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Abstract. In this work, a computationally efficient technique for acous-
tic events classification is presented. The approach is based on cochlea-
gram structure by identification of dominant time-frequency units. The
input signal is splitting into frames, then cochleagram is calculated and
masked by the set of masks to determine the most probable audio class.
The mask for the given class is calculated using a training set of time
aligned events by selecting dominant energy parts in the time–frequency
plane. The process of binary mask estimation exploits the thresholding
of consecutive cochleagrams, computing the sum, and then final thresh-
olding is applied to the result giving the representation for a particular
class. All available masks for all classes are checked in sequence to deter-
mine the highest probability of the considered audio event. The proposed
technique was verified on a small database of acoustic events specific to
the surveillance systems. The results show that such an approach can be
used in systems with limited computational resources giving satisfying
classification results.
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1 Introduction

As a part of auditory scene analysis, acoustic events detection plays an essential
role in the machine listening systems. The number of events and its occurrence
in time creates a specific structure of the acoustic environment. Acoustic events
detection is a well-studied problem. Recently, due to the popularity of deep
learning paradigm, many more robust solutions have been proposed [8], [12],
[17]. However, these systems require a lot of data to create robust models. The
requirement of memory and computational resources, in this case, can be signifi-
cant and cause difficulties in using them into low–power systems. Moreover, such
solutions are sensitive to the varying real acoustic conditions which cause perfor-
mance deterioration. The event detection system in many practical applications
has to be run continuously to detect the specific events and perform actions
according to the type of event. Additionally, such a system is often organised as
a set of separate and cooperated modules powered by a battery which become
more and more popular in IoT (Internet of Things) systems [13], [2]. Therefore,
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the overall computational cost needs to be minimised primarily if the system is
dedicated to acoustic surveillance. Moreover, such distributed system gathering
the information from many modules placed in various locations may require a
mechanism to fuse information of detected events [16] which can be used to track
moving sound sources in the monitored area. Using many IoT devices, it is pos-
sible to balance the calculations and to map a collection of events to several IoT
modules according to the characteristics of acoustic scenes. A set of such devices
with acoustic sensors can also be used for tracking sound sources by a dedicated
spatial configuration of modules. Additionally, the detection of acoustic events
in many cases needs a quick reaction which requires reliable and secure com-
munication [1]. Event in the acoustic scene is often characterized by an abrupt
change in energy and frequency properties in various bands of an audio stream.
The process of audio event identification involves a comparison of a current sig-
nal frame with a time-frequency template. The situation of overlapping events
makes it harder to detect due to the shared data in time and frequency domains.
The model of events can be represented in various forms, and the detection stage
may exploit a matched filtering [9], supervised learning [15] or deep learning [4]
approaches. The audio event detection process depends on the many factors and
a lot of techniques is applied in the analysis chain. Furthermore, such systems are
rarely considered in the context of low memory requirements and computational
expenditures.

The selected representation of audio signal based on the time and frequency
domains plays an important role in the detection accuracy. Thus, various sets
of features, its dependencies and different configurations are used in the anal-
ysis. For example, authors in [7] proposed a hierarchical structure with differ-
ent feature sets with SVM classifier and found for 7 event classes that only
MFCC features and their derivatives are more useful for the event classifica-
tion. A method of using various audio features with a bag-of-features concept
for sound events detection with low computational cost has been presented in
[3]. The proposed system uses soft quantisation, supervised cookbook learning,
and temporal modelling. The feature set includes MFCC, GFCC, loudness and
temporal index attributes and the detection stage exploits the SVM classifier
with a sliding window approach. The joint properties in time and frequency do-
mains have been used in the work [19]. For overlapping sound event detection,
a nonnegative matrix factor 2-D deconvolution and RUSBoost techniques were
used. The method exploits spectral and temporal transition characteristics of
the audio signal using features calculated from activations obtained from Mel
spectrogram. In [10], an analysis of robust sound event recognition in adverse
conditions was presented. The proposed technique uses missing feature cepstral
coefficients, and ESTI Advanced Front End feature to detect the events in four
different types of additive noise.

In this study, a generation and analysis of acoustic events models in time–
frequency (TF) plane are presented. We proposed a simple scheme to determine
a set of TF units for a given number of acoustic events by preserving its parts
with the highest energy. The obtained binary masks for a specific event are
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then used in the process of classification. The paper is organised as follows. In
the next section a process of time–frequency representation calculation, binary
mask estimation an classification of acoustic events is introduced. Subsequently,
in section 3 an experimental evaluation is described including the thresholding
analysis used in binary mask generation and an event detection evaluation pro-
cess for an example database of audio events. Finally, a short discussion of the
proposed technique and obtained results is presented.

