitable graph
representation for parallel calculation on GPU, which is also a common graph
representation for SCC detection on GPU [11, 12]. As shown in Fig.1, the array
C saves the ID of vertices linked from the current vertex in order, and the i-th
element of the array R holds the starting position of all the vertices linked from
the i-th vertex in array C. Therefore, all the linked vertices of the i-th vertex
are saved from the R[i]-th element to the previous of the R[i+ 1]-th element in
the array C. In our algorithm, we define an integer-type array M to mark the
state of each vertex when detecting SCCs.

0 1 3 4 6 6 7R

C 3 1 5 2 3 6 4

1 64

325 7

8

4

7 7M 23 12 12 12 12

Fig. 1. CSR represent of an example
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3.2 SCC Detection with Multi-partition

Many algorithms [11–14] propose improvements based on the FB-Trim algorithm
[10] in different aspects, which can accelerate the FB-Trim algorithm, but they
do not consider how to improve the detection of medium-sized SCCs, that is, the
SCCs expect the largest SCC and 1-SCCs. According to Theorem 1 in Section

p

A1

A2 A3

A4

(a) FB-Trim

p1

A1

A2

A3

A4

A5 A6

p2

(b) our algorithm

Fig. 2. Partitions in each traversal

2.3, the generated partitions of parallel SCC detection algorithm is shown in
Fig.2(a), where p is the selected pivot, vertices traversed by the pivot forward
BFS constitute the set {A1, A2}, vertices traversed by the pivot backward BFS
constitute the set {A1, A3}. Then A1 is an SCC, and A2, A3, A4 are three
partitions that can respectively perform SCC detection on them. Therefore, it
can detect 3n−1 SCCs at most on the n-th traversal of SCC detection. Assuming
that the number of these medium-sized SCCs is x, then the minimal traversal
number of the FB-Trim algorithm is O(log3 x) under ideal conductions.

We can get the following conclusion from Theorem 1: (1) After forward or
backward BFS traversal by an arbitrary vertex, a graph will be divided into two
partitions, then each SCC of this graph belongs to one of the two partitions.
There is no SCC cross the partitions, that is, if a part of the SCC belongs to one
of these partitions, the rest of the SCC belongs to this partition, too. (2) For
the partitions formed by the forward or backward traversals of any two vertices,
each partition independently contains some SCCs, and there is no SCC cross the
partitions, too. The proof is as follows:
Proof. (1) Let G = (V,E) be a directed graph with an arbitrarily selected vertex
v0εV . Vertices that are forward traversed by v0 constitute the partition V1, and
the remaining vertices constitute the partition V2, so V2 = V/V1.

Assuming that there is an SCC S crossing the two partitions, and v1,v2 are
two vertices of S, v1εV1, v2εV2. In partition V1, v0 can traverse forward to v1.
In S, v1 can traverse forward to v2. Because forward traversal is transferable, v0
can traverse forward to v2. Then we can get v2εV1. It is a contradictory to the
assumption. Therefore, there is no SCC that can make a crossover in the two
partitions formed by traversing.

(2) Let G = (V,E) be a directed graph, and forward or backward traversals of
any two vertices v1, v2 can obtain four partitions: vertices that can be traversed
by v1 and v2 constitute partition A1, vertices that can be traversed by v1 but
can’t be traversed by v2 constitute the partition A2, the vertices that can be
traversed by v2 but can’t traversed by v1 form partition A3, and the vertices
that can’t be traversed by v1 and v2 constitute partition A4.
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6 J. Hou et al.

Suppose that S is an arbitrary SCC in graph G. According to the conclusion
obtained in (1), from the perspective of partitions formed by v1, Sε{V1, V2} or
Sε{V3, V4}, so we only need to prove that S does not have the crossover in V1 and
V2, or V3 and V4. From the perspective of partitions formed by v2, Sε{V1, V3} or
Sε{V2, V4}. So S does not have the crossover in V1 and V2, and S does not have
the crossover in V3 and V4, either. Therefore, S does not cross between any two
of V1, V2, V3, and V4.

