
Research and Implementation of an Aquaculture
Monitoring System Based on Flink, MongoDB and Kafka

Yuansheng Lou1, Lin Chen1, Feng Ye1,2, Yong Chen2,3 and Zihao Liu4

1 College of Computer and Information, Hohai University, Nanjing 211100, China
2 Postdoctoral Centre, Nanjing Longyuan Micro-Electronic Company, Nanjing 211106, China

3 Huai’an Longyuan Agricultural Technology Company, Huai’an 223345, China
4 Jiangsu University of Science and Technology, Zhenjiang 212000, China

yefeng1022@hhu.edu.cn

Abstract. With the rapid advancement of intelligent agriculture technology, the
application of IoT and sensors in aquaculture domain is becoming more and
more widespread. Traditional relational database management systems cannot
store the large scale and diversified sensor data flexibly and expansively.
Moreover, the sensor stream data usually requires a processing operation with
high throughput and low latency. Based on Flink, MongoDB and Kafka, we
propose and implement an aquaculture monitoring system. Among them, Flink
provides a high throughput, low latency processing platform for sensor data.
Kafka, as a distributed publish-subscribe message system, acquires different
sensor data and builds reliable pipelines for transmitting real-time data between
application programs. MongoDB is suitable for storing diversified sensor data.
As a highly reliable and high-performance column database, HBase is often used
in sensor data storage schemes. Therefore，using real aquaculture dataset, the
execution efficiency of some common operations between HBase and our
solution are tested and compared. The experimental results show that the
efficiency of our solution is much higher than that of HBase, which provided a
feasible solution for the sensor data storage and processing of aquaculture.

Keywords: Aquaculture, Flink, MongoDB, Kafka, Big Data.

1 Introduction

With the advancement of IoT (Internet of Things) technologies, the aquaculture
industry is also facing a transition from the traditional rough pattern to the refined,
intelligent pattern. The IoT has been widely used in all parts of the aquaculture
production such as data collection, environmental monitoring, fish fry epidemic
detection [1]. Large-scale business data such as ammonia nitrogen, temperature,
dissolved oxygen and pH value, is produced and needs to be processed. When storing
massive data, the capacity of vertically increasing data nodes is limited, and the
performance bottleneck will be caused in the processing of massive data [2]. Therefore,
the distributed cloud storage scheme that dynamically accesses new storage nodes
through horizontal expansion is an ideal solution. In addition, the heterogeneous and

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_50

https://dx.doi.org/10.1007/978-3-030-22744-9_50

2

non-structural trend of these IoT data is obvious, and using traditional database
systems for storage is no longer appropriate. NoSQL stores support dynamic data
model, which can deal with the variety, complexity and later expansion of data
acquisition devices in the IoT [3].

On the other hand, the real-time requirement of sensor data processing in aquaculture
is very high. Taking water temperature as an example, the water temperature will
directly affect the growth and health of fish. Temperature sensors frequently acquire
measurement data and transmit them to data centers in the form of streams. In data
centers, real-time or near-real-time applications update the display board and issue
warnings about changes in water temperature to avoid losses in aquaculture [4].
Therefore, based on Flink, MongoDB and Kafka, this paper proposed and implemented
a high-throughput, low-latency architecture for processing real-time streaming data of
the IoT of aquaculture.

2 Background and Related Work

2.1 Apache Flink

Many systems generate continuous stream of events. If we can efficiently analyze
large-scale sensor stream data, we will have a clearer and faster understanding of the
system. In this context, Apache Flink [5] came into being. Flink is an open source
stream processing framework that supports distributed, high performance,
ready-to-use, and accurate streaming applications. Flink not only provides real-time
computing that supports both high throughput and exactly-once semantics, but also
provides batch processing. Flink treats batch processing (that is, processing limited
static data) as a special stream processing, so that batch and stream processing can be
implemented simultaneously. Its core computational construct is the Flink runtime
execution engine in Figure 1, which is a distributed system that accepts data flow
programs and performs fault-tolerant execution on one or more machines. The Flink
Runtime Execution Engine can run as a YARN (Yet Another Resource Negotiator)
application on a cluster, on a Mesos cluster, or on a standalone machine. Figure 1 is an
architectural diagram of Flink.

