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Abstract. The system of systems is the perspective of multiple systems
as part of a larger, more complex system. A system of systems usually
includes highly interacting, interrelated and interdependent sub-systems
that form a complex and unified system. Maintaining the health of such a
system of systems requires constant collection and analysis of the big data
from sensors installed in the sub-systems. The statistical significance for
machine learning (ML) and artificial intelligence (AI) applications im-
proves purely due to the increasing big data size. This positive impact
can be a great advantage. However, other challenges arise for processing
and learning from big data. Traditional data sciences, ML and AI used
in small- or moderate-sized analysis typically require tight coupling of
the computations, where such an algorithm often executes in a single
machine or job and reads all the data at once. Making a generic case of
parallel and distributed computing for a ML/AI algorithm using big data
proves a difficult task. In this paper, we described a novel infrastructure,
namely collaborative learning agents (CLA) and the application in an op-
erational environment, namely swarm intelligence, where a swarm agent
is implemented using a CLA. This infrastructure enables a collection of
swarms working together for fusing heterogeneous big data sources in a
parallel and distributed fashion as if they are as in a single agent. The
infrastructure is especially feasible for analyzing data from internet of
things (IoT) or broadly defined system of systems to maintain its well-
being or health. As a use case, we described a data set from the Hack the
Machine event, where data sciences and ML/AI work together to better
understand Navy’s engines, ships and system of systems. The sensors in-
stalled in a distributed environment collect heterogeneous big data. We
show how CLA and swarm intelligence used to analyze data from system
of systems and quickly examine the health and maintenance issues across
multiple sensors. The methodology can be applied to a wide range of sys-
tem of systems that leverage collaborative, distributed learning agents
and Al for automation.

Keywords: collaborative learning agents - swarm intelligence - system
of systems - health monitoring - lexical link analysis - distributed com-
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puting - parallel computing - data fusion - machine learning - artificial
intelligence

1 Introduction

The system of systems is the viewing of multiple systems as part of a larger,
more complex system. For example, a Navy ship is a system of systems. The
internet of things (IoT) is a system of systems. A system of systems usually
includes highly interacting, interrelated and interdependent sub-systems that
form a complex and unified system. Maintaining the health of such a system of
systems requires constant collection and analysis of the big data from sensors.
The data for a system of systems are often collected in a distributed fashion from
the sensors installed in the sub-systems. Fusing and analyzing the data from
heterogeneous sensors in a holistic approach the key to successfully detecting
problems, monitoring and maintaining the health of a system of systems.

In a separate perspective, as the size of data increases for data analytics
such as machine learning (ML) and artificial intelligence (AI), the statistical
significance for these methods often improves purely due to the increased data
size. This positive impact of big data drives proliferated considerations of ML /AI
applications.

However, other challenges arise. For example, the computational concept
map/reduce - an analytic programming paradigm for big data, which consists
of two tasks: 1) the “map” task, where an input data set is converted into
key/value pairs; and 2) the “reduce” task, where outputs of the “map” task are
combined to a reduced key-value pairs, serves as the cornerstone of many big
data algorithms and their variations. The paradigm typically include computers
used in parallel computations (e.g., hadoop clusters) to be physically clustered
in the same location.

Traditional data sciences used in small- or moderate-sized analysis typically
require tight coupling of the computations of the “map” and “reduce” steps in a
typical big data algorithm. Such an algorithm often executes in a single machine
or job and reads all the data at once. How can these algorithms be modified so
they can be executed in parallel? If the data is processed in parallel and parsed
into subsets, how to leverage the art and science of fusing the results as phrased
in the “reduce” step? Making a generic case for a ML /AT algorithm running in a
parallel environment proves to be a difficult task. Furthermore, running such an
algorithm in a distributed environment is even more challenging, for example,
using an agent to compute part of the analysis separately in sub-systems of a
system, and then combing the results.