According to the above conclusions, after forward BFS of the pivot, we select
another pivot called the vice pivot outside the formed partition. Then the pivot
and the vice pivot perform backward BFS simultaneously. The selection of vice
pivot has following advantages: (i) The pivot and the vice pivot perform back-
ward BFS traverse with the same method, which can increase the parallelism
of BFS to take advantage of the GPUs. (ii) The vice pivot is selected outside
of the partition formed by forward traversal of the pivot. So the vice pivot is
not on the newly formed SCC. (iii) The partition formed by forward traversal of
the pivot does not intersect with the partition formed by backward traversal of
the vice pivot, the reason is similar to the conclusion (1). So each partition can
intersect with at most one other partition.

Partitions formed by our method are shown in Fig.2(b), where P1 is the pivot,
and forward BFS traversal of the pivot generates partition {A1, A2}, and then
a vice pivot P2 is selected outside this partition. P1 and P2 is simultaneously
traversed by backward BFS, where the backward BFS traversal of pivot P1 gen-
erates partitions {A1, A3, A5}, and the backward BFS traversal of vice pivot P2

generates partitions {A5, A6}. Among the six partitions, A1 is an SCC, and the
rest partitions can perform SCC detection respectively in the next traversal. By
this way, the minimum traversal of the FB-Trim algorithm based on Theorem 1
can be reduced from O(log3 x) to O(log5 x), which effectively reduces the number
of traversals of the algorithm. Our approach is presented in Algorithm 1.

Algorithm 1 FB-Trim-MP SCC Detection Algorithm

procedure FB-Trim-MP(G(V,E), SCC)
/* Phase 1 */
Trim (G,SCC,M,P )
Pivot-choose1 (G,SCC,M,P )
do in parallel

Forward-traverse (G,SCC,M,P )
Backward-traverse (G,SCC,M,P )

end do
Update-state (G,SCC,M,P )
repeat

Trim (G,SCC,M,P )
until no 1-SCC generated
Trim2 (G,SCC,M,P )
repeat

Trim (G,SCC,M,P )
until no 1-SCC generated
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WCC-detect (G,SCC,M,P )
/* Phase 2 */
repeat in parallel

Forward-traverse (G,SCC,M,P )
vicePivot-choose (G,SCC,M,P )
Backward-traverse (G,SCC,M,P )
Trim (G,SCC,M,P )
Update-state (G,SCC,M,P )
Pivot-choose2 (G,SCC,M,P )

until no SCC generated
end procedure

3.3 Selection of Pivot and Vice Pivot

Shrinivas et al. [13] took the vertex with the largest product of in-degree and
out-degree as the pivot. They first apply an array pivots to store the pivot of
the i-th partition in pivots[i], then calculates the product of the in-degree and
out-degree of the pivot and the current vertex in parallel. If the product of the
current vertex is larger than that of the pivot, they will save current vertex’s ID
in pivots[i]. However, all the threads in the GPU calculate products and store
pivots in parallel, so in the i-th partition, all the vertices whose products of in-
degree and out-degree are larger than the product of the pivot will store their
ID in pivots[i] almost at the same time. Therefore, these storage operations are
disordered, and they can only guarantee that the product of the vertex stored
in pivots[i] is larger than that of the vertex originally stored in pivots[i], but
it is not the largest. we propose a method by iteratively executing the kernel
function until pivots[i] is no longer changed to guarantee the obtained pivot has
the largest product. The algorithm is shown in Algorithm 2.