Existing experiments show that by avoiding flow processing bottlenecks and
utilizing Flink's stateful stream processing capability, the throughput can reach about
30 times of Strom. At the same time, the exactly-once and high availability can be
guaranteed [6]. Therefore, Flink is chosen as the data processing platform in this
paper.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_50

https://dx.doi.org/10.1007/978-3-030-22744-9_50

3

Table API
Structured

streams/sets

CEP API
Event

Processing

Table
API

Structured
streams/sets

Flink
ML

Machine
Learning

Gelly
Graph

Processing

DataStream API
Streaming processing

DataSet API
Batch processing

Flink runtime
“Fault-tolerant streaming dataflows”

Local Cluster YARN Mesos

Libraries

User-facing
APIs

Core fabric

Deployment

Fig. 1. The architecture diagram of Apache Flink

2.2 MongoDB

MongoDB[7] is a distributed, document-oriented, open source document database.
MongoDB is the most similar to relational database among non-relational databases. It
has rich functions and can even use many SQL statements for relational query, etc.
Moreover, it has a variety of performance advantages of non-relational databases, such
as convenient deployment, painless expansion and storage without mode. MongoDB
supports a variety of common development languages, has a number of open source
MongoDB frameworks, and simplifies data layer operations.Compared with the
traditional MySQL database, MongoDB is much more efficient than MySQL in
addition, deletion, selection and other operations[8]. In addition, MongoDB is a fast
scalable database that can greatly increase the performance of Flink.

2.3 Kafka

Apache Kafka [9] is a distributed publish-subscribe messaging system. It can handle a
large volume of data which enables you to send messages at end-point. Apache Kafka
is developed at LinkedIn & available as an open source project with Apache Software
Foundation. In this article, Kafka was chosen as the message broker. It supports Apache
Flink very well. In addition, it provides precise primary semantics to ensure that each
record is eventually delivered to its consumer, even in the event of a failure, and that no
duplication is created in the process [10].

2.4 Related Work

At present, MapReduce programming model and Hadoop architecture are the popular
processing technologies for big data in aquaculture, but Hadoop is a typical batch
processing architecture for big data, and cannot meet the real-time requirements for
streaming data processing [11-13]. In [14], by implementing Lambda architecture, the
real-time computing platform is combined with the offline batch processing
mechanism to make the agricultural big data processing framework have both the

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_50

https://dx.doi.org/10.1007/978-3-030-22744-9_50

4

function of streaming data and the function of historical data mining. But this
architecture requires two programming of the same business logic in two different
APIs: one for batch computing and one for streaming computing. For the same business
problem, there are two code bases, each with different vulnerabilities. Such systems are
more difficult to maintain.

In terms of data storage, NoSQL is the mainstream storage scheme of IoT data. In
[15], through testing and comparing the storage performance and data processing
performance of MongoDB, HDFS and MySQL, experiments show that MongoDB has
higher scalability and higher availability, and can store IoT data efficiently. Therefore,
MongoDB is a feasible sensor data storage scheme. In [16], HBase, which is a
distributed column-oriented database based on Hadoop file system, is used to store
stream data. It can also be scaled horizontally like MongoDB. Therefore, this paper
tested and compared the performance of HBase and MongoDB under the IoT data
storage scenario.

In summary, a high throughput, low delay and easy maintenance architecture is
urgently needed to deal with the stream data generated by sensors.

3 The Architecture of the Aquaculture Information Monitoring
System and Implementation

3.1 Architecture

According to the characteristics of aquaculture IoT data and considering the key factors
such as reliability, flexibility, scalability and load balancing, the system can be divided
into four layers: data collection layer, data processing layer, business logic layer and
application display layer. Figure 2 shows the whole architecture of the system.

In the data collection layer, Kafka is a pub-subscribe messaging system. We create
different topics for different data stream. Data collection layer pushes JSON objects
of sensor data to corresponding topics. Kafka's ZooKeeper can realize dynamic
cluster expansion. Once the zookeeper changes, Kafka client can perceive and make
corresponding adjustments in time. This ensures that when brokers are added or
removed, they are still automatically load-balanced among themselves.

In the data processing layer, Flink receives and analyzes data in different topics,
and analyzes infinite data streams by calling the DataStream API. The stream data
processing program is implemented with the Java language. The processed data can
flow to another message queue or be directly updated in the local database by the
Flink program for historical query. To improve the fault tolerance, we adopt Flink's
State management mechanism. State is the state of calculation when the stream data is
saved from one event to the next event, and the calculation state can continue to
accurately update the state after the failure or interruption. For storing massive
amounts of sensor data, we use MongoDB for data persistence.

In the business logic layer, for the data that needs to be displayed in real time, this
layer constantly obtains the stream data processed by Flink for real-time update. For

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_50

https://dx.doi.org/10.1007/978-3-030-22744-9_50

5

historical queries, this layer provides various query interfaces for MongoDB database
tables. Spring is used to manage object dependencies through dependency injection.

Kafka
Cluster

MongoDB

Flink-
Kafka-

Connector Flink
Batch

Processing

State

State

State
Business

Logic
Layer

Data Query
InterfaceFlink

Sream
Processing

Controller

Java Script JSP CSSHTML

Kafka

Kafka

Kafka

Kafka

Fig. 2. The framework of aquaculture system

The application display layer uses JavaScript, HTML, CSS and JSP to implement
the front-end interface. When the client makes a request, Tomcat receives the request
and forwards the request to the DispatcherServlet for processing if it matches the
mapping path configured by the DispatcherServlet in web.xml. The DispatcherServlet
is used as the front-end controller for request distribution, and the controller is called by
the browser request. Controller processes business requests and returns the
corresponding view page.

