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Abstract. With the rapid advancement of intelligent agriculture technology, the 
application of IoT and sensors in aquaculture domain is becoming more and 
more widespread. Traditional relational database management systems cannot 
store the large scale and diversified sensor data flexibly and expansively. 
Moreover, the sensor stream data usually requires a processing operation with 
high throughput and low latency. Based on Flink, MongoDB and Kafka, we 
propose and implement an aquaculture monitoring system. Among them, Flink 
provides a high throughput, low latency processing platform for sensor data. 
Kafka, as a distributed publish-subscribe message system, acquires different 
sensor data and builds reliable pipelines for transmitting real-time data between 
application programs. MongoDB is suitable for storing diversified sensor data. 
As a highly reliable and high-performance column database, HBase is often used 
in sensor data storage schemes. Therefore，using real aquaculture dataset, the 
execution efficiency of some common operations between HBase and our 
solution are tested and compared. The experimental results show that the 
efficiency of our solution is much higher than that of HBase, which provided a 
feasible solution for the sensor data storage and processing of aquaculture. 
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1 Introduction 

With the advancement of IoT (Internet of Things) technologies, the aquaculture 
industry is also facing a transition from the traditional rough pattern to the refined, 
intelligent pattern. The IoT has been widely used in all parts of the aquaculture 
production such as data collection, environmental monitoring, fish fry epidemic 
detection [1]. Large-scale business data such as ammonia nitrogen, temperature, 
dissolved oxygen and pH value, is produced and needs to be processed. When storing 
massive data, the capacity of vertically increasing data nodes is limited, and the 
performance bottleneck will be caused in the processing of massive data [2]. Therefore, 
the distributed cloud storage scheme that dynamically accesses new storage nodes 
through horizontal expansion is an ideal solution. In addition, the heterogeneous and 
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non-structural trend of these IoT data is obvious, and using traditional database 
systems for storage is no longer appropriate. NoSQL stores support dynamic data 
model, which can deal with the variety, complexity and later expansion of data 
acquisition devices in the IoT [3]. 

On the other hand, the real-time requirement of sensor data processing in aquaculture 
is very high. Taking water temperature as an example, the water temperature will 
directly affect the growth and health of fish. Temperature sensors frequently acquire 
measurement data and transmit them to data centers in the form of streams. In data 
centers, real-time or near-real-time applications update the display board and issue 
warnings about changes in water temperature to avoid losses in aquaculture [4]. 
Therefore, based on Flink, MongoDB and Kafka, this paper proposed and implemented 
a high-throughput, low-latency architecture for processing real-time streaming data of 
the IoT of aquaculture. 

2 Background and Related Work 

2.1 Apache Flink 

Many systems generate continuous stream of events. If we can efficiently analyze 
large-scale sensor stream data, we will have a clearer and faster understanding of the 
system. In this context, Apache Flink [5] came into being. Flink is an open source 
stream processing framework that supports distributed, high performance, 
ready-to-use, and accurate streaming applications. Flink not only provides real-time 
computing that supports both high throughput and exactly-once semantics, but also 
provides batch processing. Flink treats batch processing (that is, processing limited 
static data) as a special stream processing, so that batch and stream processing can be 
implemented simultaneously. Its core computational construct is the Flink runtime 
execution engine in Figure 1, which is a distributed system that accepts data flow 
programs and performs fault-tolerant execution on one or more machines. The Flink 
Runtime Execution Engine can run as a YARN (Yet Another Resource Negotiator) 
application on a cluster, on a Mesos cluster, or on a standalone machine. Figure 1 is an 
architectural diagram of Flink. 

Existing experiments show that by avoiding flow processing bottlenecks and 
utilizing Flink's stateful stream processing capability, the throughput can reach about 
30 times of Strom. At the same time, the exactly-once and high availability can be 
guaranteed [6]. Therefore, Flink is chosen as the data processing platform in this 
paper. 
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Fig. 1. The architecture diagram of Apache Flink  

2.2 MongoDB 

MongoDB[7] is a distributed, document-oriented, open source document database. 
MongoDB is the most similar to relational database among non-relational databases. It 
has rich functions and can even use many SQL statements for relational query, etc. 
Moreover, it has a variety of performance advantages of non-relational databases, such 
as convenient deployment, painless expansion and storage without mode. MongoDB 
supports a variety of common development languages, has a number of open source 
MongoDB frameworks, and simplifies data layer operations.Compared with the 
traditional MySQL database, MongoDB is much more efficient than MySQL in 
addition, deletion, selection and other operations[8]. In addition, MongoDB is a fast 
scalable database that can greatly increase the performance of Flink. 

2.3 Kafka 

Apache Kafka [9] is a distributed publish-subscribe messaging system. It can handle a 
large volume of data which enables you to send messages at end-point. Apache Kafka 
is developed at LinkedIn & available as an open source project with Apache Software 
Foundation. In this article, Kafka was chosen as the message broker. It supports Apache 
Flink very well. In addition, it provides precise primary semantics to ensure that each 
record is eventually delivered to its consumer, even in the event of a failure, and that no 
duplication is created in the process [10]. 