This scheme can significantly improve the accuracy of locating the maximum
SCC, but it is time consuming. So after selecting the first pivot by Pivot-choose1,
we take another pivot selection method that randomly selects a vertex in each
partition as the pivots in the phase 2, and it is also used to select the vice pivots.
The random selection method is to store all the vertices of the same partition
to the same memory location in parallel, and we take a method to prevent the
partitions traversed by the pivot and vice pivot from approaching each other.
When selecting the pivot, there is an atomic operation to prevent the other
vertices from being stored after the first vertex is stored. When selecting the
vice pivot, there is no atomic operation to block the storage of any vertices.
Therefore, the pivot is the first vertex stored in the fixed position, and the vice
pivot is the last stored vertex so that the pivot and the vice pivot will not be
close to each other.

Algorithm 2 choose pivot Algorithm

procedure Pivot-choose1((G,SCC,M,P ))
repeat

Pivotchoose-Kenel (G,SCC,M,P, pivots)
until M is not change
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update-pivot (M,pivots)
end procedure

procedure Pivotchoose-Kenel((G,SCC,M,P, pivots))
v ← threaId
if M(v) is not marked as trimmed then

u← pivots(P (v))
uDegree← inDegree(u) ∗ outDegree(u)
vDegree← inDegree(v) ∗ outDegree(v)
if vDegree > uDegree then

pivots(P (v))← v
end if

end if
end procedure

3.4 Improvement Details

In Algorithm 1, we added 2-SCC detection and WCC detection between phase
1 and phase 2. 2-SCC is a small SCC composed of two vertices, which is also
abundant in real-world graphs, and most of them are easy to detect. For each
undetected vertex, detect the vertex that it directly links to and directly links
from simultaneously. If the two vertices have no in-degree or out-degree, they
can form an independent 2-SCC. WCC detection can divide a graph into several
disconnected partitions. Firstly, each vertex is initialized to form a WCC by
itself, so the WCC ID of a vertex is set to its own ID. Then it is checked whether
there is a vertex in the adjacent of current vertex whose WCC ID is smaller than
the WCC ID of the current vertex. If it exists, the WCC ID of the current vertex
is set to the smaller value, and the above process is iterated until all WCC ID
do not change. In phase 2, we take the WCC ID as the pivot of this partition
directly, which can save the time for selecting the pivots.

3.5 Expend algorithms Devshatwar-MP and Li-MP

The algorithm proposed by Devshatwar et al. [13] is based on the FB-Trim
algorithm, which can be improved by our algorithm. Compared with the FB-
Trim algorithm, Devshatwar’s algorithm mainly has following improvements:
(1) There are two modes to traverse vertices: vertex-centric and virtual warp-
centric; (2) It increase 2-SCC detection and WCC detection; (3) When selecting
the pivot of each partitions, it uses the vertex with the maximum product of
in-degree and out-degree as the pivot of each partition. Besides applying the
multi-partition scheme to the above processes, our Devshatwar-MP algorithm
improve the Devshatwar’s algorithm at the following points: (1) We still adopt
vertex-centric and virtual warp-centric modes; (2) After the WCC detection, the
ID of WCC region are directly used as the pivot of current region; (3) We use
the pivot selection scheme proposed by Devshatwar et al. to select the pivots
and vice pivots.

Li et al. [12] also propose improvements on the FB-Trim algorithm, and we
can implement our method on the Li’s algorithm. Compared with the FB-Trim
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algorithm, Li’s algorithm mainly has the following improvements: (1) There are
two traversal modes named data-driven and topology-driven, which is similar
to virtual warp-centric and vertex-centric in Devshatwar’s algorithm. (2) 2-SCC
detection and WCC detection are added; (3) It increases operation of loading
balance, and adapts Topo-lb in phase 1 and Topo in phase 2. Besides applying
the multi-partition scheme to the above processes, our Li-MP algorithm improve
Li’s algorithm at the following points: (1) The algorithm framework using Topo-
lb mode in phase 1 and Topo mode in phase 2 is still adopted; (2) After the
WCC detection, the ID of each region marked at the WCC detection is directly
used as the pivot of the current region; (3) The selection of the pivots and the
vice pivots is optimized by the method mentioned in Section 3.3.