In this paper, we describe a novel infrastructure called collaborative learn-
ing agents (CLA) and the application in an operational environment, namely
swarm intelligence, where a swarm agent is implemented using a CLA. This in-
frastructure enables a collection of swarms working together, not only for fusing
heterogeneous big data sources in a parallel and distributed fashion, but also for
effectively performing customized analytics such as ML/AT algorithms as if they
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are as a single agent. We show a use case to use CLA for monitoring the health
of a system of systems.

2 Collaborative Learning Agents (CLA)

Our previous work [14] shows the architecture of CLA. A single agent repre-
senting a single system capable of ingesting and analyzing data sources while
employing a process (i.e., an unsupervised learning process) that separates pat-
terns and anomalies within the data. Multiple agents can work collaboratively
in a network. This collaboration is achieved through a peer list defined within
each agent, through which each agent passes shared information to its peers.
Each agent initially analyzes its own input or content data separately and then
fuses the results with with its peers’.

In detail shown in Fig. 1, an agent CLA j includes an analytic engine with an
algorithm for data fusion and one for ML /AT that can be customized externally.
The fusion algorithm integrates the local knowledge base b(t, j) with an input
knowledge base B(t — 1,¢) from its peers ¢ and forms a new knowledge base
B(t,j). B(t — 1,4) represents all knowledge from i's network up to point ¢ — 1.
The ML/AT algorithm can be an anomaly detection algorithm, for example, such
an algorithm like lexical link analysis (LLA) that assesses the total value of the
agent j by separating the new knowledge base B(t, j) into the categories of pat-
terns, emerging and anomalous themes and computes a total value V (¢, j) [7, 8].
LLA functions as both an fusion and ML/AI (unsupervised learning) algorithms
(see Section 4). A knowledge base B(t,j) contains two components: The first
component is an association list which contains pairwise correlations or asso-
ciations between two word features for structured data or bi-gram word pairs
for unstructured data. The second component is a context/concept list, which
essentially the same set of context points such as timestamps, geo-locations or
file names used in the fusion step to fuse with data from multiple agents.

®\”eer/ m
b, :ZB(:—1,1)+b(:,j) S
’ T Association list

CLA j: b(t, j) B(t, j)
/ Context/Concept list

Fig. 1. CLA detail: each agent contains a fusion and ML/AI engine. The fusion is
represented as an additive term here as a special case of Step 1 in Section 5. The
function forms of the fusion and ML/AI can be customized.
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3 Swarm Intelligence (SI)

The CLA concept has an analogue in nature. As human being often ponder:
What is the mechanism behind that flocking swarms successfully achieve collec-
tive goals such as looking for food or going to places in an optimized fashion
using only local and simple communications as shown in Fig. 2 (left) [18]. Of-
ten swarms can maximize a total value, e.g., get to a food target in a shortest
distance. Swarms find an optimal solution using the pheromone, or the chemical
substances produced and released into the environment by a mammal or an in-
sect, which affects the behavior or physiology of others. The concept is simulated
in work in Al i.e., swarm intelligence (SI). ST is the collective behavior of natural
or artificial, decentralized and self-organized systems. The expression was intro-
duced in the context of cellular robotic systems as shown in Fig. 2(right) [19].

Fig. 2. Left: Natural flocking swarm behaviors [18]. Right: Swarm intelligence has been
simulated in the context of cellular robotic systems. It has been used for design armed
forces, wireless communications, cellular automata, peer-to-peer networks where the
whole system has stronger collective intelligence than individual systems [19]

4 Lexical Link Analysis (LLA) and CLA

4.1 LLA as a Text Analysis Tool for Unstructured Data

In a LLA, a complex system can be expressed in a list of attributes or features
with specific vocabularies or lexicon terms to describe its characteristics. LLA is
a data-driven text analysis. For example, word pairs or bi-grams as lexical terms
can be extracted and learned from a document repository. LLA automatically
discovers word pairs, clusters of word pairs and displays them as word pair net-
works. LLA is related to but significantly different from so called bag-of-words
(BOW) methods such as Latent Semantic Analysis (LSA [9], Probabilistic La-
tent Semantic Analysis (PLSA) [10], WordNet [11], Automap [16], and Latent
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Dirichlet Allocation (LDA) [12]. LDA uses a bag of single words (e.g., associa-
tions are computed at the word level) to extract concepts and topics. LLA uses
bi-gram word pairs as the basis to form word networks and therefore network
theory and methods can be readily applied here.