2 Audio Event Classification

The process of audio event classification has to identify which time–frequency
units explicitly belongs to an acoustic event. For this reason, various audio rep-
resentations are exploited in existing systems. The distribution of energy in the
signal representation depends on the type of sound source and the acoustic con-
ditions like background noise, reverberation and others. The selection in such
circumstances require a lot of computational power due to requirement of adap-
tative mechanisms.

2.1 Peripheral Auditory Representation

As a basic description of audio events we have selected cochleagram due to its
importance in machine hearing [11]. The cochleagram is a model that reflects
basilar membrane mechanics in the inner ear and is calculated by using gamma-
tone filters which cover the cochlea frequencies range. Also, such representation
is more robust to noise in comparison to the spectrogram representation [14].
The audio signal is converted into cochleagram in the following steps [18]:

– Bandpass filtering by a set of gammatone filters in the selected frequency
range (e.g. from 50Hz to 8kHz).

– Calculation of the time–domain envelopes using half–wave rectification of
signals at the outputs of the filter bank.

– Applying a static nonlinearity function (e.g. square root).

The obtained time–frequency representation has different frequency resolution
compared to the spectrogram. The impulse response of gammatone bandpass
filters can be expressed in the following form [6]:

gt(t) = tn−1 · e−2π·b(f0)·t · cos(2π · f0 · t), t ≥ 0,

where n is the order of the filter, f0 denotes the filter centre frequency [Hz]
and b(f0) is the bandwidth for a given f0 frequency. The bands and the centre
frequencies of the filters used in gammatone filter bank are estimated according
to the equivalent rectangular bandwidth (ERB) of human auditory filters. In
our experiments, we have used 4th order (n = 4) bandpass filters, and their
bandwidth can be approximated with the formula:

b(f) ≈ 1.019 · (24.7 + 0.108 · f).

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_56

https://dx.doi.org/10.1007/978-3-030-22744-9_56


4 Tomasz Maka

In the filter bank, the centre frequencies of the filters f0 are located across
frequency proportionally to their bandwidths b(f0). An example set of the gam-
matone bandpass filters is depicted in Figure 1.

0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency [Hz]

Fig. 1. A part of the gammatone filter bank (32 out of 128 band-pass filters are shown
for clarity) used in the cochleagram calculation.

2.2 Binary Mask Computation

To extract TF units from cochleagram specific for a defined group of events, we
decided to use a masking scheme. The binary mask is computed in the training
phase where for a set of events the energy of TF units are amplified by increasing
the shared values of consecutive events. All input training data is aligned and
optionally interpolated in the time domain for the unification of its size. Then
every cochleagram is thresholded using L1 value and added up to binary mask
template. The resulting temporary mask is eventually thresholded using level
L2, and then after binarisation, the final representation is obtained. This process
converts every TF unit in the mask to value 1 when source value is greater than
zero else, it replaces with value 0. The whole described scheme is illustrated in
Figure 2.

The thresholding operation is described by the following formula for both
modules where k = 1, 2:

Hk(x) = x ·
⌊

sgn(x− Lk) + 1

2

⌋
. (1)

The motivation behind this scheme is the selection of the TF units with the
dominant energy in the events. The TF units selected below the threshold are
removed from the mask template. An essential assumption in this scheme is that
all events used in the binary estimation process have to be time aligned according
to their onsets. The final mask depends on the number of input audio items in
the training set. For example, in Figure 3, an evolution of the mask structure
depending on the number of input events is shown. The obtained masks can be
efficiently coded and stored with a small memory footprint due to their sparsity
and binary representation.
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Fig. 2. The computational scheme for binary mask generation.
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Fig. 3. An evolution of binary mask for different number of training signals.

Because the thresholding operation removes TF units, the analysis window
may be reduced after mask estimation. Initially, the window has the size equal
to the longest event in the set. In Figure. 4 the final width of the binary mask is
presented for 5 example events. The duration of the event’s mask is dependent
on the type of sound source and acoustic conditions of recorded audio templates.
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Fig. 4. The width of the final mask in the analysis window.
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2.3 Events Classification

Let’s consider a set of event classes Θ = {C1, C2, C3 . . .}. The event classification
in our approach is performed by multiply the cochleagram with a binary mask
for successive classes. The class presence probability can be expressed as follows:

P (θ) =
eT · (A ◦Bθ) · e

eT ·Bθ · e
, (2)

where A denotes input cochleagram, Bθ is the final mask for class θ, e is the
all-ones vector, and ◦ is the Hadamard product operator.