4 Experimental Evaluation
Graphs used in our experiment include synthetic graphs and real-world graphs.
The synthetic graphs are the following three types of graphs generated by
GeorgiaTech.graphgenerator (GTgraph) [16]: Random, R-MAT [17] and SSCA#2
[18], as shown in Table 1. Real-world graphs come from two commonly used
benchmarks [11–13]: SNAP database [22] and Koblenz Network Collection database
[23], as shown in Table 2.

Table 1. The detailed parameters of generated graphs

Type name Vertices Edges Parameters

R-MAT GT-rmata 10,000,000 100,000,000 a=0.25,b=0.25,
c=0.25,d=0.25

R-MAT GT-rmatb 10,000,000 100,000,000 a=0.45,b=0.15,
c=0.15,d=0.25

Random GT-randa 10,000,000 100,000,000 p=0.8

Random GT-randb 10,000,000 100,000,000 p=0.6

SSCA#2 GT-sscaa 10,000,000 80,771,507 maxCliqueSize=10,
maxParalEdges=2

SSCA#2 GT-sscab 10,000,000 95,068,514 maxCliqueSize=12,
maxParalEdges=2

Table 2. The details of real-world graphs

name Vertices Edges average degree maximum degree

Amazon0302 400,727 3,200,440 7.99 2,757

Amazon0312 262,111 1,234,877 4.71 425

Amazon0505 410,236 3,356,824 8.18 2,770

Slashdot0811 77,360 905,468 11.70 5,048

NotreDame 325,727 1,497,134 4.60 10,721

Google 875,713 5,105,039 5.83 6,353

pokec-relationships 1,632,803 30,622,564 18.75 20,518

LiveJournal 4,874,571 68,993,773 14.15 22,889

4.1 Experiment Setup

We compare five implementations including: (1) Tarjan: Tarjan’s sequential SCC
detection algorithm is a classic and representative sequential algorithm [3, 8]; (2)
Barnat: Barnat’s SCC detection method is a classical parallel algorithm, which is

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_2

https://dx.doi.org/10.1007/978-3-030-22747-0_2
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compared in many improved algorithms [8, 11–13]; (3) FB-Trim-MP: our paral-
lel SCC detection algorithm with multi-partition; (4) Devshatwar-MP: Devshat-
war’s algorithm [13] improved by our multi-partition algorithm. (5) Li-MP: Li’s
algorithm [12] improved by our multi-partition algorithm. We use gcc and nvcc
with the -O3 optimization option for compilation along with -arch=sm 37 when
compiling for the GPU. We execute all the benchmarks 10 times and collect the
average execution time to avoid system noise.

4.2 Effectiveness of Multi-partition scheme

In order to verify the effectiveness of the multi-partition scheme, we improve the
Barnat’s algorithm by our multi-partition scheme, and the other operations are
not changed. The comparison of execution time and the number of traversals
between Barnat algorithm and the improved algorithm (Barnat-MP) are sum-
marized in the following Tables 3. It can be seen that the Barnat-MP doesn’t
accelerate at R-MAT and Random graphs. Because these two kinds of graphs
only contain one large SCC and lots of 1-SCCs, and they don’t need many
traversals to process the medium-sized SCCs. However, in real-world graphs
and SCCA#2 graphs, there are lots of medium-sized SCCs. It requires multiple
traversals to detect these SCCs. For example, the Barnat’s algorithm requires
12225 traversals to detect all SCCs in real-world graph LiveJournal. Therefore,
in real-world graphs, the number of partitions generated by each traversal has
a great influence on the number of traversals in SCC detection. As shown in
Table 3, the Barnat-MP algorithm can reduce the number of traversals to 50%
to 64% of the Barnat algorithm and the speed of Barnat-MP algorithm can also
be increased to 1.3 × to 13 × compared with the Barnat algorithm. Therefore,
the multi-partition scheme can significantly accelerate the parallel algorithm of
SCC detection.