4.2 Extending LLA to Structured Data

Bi-gram also allows LLA to be extended to numerical or categorical data. For
example, for structured data such as attributes from databases, we discretize
and then categorize attributes and their values to word-like features. The word
pair model can further be extended to a context-concept-cluster model [14].
In this model, a context is a word or word feature shared by multiple data
sources. A concept is a specific word feature. A context can represent a location,
a timestamp or an object (e.g. file name) shared across data sources. In the use
case in Section 7, a timestamp is the context.

4.3 Three Categories of High-value Information and Value Metrics

The word pairs in LLA are divided into groups or themes. Each theme is assigned
to one of the three categories based on the number of connected word pairs
(edges) within a cluster (intra-cluster) and the number of edges between the
themes (inter-cluster):

— Authoritative or popular (P) themes: These themes resemble the current
search engines ranking measures where information containing the domi-
nant eigenvectors rank high because the elements of the dominant eigenvec-
tors tend to not only connect to each other but also connect to the elements
outside a group. They represent the main topics in a data set and are in-
sightful information in three folds: 1) These word pairs are more likely to
be shared or cross-validated across multiple diversified domains, so they are
considered authoritative; 2) These themes could be less interesting because
they are already in the public consensus and awareness, so they are consid-
ered popular; 3) The records associated with these themes are considered
normal. A popular theme has the largest number of inter-connected word
pairs. The content associated with popular themes disseminate faster.

— Emerging (E) themes: These themes tend to become popular or authorita-
tive over time. An emerging theme has the intermediate number of inter-
connected word pairs.

— Anomalous (A) themes: These themes may not seem to belong to the data
domain as compared to others. They are interesting and could be high-value
for further investigation.

Community detection algorithms have been illustrated in Newman [15][16],
a quality function (or Q-value), as specifically defined as the “modularity” mea-
sure, i.e., the fraction of edges that fall within communities, minus the expected
value of the same quantity if edges fall at random without regard for the com-
munity structure, is optimized using a “dendrogram” like greedy algorithm. The
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Q-value for modularity is normalized between 0 and 1 with 1 to be the best and
can be compared across data sets. Formation of the modularity matrix is closely
analogous to the covariance matrix whose eigenvectors are the basis for Principal
Component Analysis (PCA) [16] . Modularity optimization can be regarded as a
PCA for networks. Related methods also include Laplacian matrix of the graph
or the admittance matrix and spectral clustering [13]. Newmans modularity as-
sumes a subgraph deviates substantially from its expected total number of edges
to be considered anomalous and interesting, therefore, all the clusters or com-
munities (i.e.,popular, emerging and anomalous themes regardless) found by the
community detection algorithms are considered to be interesting. However, this
anomalousness metric does not consider the difference among the communities
or clusters.

In LLA, we improve the modularity metric by considering a game-theoretic
framework: In a nutshell and in a social network, the most connected nodes
are typically considered the most important nodes. However, in LLA, we con-
sider emerging and anomalous information are more interesting and correlated to
high-value information. Also, for a piece of information, the combination of pop-
ular; emerging and anomalous contributes to the total value of the information.
Therefore, we define a value metric as follows:

Let the popular, emerging and anomalous value of the information i be P(3),
E(i) and A(i) computed from LLA respectively, the total value V(i) for ¢ is
defined as in (1).

V(i) = P(i)+ E(i) + A(i) (1)

In the use case in Section 7, we show that the value metrics are correlated with
high-value information, e.g., anomalous profiles of Navy engine data.

5 Recursive Learning in CLA and SI

The key advantage of using CLAs relies on using a collection of agents or artificial
swarms to perform a task difficult to perform by individual agents. Assume each
swarm consists of a CLA and processes part of the total sensor data.