3.2 System Implementation

At present, aquaculture information monitoring system adopts 30 million sensor data of
an aquaculture farm to simulate stream data, and Flink is used to realize real-time
update and historical query function of dashboard sensor, as shown in Fig.3. The green
part of the line chart indicates that the temperature is in normal value, and the red part
indicates that the temperature is beyond normal value. By means of visualization [17],
users can easily see the maximum, minimum and average temperature in different time
periods.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_50

https://dx.doi.org/10.1007/978-3-030-22744-9_50

6

Fig. 3. Sensor real-time data display

4 Experiments and Discussion

In order to verify the performance of this storage scheme, the insertion and query
performance of MongoDB and HBase were tested in different orders of magnitude. In
order to verify the performance of the storage scheme in this paper, the insert and query
time of MongoDB and HBase were tested under different orders of magnitude
scenarios.

MongoDB and HBase clusters are deployed on four PCs of the same type. The PC’s
configuration is: Intel(R) Xeon(R) CPU E5645@2.40GHz dual-core 24 CPU,
Kingston DDR3 1333MHz 8G, 500GB SSD Flash Memory. Operating system are
Ubuntu 16.04 64-bit and Linux 3.11.0 kernel.MongoDB version is 3.6.3 and HBase
version is 1.2.6. The CPU utilization of each primary node is monitored by Ganglia.
4.1 Data insertion performance verification

The experimental steps are as follows.
1) 30 million pieces of sensor data are randomly selected from the monitoring

system of the IoT, and then 3 groups of data are randomly selected from these
data. The data volumes are 10,000 pieces, 100,000 pieces and 250,000 pieces of
data respectively.

2) The data is sent to the Topic through Kafka Producer. The MongoDB cluster with
4 nodes obtains data from Kafka Broker.

3) Build a HBase cluster with 4 nodes under the same hardware configuration, and
get data from the same Kafka Broker in 2).

4) Record the insertion time and CPU utilization, and repeat the insertion five times
to get the average.

The insert performance comparison between MongoDB and HBase is shown in
Figure 4.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_50

https://dx.doi.org/10.1007/978-3-030-22744-9_50

7

Fig. 4. Performance comparison of data insertion between MongoDB and HBase

It shows that when the data scale is small, the insertion performance of the
MongoDB cluster and the HBase cluster is close; however, when the data volume is
100,000 pieces of data, MongoDB cluster data insertion performance is obviously
better than that of HBase cluster; when the data volume is 250,000, the insert operation
time of MongoDB cluster data is only 37.04% of that of HBase cluster. Ganglia
recorded the CPU utilization in the process of data insertion, and the results are as
follows.

Fig. 5. CPU utilization comparison of data insertion

It can be seen that with the increase of data quantity, the CPU utilization of
MongoDB slightly increase, but the change range is not large, and the change of CPU
utilization of HBase is relatively stable.
4.2 Data query performance

The test steps are as follows.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_50

https://dx.doi.org/10.1007/978-3-030-22744-9_50

8

1) Respectively, MongoDB cluster and HBase cluster are used to query 10,000,
100,000 and 250,000 pieces of data from 30 million pieces of data set in
experiment 4.1.

2) Record the insertion time and CPU utilization, and repeat the query operation five
times to get the average.

 The insert operation performance comparison between MongoDB and HBase is
shown in Figure 6.

Fig. 6. Performance comparison of data query between MongoDB cluster and HBase cluster

When the data size is small, the data query performance of MongoDB cluster is close
to that of HBase cluster, but always lower than that of HBase.With the increase of data
volume, the query time of HBase increased greatly, while the growth of MongoDB is
small and far smaller than that of HBase. When the query data volume is 250,000, the
MongoDB cluster’s data query time is only 2.38% of HBase cluster’s. As a result, when
the amount of data is large, the query speed of MongoDB is faster.

Ganglia recorded the CPU utilization in the process of data query, and the results are
shown in Figure 7.

Fig. 7. CPU utilization comparison of data query

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_50

https://dx.doi.org/10.1007/978-3-030-22744-9_50

9

With the increase of queries, the CPU utilization of MongoDB and HBase increase
slowly, and the CPU utilization of MongoDB is significantly higher than that of HBase.

Through the above two comparative experiments, we can see that when the sensor
data volume is large, the insertion and query efficiency of MongoDB cluster is much
higher than that of HBase. Although the CPU utilization is slightly higher than that of
HBase, it is basically between 10% and 20%. Therefore, in the case of high throughput
and high concurrency, it is feasible to use MongoDB to store sensor data.