Table 3. comparison of execution time (left) and number of iterations (right)

Comparison of traversal number Comparison of running time

name Barnat Barnat-MP iteration
proportion

Barnat(s) Barnat-
MP(s)

time
proportion

Amazon0302 426 242 56.81% 0.365 0.254 143.70%

Amazon0312 1,250 668 53.44% 0.829 0.588 140.99%

Amazon0505 326 170 52.15% 0.277 0.199 139.20%

Slashdot0811 240 121 50.42% 0.0976 0.059 165.42%

NotreDame 1,180 611 51.78% 0.814 0.641 126.99%

Google 5,371 3,394 63.19% 6.486 4.645 139.63%

pokec-relationships 1,080 684 63.33% 1.317 1.017 129.50%

LiveJournal 12,225 7,539 61.67% 33.286 25.236 131.90%

rmata 1 1 100.00% 0.263 0.293 89.76%

rmatb 1 1 100.00% 0.277 0.312 88.78%

randoma 1 1 100.00% 0.289 0.299 96.66%

randomb 1 1 100.00% 0.289 0.299 96.66%

sscaa 2,236 1,397 62.48% 9.733 0.727 1,338.79%

sscab 1,520 973 64.01% 6.928 0.701 988.30%

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22747-0_2

https://dx.doi.org/10.1007/978-3-030-22747-0_2


Parallel SCC Detection with Multi-partition on GPUs 11

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

vertice number of SCC(log value)

nu
m

be
r 

of
 S

C
C

(lo
g 

va
lu

e)

(a) pokec-relationships

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

vertice number of SCC(log value)

nu
m

be
r 

of
 S

C
C

(lo
g 

va
lu

e)

(b) rmata

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

vertice number of SCC(log value)

nu
m

be
r 

of
 S

C
C

(lo
g 

va
lu

e)

(c) randoma

Fig. 3. The number distribution of SCCs of different graphs
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Fig. 4. The proportion of SCCs and their vertices

4.3 Analysis of SCC distribution

Before the performance analysis, we compare and analyze the SCC distribution
of the graphs used in our experiment. Fig.3 shows the distribution of SCCs in
synthetic graphs and real-world graphs. In order to clearly show the number
of medium-sized SCCs, we use the natural logarithm of the number of SCCs
as the ordinate value. Fig.4 compares the number of the largest SCCs, small
SCCs including 1-SCCs and 2-SCCs, and remaining medium-sized SCCs, and
it also compares the number of vertices contained in these SCCs. It is clear
in Fig.3 that synthetic graphs of R-MAT and Random are different from real-
world graphs in SCC distribution. In R-MAT and Random synthetic graphs,
there are only two types of SCCs: one large SCC and lots of small 1-SCCs. It
also verifies the reason why SCC detection on the R-MAT and Random graphs
is decelerated in Section 4.2. There are many medium-sized SCCs in real-world
graphs. In Fig.4, we divide SCCs into three categories. It can be found from the
R-MAT and Random graphs in Fig.4 that medium-sized SCCs don’t account for
any proportion on no matter the number of SCCs or the number of vertices. In
real-world graphs and SCCA#2 graphs, the number of medium-sized SCCs and
the number of their vertices account for a little proportion on SCCs number and
vertices number. For all SCCs, the number of vertices contained in the largest
SCC accounts for a large proportion. So it is necessary to be specifically detected.
Phase 1 in our algorithm mainly deals with the largest SCC. Each small SCC
only contains one or two vertices, but the number of small SCCs is large. So
Trim and Trim2 in our algorithm are used to deal with these vertices. The
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medium-sized SCCs are not large in vertices number and SCCs number, but
they need to be traversed many times, which is the main part accelerated by our
multi-partition method.