— An agent j represents one sensor or part of the total sensors, operates on its
own like a decentralized data analyzer. A single agent does not communicate
with all other sensors but only with the ones that are its peers. A peer list is
specified by the agent, for example, in Fig. 7, there are three agents in total,
CLA 1, CLA 2 and CLA 3. CLA 1 has two peers CLA 2 and CLA 3; CLA
2 has one peer CLA 1; and CLA 3 has one peer CLA 1.

— An agent j collects, analyzes from its domain specific data knowledge base
b(t, j). For example, b(t, j) may represent the statistically significant features
and associations based on the data observed only by agent j.

— An agent j also includes an analytic engine with two algorithms ( i.e., a
fusion and ML/AT algorithm) that can be customized externally. We use the
two algorithm LLA1 (fusion) and LLA2 (ML/AI) in the implementation of
LLA to illustrate the process. The fusion algorithm (LLA1) integrates the
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local knowledge base b(t,j) and the global knowledge base B(¢t — 1,7) into
a new knowledge base B(t,j). The ML/AI algorithm (LLA2) assesses the
total value of the agent j by separating the total knowledge base into the
categories of patterns, emerging and anomalous themes based on the total
knowledge base B(t, j) and generates a total value V (¢, j). The whole process
is displayed as follows:

e Step 1: B(t,j) = LLAL(B(t — 1,p(j)),b(t, 5));

e Step 2: V(t,j) = LLA2(B(t,j))
Where p(j) represents the peer list of agent j.

— The total value V(t,j) is used in the global sorting and ranking of relevant

information.

In this recursive data fusion, the knowledge bases and total values are completely
data-driven and automatically discovered and unsupervised-learned from the
data. Each agent consists the exact same code, yet collects and analyzes its own
data apart from other agents. This agent design has the advantages of decen-
tralized and distributed models: performing learning and fusing simultaneously
and in parallel.

6 Fusion and Context Learning in CLA and SI

In a CLA’s fusion step, if agent j’s local model b(¢, j) shares vocabulary or word
features with the knowledge bases that its peers pass to, i.e., B(t — 1,4), the
fusion part is simply to modify and update the association list to reflect the new
data. Meanwhile, a so-called context learning is performed at each agent using
the context/concept list if the agents do not share common word features or
vocabulary as follows:

— Step 1: Each agent loops through Peer 7 in its peer list, and list all contexts
and associations from its peers and local data b(t, 7).

— Step 2: For each concept (word feature) i_c in B(¢t — 1,4), check if agent
j’s local data b(t,j) and concept j_c to see if it has the same context. If
yes, concept i_c and concept j_c in agent ¢ and agent j is linked and the
association is added to the knowledge base B(t, j)

Fig. 1 also shows the update algorithm and context learning algorithm. Both are
part of the whole fusion algorithm (LLA1). The LLA2 refers the part of the LLA
algorithm that categorize word features into popular, emerging and anomalous
ones.

7 Use Case

At the heart of the US Navy are thousands of machines that drive the ships
and submarines. The U.S. Navy mission is to maintain, train and equip combat
ready naval forces capable of winning wars, deterring aggression and maintaining
freedom of the seas. The US Navy needs to harness big data, data sciences, and
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ML/AI to better understand these machines as system of systems. A test data
set was culled from the Navy’s engine rooms around the world, link data sci-
ences, ML /AT The data was used in the Hack The Machine event in Cambridge,
Massachusetts in September, 2017 organized by the US Navy [17].

The data set is a typical health maintenance use case where multiple sensors
are used to monitor a system of systems (e.g., a ship) to see if it is operated
normal or if there are any “health” issues. The sensor data collected can be in a
variety of heterogeneous formats such as numerical values, image and text etc.
The correlations and associations of the multiple sensor data are not necessarily
known before the data collection. The sensors can also be installed in a dis-
tributed fashion, for example, in different ships or in the same ship but different
ship subsystems.

Fig. 3 is a ML/AI paradigm to learn from historical data of system of systems
(e.g., ship 1 and ship 2) and then apply the knowledge patterns learned and
discovered to the new data (e.g., ship-x). The CLAs in a swarm intelligence can
reside in the systems or subsystems in a distributed fashion in this case.