The final result is determined by the selection of the class with the highest
probability:

θ̃ = arg max
θ∈Θ

[P (θ)] . (3)

After calculating the probabilities for all classes, the additional rules can be
applied to improve the final classification accuracy. However, in this study, we
have just selected the event with the highest probability value.

3 Experimental Evaluation

The performance of the proposed technique was evaluated by using a set of
acoustic events recorded in clean conditions with one channel and 44.1kHz sam-
pling rate. The dataset we used in the experiments contains five different acoustic
events occurring in acoustic surveillance situations. The events include ’scream-
ing’, ’dog bark’, ’gunshot’, ’door slam’ and ’glass break’ sounds. Every event is in
isolated form and is aligned in the class to the time onsets. The total number of
items in the set contains 250 individual recordings with 70/30 data split to use
as training and testing sets.

3.1 Thresholding Analysis

In the proposed approach two parameters have a direct influence on the mask
generation. At each iteration of mask creation the input TF plane is thresholded
using L1 level, then the final mask is additionally thresholded using level L2. In
this way, the performance of the system can be tuned to the acoustic environ-
ment. The values are determined as a percentage value of the whole dynamic
range of the cochleagram. To verify how the thresholds affect the effectiveness
of classification, we have generated binary masks for all the combinations of
both L1 and L2 values with step in subsequent attempts equal to 10%. The
classification results for five classes are depicted in Figure. 5.

To illustrate the results we have decided to use violin plots [5] as it addition-
ally shows local density estimates. For the analysed dataset the best accuracy
has been achieved with L1 = 30% and L2 = 70%. Selection of these parameters
to obtain the best results should be performed whenever a new dataset will be
used.
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Fig. 5. The influence of thresholding on the classification accuracy for 5 classes with
gradual changes of level L1 (a), and L2 (b).

3.2 Classification

We evaluated the performance of our technique for three different sets of ran-
domly selected events contained 3 (’dog bark’, ’gunshot’, ’glass break’), 4 (’dog
bark’, ’gunshot’, ’door slam’, ’glass break’) and 5 (’screaming’, ’dog bark’, ’gun-
shot’, ’door slam’, ’glass break’) classes. Then for each case a binary mask was
estimated as is shown in Figure. 6.

For the first set (Figure. 6a), the best thresholds were equal to L1 = 60% and
L2 = 80%. In situation of four classes (Figure. 6b) the best result was achieved
with L1 = 40% and L2 = 60%. Finally, the last case (Figure. 6c) with five
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glass break gunshot door slamdog bark scream
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Fig. 6. The final representations of binary masks for 3, 4 and 5 classes obtained for
the best thresholds L1 and L2 in each case.

classes was obtained with thresholds L1 = 30% and L2 = 70%. The classification
accuracies for each case were equal to 95.6%, 83.3% and 84% respectively. It’s
interesting to observe that in every case the second threshold L2 is bigger than
L1 which suggest that more TF units selected from source cochleagrams are
omitted than in the final thresholding before binarisation.

For the last case, a confusion matrix is presented in Figure. 7. It follows
that events ’dog bark’ and ’glass break’ were recognized perfectly, while the most
mistakes occur for ’gunshot’ and ’door slam’ classes. The occurring mistakes
are related to similarities in the shared frequency band and the similarities in
the duration. The main reason for misclassification is the variability of physical
properties of sound sources. The changes are rather small, but they have a direct
impact on the computed mask. Moreover, the range of frequencies in cochlea-
grams calculated in our study was limited to 50-8000 Hz range what could have
been influenced the final representation of the mask. Finally, it is difficult to in-
dicate unambiguously the way to adjust the parameters of the proposed system
to maximise the classification accuracy. As always it is a kind of the trade–off
between the efficiency and the computational cost. Despite the low computa-
tional expenditures, the proposed approach has to be adapted to the application
taking into account the events recorded in the target acoustic conditions.
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Fig. 7. The confusion matrix for 5 classes.

4 Conclusion

A computationally effective and straightforward approach to acoustic event clas-
sification is presented. The proposed method uses binary masks to determine
the discriminative TF units for the joint structure of the same type of acous-
tic events. The fast parametrisation and classification stages along with a very
low memory requirement make the proposed approach attractive to low–resource
and low–power applications. Such a solution may be implemented as an auxiliary
module with low computational resources to introduce additional information in
multimodal systems used in smart environments. As an example application, we
have selected a simple surveillance system with five specific acoustic events. The
performed experiments show how to configure the mechanism of binary mask es-
timation. The achieved classification accuracy is acceptable in situations where
the number of events is limited to a few. The presented scheme can be easily
adapted to real-time analysis using the sliding window approach. In future work,
the robustness analysis to background noise and the influence of the overlapping
level between events will be investigated.
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