5 Summary and Outlook

This paper summarizes the problems encountered in the data processing of IoT sensor
in aquaculture, namely the massive, non-structural and real-time processing, and
proposes and implements the aquaculture monitoring system based on Flink, Kafka and
MongoDB. Taking sensor data acquired in aquaculture monitoring as experimental
data, the data insertion and query performance of MongoDB and HBase were tested
and compared. The experimental results show that MongoDB is much more efficient
than HBase in storing and querying massive sensor data, which can meet the storage
and management requirements of massive and real-time data of the aquaculture IoT. At
the same time, MongoDB supports dynamic data model, making the system easier to
expand.

The subsequent research will focus on Flink, which combines distributed computing
and machine learning technology to calculate the real-time data of the IoT, providing
real-time disaster warning and decision-making services for aquaculture.

Acknowledgement

This work is partly supported by the 2018 Jiangsu Province Key Research and
Development Program (Modern Agriculture) Project under Grant No.BE2018301,
2017 Jiangsu Province Postdoctoral Research Funding Project under Grant No.
1701020C, 2017 Six Talent Peaks Endorsement Project of Jiangsu under Grant
No.XYDXX-078.

References

1. Shetty, S., Pai, R.M., Pai, M.M.M.: Energy Efficient Message Priority Based Routing
Protocol for Aquaculture Applications Using Underwater Sensor Network.Wireless Pers
Commun 103(2), 1871-1894 (2018).

2. Xu, X., Shi, L., He, L., Zhang, H., Ma, X.: Design and implementation of cloud storage
system for farmland internet of things based on NoSQL database. Transactions of the
CSAE, 35(1), 172-179 (2019).

3. Edward, S.G., Sabharwal, N. : Practical MongoDB. Apress. Berkeley, CA(2015).
4. Liu, S., Xu, L., Chen, J., Li D., Tai H., Zeng L.: Retracted: Water Temperature Forecasting

in Sea Cucumber Aquaculture Ponds by RBF Neural Network Model. In: Li, D., Chen, Y.
(eds.) Computer and Computing Technologies in Agriculture VI. CCTA 2012. IFIP

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_50

https://dx.doi.org/10.1007/978-3-030-22744-9_50

10

Advances in Information and Communication Technology, vol 392, pp.425–436. Springer,
Berlin, Heidelberg(2013).

5. Tanmay, D.: Learning Apache Flink. Packt Publishing, Birmingham(2017).
6. Friedman, E., Tzoumas, K.: Introduction to Apache Flink: Stream Processing for Real Time

and Beyond. O'Reilly Media, Sebastopol(2016).
7. Chodorow, K.:MongoDB the definitive guide.O'Reilly Media,Sebastopol(2013).
8. Győrödi, C., Győrödi, R.; Pecherle, G., Olah, A.:A Comparative Study: MongoDB vs.

MySQL.In: 13th International Conference on Engineering of Modern Electric Systems
(EMES),IEEE, pp. 1-6(2015).

9. Narkhede, N., Shapira, G., Palino, T.:Kafka the definitive guide. O'Reilly Media,
Sebastopol(2013).

10. Versaci, F., Pireddu, L., Zanetti, G.: Kafka Interfaces for Composable Streaming Genomics
Pipelines.In: IEEE EMBS International Conference on Biomedical & Health Informatics
(BHI),IEEE, pp. 259-262(2018).

11. Wang, D., Zheng, J., Wang, D., Liu, Y.: Primary research of fishery big data and
application technology in China.Shangdong Agricultural Sciences 48(10), 152–156(2016).

12. Yu, Z.: Review of fishery big data.Journal of Anhui Agricultural Sciences 45(9),
211-213(2017).

13. Li, D., Yang, H.: State-of-the-art review for internet of things in agriculture.Transactions of
the Chinese Society for Agricultural Machinery 49 (1) ,1-20(2018).

14. Duan, Q., Liu, Y., Zhang, L., Li, D.: State-of-the-art Review for Application of Big Data
Technology in Aquaculture.Transactions of the Chinese Society for Agricultural
Machinery 49(06), 1–16(2018).

15. Yang, P., Lin, J.: A Scheme for Massive Unstructured Iot Data Processing Based on
MongoDB and Hadoop. Microelectronics & Computer 35(04),68-72(2018).

16. Wang, Y., Chiang, Y., Wu, C., Yang, C., Chen, S., Sun, P.: The implementation of sensor
data access cloud service on HBase for intelligent indoor environmental monitoring.In: 15th
International Symposium on Parallel and Distributed Computing (ISPDC),IEEE, pp.
234-239(2016).

17. ECharts,https://echarts.baidu.com, last accessed 2019/2/1.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_50

https://dx.doi.org/10.1007/978-3-030-22744-9_50