HISTORICAL

D @

MACHINE LEARNING

KNOWLEDGE
PATTERNS

Trend
Pattern

ANSWER

Trend

Recommendation

Recommendation
* Pattern
Given Target
Similarity Similarity
Pattern —
4 en
Prediction e
Pattern
NEW

Fig. 3. Data sciences, ML /AI meet to check the health of a system of systems

Fig. 4 shows an sample of the original data set with about 50 variables
with timestamps over a period of a year (7/2016 to 6/2017). Each numerical
variable is discretized into LLA word features based on the initial statistics
such as means and standard deviations. The total LLA features n = 160 .
For example, bearing_temp_a ft_bt_107.97_136.70 represents a feature from the

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOI{10.1007/978-3-030-22744-9_55 |



https://dx.doi.org/10.1007/978-3-030-22744-9_55

CLA and Swarm Intelligence 9

original sensor measurement variable bearing_temp_aft with its value between
107.97 and 136.70, where 107.97 and 136.70 is the mean and the mean plus one
standard deviation. The values were generated automatically and initially within
a CLA. If only one CLA is used with the fusion of a set of agents (swarms), in
order to perform the ML /AT in the second step, the association list B(t, j) needs
to be computed with the amount of the computation O(n?m), where m is the
number of contexts (i.e.,timestamps) that can link these word features.

DateTime VOLTETURBI TUR W PL FUEL CFUELIFURL
Jnfwistas 53 s 0 1 103 S8 s S8 973 ses 1025 0 1 120 15251 1 8 sm2 s 18 U s 6 % 1 o013 003205 82 8 9 1Lss 0 2 0 ¢
Ynpoietas 7 8 0 0 102 %3 %6 SBE 973 %3 1023 0 1 120 15258 1 8 983 % 16 17 65 6 8 20 1 01 659 005 280 46 8 9 12 84 0 2 0 €
/n/wisTa 117 8 0 0 1011012 %65 94 ST1 %45 1002 0 1 120 15155 1 8 587 4 15 17 65 6 s 20 1 01 83 003 203 74 8 5 12 8 0 2 0 &
Yn0i614 205 859 0 0 105 9771043 1035 979 %04 96 0 1 120 15154 1 8 987 % 15 17 6 6 & 210 1 01 87 0063069 15 8 9 12 85 0 2 0 &
7/2/216345 337 1025 © 30 108 1075 1053 1035 8.5 563 967 0 1 120 1546 1 8 534 S8 15 17 65 6 s 20 1 01 524 006245 46 8 5 1 85 0 2 0 €
72016212 495 3516 0 30 137 1137 1207 1215 1195 1373 1209 49 1 12900 15 127 1 8 91576 11 16 17 6 61 8 200 1 01144 008 2% B9 12 9 121®2 0 2 0 I
7/n/w16212 363438 0 1 16 125 1193 148 1187 3.4 1082 0 1 120 15125 1 8 siw2 1w 18 1 65 6 s 20 1 01146 0062600 75 12 5 121098 0 2 0 1t
202016212 267 963 0 30 123 1234 119.7 112.1 1186 1115 123.4 0 1 120 15 222 1 8 914 11 16 17 6 6 & 20 1 011426 003 21 63 12 9 121095 0 2 0 1t
7/n/w16212 217 B 0 0 127 174 145 152 116 1153 1273 0 1 120 15121 1 8 5153 1w 18 1 65 6 s 20 1 011421 003 22 57 1 5 12 10 0 2 0 1
22016212 161991 0 30 125 118 1184 1248 1174 1125 1203 2 1 120 15 19 1 8 917 I 16 1 65 6 s 20 1 01144 00 A2 5 12 9 121098 0 2 0 1t
/16447 4723867 © 0 130 193 1025 121 1411721209 76 1 12900 15 126 1 5 9164 103 16 17 6 61 8 20 1 01143 005 27 106 15 9 L1®5 0 2 0 1

Fig.4. An example from the original sensor data set with about 50 variables with
timestamps over a period of a year (7/2016 to 6/2017)

Three results were discovered by a single CLA as follows:

— Three clusters were discovered by a single CLA as shown in Fig. 5.

e Two green clusters represent normal running conditions.
e Blue clusters represents outliers findings (anomalies).
— Characteristics of the anomaly cluster 1: Class A, Ship #1 with all gas
turbine generator data

— If Turbine Inlet Temp.> 409.60°F, then the blue parts/units have a high
likelihood to fail (anomalies) in near future and should be checked.