4.4 Performance Analysis

We implement the five algorithms mentioned in Section 4.1 on six synthetic
graphs and eight real-world graphs. In order to clearly display the experiment
results, we normalize the execution time of all algorithms by that of the Tarjan
algorithm and display the speedup in Fig.5. The result shows that our algorithm
achieves an average acceleration of 8.8 × and 21 × compared to Tarjan’s al-
gorithm and Barnat’s algorithm. Li-MP, Shrinovas-MP and our algorithm are
significantly faster than Tarjan’s algorithm in most graphs, which can reach 10
× or even 20 × speedup. Since there is no medium-sized SCCs, the speed of
them is slightly lower than Barnat’s algorithm, but when detecting SSCA#2
graphs and real-world graphs, Barnat’s algorithm is poor. In these graphs, the
speed of Barnat’s algorithm is even lower than that of Tarjan’s algorithm, while
Li-MP, Shrinovas-MP and our algorithm can still maintain a certain acceleration
in most cases.
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Fig. 5. Acceleration of various algorithms compared with Tarjan’s algorithm

Compared with Li-MP and Shrinovas-MP, our algorithm is not inferior. Li-Mp
is consistent with our algorithm except for loading balance. Fig.5 shows that the
Li-MP is faster than our algorithm on most graphs, and the average acceleration
ratio is 10%. The largest acceleration is on graph Slashdot, where the speed of
Li-MP is about 1.9 × of our algorithm. However, on SSCA#2 graphs, the speed
of Li-MP is only 0.66 × - 0.71 × of our algorithm. Therefore, the loading balance
can accelerate most graphs but not all. Compared with our algorithm, Shrinivas-
Mp adds virtual warp-centric mode in phase 1, and uses its own pivot selection
scheme. The operation of virtual warp-centric in Shrinivas-MP is similar to the
data-driven mode in Li-MP. As shown in Fig.5, Shrinivas-MP is not as fast as
Li-Mp and our algorithm on most graphs. This is mainly because that the pivot
selection scheme of Shrinivas-MP takes some time in phase 2, so it is necessary
to optimize the pivot selection.
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It can be concluded in Fig.5 that parallel SCC detection algorithms show
better acceleration on large graphs. The Tarjan’s algorithm only processes one
edge at a time, so its runtime is positively correlated with the scale of graphs.
On real-world graphs Amazon0312, Amazon0302, Amazon0505, and Google,
whose vertices are not more than 1M, Li-MP, Shrinovas-MP and our algorithm
only accelerate several times, and the detection speed on NotreDame with only
0.3M vertices is even lower than that of Tarjan algorithm. This is mainly because
the scale of graphs is not large, and plenty of threads on GPU are idle. The real-
world graphs LiveJournal and pokec-relationships are commonly used in the
experiments of many parallel SCC detection [11–13], and these algorithms can
achieve about 10 × acceleration on these two graphs. The size of the two graphs
is significantly larger than the previous graphs. Therefore,only when the graphs
is large enough, can the parallel algorithms make full use of all threads of the
GPUs.

5 Conclusion

Graph computing is important to abstract and solve problems in the intercon-
nected world. Parallel SCC detection is an important part of graph computing
accelerating algorithms. In this paper, we propose a parallel algorithm of SCC
detection with multi-partition to reduce the number of traversals by increasing
the number of partitions generated in each traversal. We select a vice pivot after
the forward traversal of the pivot and make it traverse backward together with
the pivot, which can increase the number of partitions in each traversal. And
we also improved the selection method of pivots and vice pivots. We combine
2-SCC detection as well as WCC detection and make the vertices marked at
WCC detection as the pivots to accelerate the algorithm. Experimental results
demonstrate that our algorithm outperforms existing SCC detection algorithms
on synthetic graphs and real-world graphs. The proposed algorithm achieves an
average acceleration of 8.8 × and 21 × over Tarjan’s algorithm and Barnat’s
algorithm. In the future, we will further discuss the structure and proportional
of the largest SCC with other SCCs and combine them with various fine-grained
acceleration schemes, and adopt different schemes according to the internal fea-
tures of various graphs to ensure the efficiency and the stability of the algorithm.
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