Font Size Noges:

Scaled Sz

Fig. 5. Two green clusters represent normal running conditions
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For this maintenance sensor data, the CLA generated 160 word features from
the 50 sensors. The identified features as shown highlighted in blue in Fig. 8 out
of the total 160 ones are more sensitive to the engine operating performance.

Fig. 6 shows all the time series for selected variables in the anomaly group
distributed along time points when all the sensor data are processed together,
i.e., in one CLA. The anomaly time points are shown in blue dots which have
higher emerging scores in the y-axis.

Emerging
Radius

Emerging
Category

Type

Emerging

Radius

Emerging

Category

Type

Fig. 6. Top: All three groups shown in a time series relationship with the anomaly time
points when all the sensor data are together, i.e., in one CLA. Bottom: All three groups
shown in a time series relationship with the anomaly time points in three separate CLAs
and then fused together

To illustrate the use of SI, we divided the 160 features into three groups and
each set of the features and associated data are processed separately in three
CLAs as shown in Fig. 7 (left). Fig. 7 (right) shows the peer lists for three
agents for themselves. The agents do not have to fully connected to each other.
Each agent periodically performs the algorithms LLA1 and LLA2, and the whole
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system converges to an equilibrium state where every agent acquires the same
global knowledge base. Each agent can also decide not to publish some of its
knowledge base B(t,j). In this case, we may call the agent possesses private
information or retains expertise for itself.

8=

arm Agent/CLA3

Fig. 7. Left: SI is shown in three CLAs. Right: Three CLAs do not have to be fully
connected. The knowledge bases “spread out” over many iterations of the fusion and
ML/AT algorithms LLA1 and LLA2

As shown in Fig. 6, the swarm CLAs (bottom) generate the identical results
and time series visualization as if all the sensors in one swarm (top). The swarm
agents can compute the exact same fusion and ML/AI computation as if the
data is collected and processed in a single system. Therefore,the total correlation
computations O(n?m) is distributed and decentralized among three agents.

8 Conclusion

In this paper, we showed how collaborative learning agents and swarm intelli-
gence are used to analyze data from a system of systems. We showed an appli-
cation and a use case of quickly examining the health and maintenance issues of
a sample Navy ship which might be used to generate early warning and recom-
mendations.

A single agent/swarm is able to identify features that are anomalous and
more sensitive to the engine performance. Multiple agents/swarms collaborate
to distribute and decentralize the computation as if the data and computation
are collected and analyzed all together in a single system.

The mechanism described in this paper is not a simple map,/reduce mecha-
nism or a collection of parallel processes because the collective behavior of swarm
agents are iterated and converge towards to a stable state as if all the big data are
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Fig. 8. Variables in all three swarms and highlighted variables are more important and
sensitive in the emerging groups
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processed in a single swarm. Each swarm actually follows a game-theoretic dual
process of finding an equilibrium for itself and meanwhile achieving the maxi-
mum social welfare for the whole system. The final state of swarms is decided
not only by the data collected individually but also by how the data of different
agents interact, correlate, and associate with each other, just like a community
of swarms, social animals and humans. An agent has one or multiple types of
expertise as special data for itself. Agents share knowledge and collaborate when
applying different types of expertise.

Each agent possesses the exact same code but analyzes different (sensor)
data from each other. This agent design has the advantages for decentralized
and distributed computing, performing learning and fusion simultaneously and
in parallel as in the internet of things (IoT) . Swarm intelligence is an important
aspect of IoT systems or broadly defined system of systems.
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