2.4 Related Work 

At present, MapReduce programming model and Hadoop architecture are the popular 
processing technologies for big data in aquaculture, but Hadoop is a typical batch 
processing architecture for big data, and cannot meet the real-time requirements for 
streaming data processing [11-13]. In [14], by implementing Lambda architecture, the 
real-time computing platform is combined with the offline batch processing 
mechanism to make the agricultural big data processing framework have both the 
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function of streaming data and the function of historical data mining. But this 
architecture requires two programming of the same business logic in two different 
APIs: one for batch computing and one for streaming computing. For the same business 
problem, there are two code bases, each with different vulnerabilities. Such systems are 
more difficult to maintain. 

In terms of data storage, NoSQL is the mainstream storage scheme of IoT data. In 
[15], through testing and comparing the storage performance and data processing 
performance of MongoDB, HDFS and MySQL, experiments show that MongoDB has 
higher scalability and higher availability, and can store IoT data efficiently. Therefore, 
MongoDB is a feasible sensor data storage scheme. In [16], HBase, which is a 
distributed column-oriented database based on Hadoop file system, is used to store 
stream data. It can also be scaled horizontally like MongoDB. Therefore, this paper 
tested and compared the performance of HBase and MongoDB under the IoT data 
storage scenario. 

In summary, a high throughput, low delay and easy maintenance architecture is 
urgently needed to deal with the stream data generated by sensors. 

3 The Architecture of the Aquaculture Information Monitoring 
System and Implementation 

3.1 Architecture 

According to the characteristics of aquaculture IoT data and considering the key factors 
such as reliability, flexibility, scalability and load balancing, the system can be divided 
into four layers: data collection layer, data processing layer, business logic layer and 
application display layer. Figure 2 shows the whole architecture of the system. 

In the data collection layer, Kafka is a pub-subscribe messaging system. We create 
different topics for different data stream. Data collection layer pushes JSON objects 
of sensor data to corresponding topics. Kafka's ZooKeeper can realize dynamic 
cluster expansion. Once the zookeeper changes, Kafka client can perceive and make 
corresponding adjustments in time. This ensures that when brokers are added or 
removed, they are still automatically load-balanced among themselves. 

In the data processing layer, Flink receives and analyzes data in different topics, 
and analyzes infinite data streams by calling the DataStream API. The stream data 
processing program is implemented with the Java language. The processed data can 
flow to another message queue or be directly updated in the local database by the 
Flink program for historical query. To improve the fault tolerance, we adopt Flink's 
State management mechanism. State is the state of calculation when the stream data is 
saved from one event to the next event, and the calculation state can continue to 
accurately update the state after the failure or interruption. For storing massive 
amounts of sensor data, we use MongoDB for data persistence. 

In the business logic layer, for the data that needs to be displayed in real time, this 
layer constantly obtains the stream data processed by Flink for real-time update. For 
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historical queries, this layer provides various query interfaces for MongoDB database 
tables. Spring is used to manage object dependencies through dependency injection. 
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Fig. 2. The framework of aquaculture system 

The application display layer uses JavaScript, HTML, CSS and JSP to implement 
the front-end interface. When the client makes a request, Tomcat receives the request 
and forwards the request to the DispatcherServlet for processing if it matches the 
mapping path configured by the DispatcherServlet in web.xml. The DispatcherServlet 
is used as the front-end controller for request distribution, and the controller is called by 
the browser request. Controller processes business requests and returns the 
corresponding view page. 

3.2 System Implementation 

At present, aquaculture information monitoring system adopts 30 million sensor data of 
an aquaculture farm to simulate stream data, and Flink is used to realize real-time 
update and historical query function of dashboard sensor, as shown in Fig.3. The green 
part of the line chart indicates that the temperature is in normal value, and the red part 
indicates that the temperature is beyond normal value. By means of visualization [17], 
users can easily see the maximum, minimum and average temperature in different time 
periods. 
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Fig. 3. Sensor real-time data display 

4 Experiments and Discussion 

In order to verify the performance of this storage scheme, the insertion and query 
performance of MongoDB and HBase were tested in different orders of magnitude. In 
order to verify the performance of the storage scheme in this paper, the insert and query 
time of MongoDB and HBase were tested under different orders of magnitude 
scenarios. 

MongoDB and HBase clusters are deployed on four PCs of the same type. The PC’s 
configuration is: Intel(R) Xeon(R) CPU E5645@2.40GHz dual-core 24 CPU, 
Kingston DDR3 1333MHz 8G, 500GB SSD Flash Memory. Operating system are 
Ubuntu 16.04 64-bit and Linux 3.11.0 kernel.MongoDB version is 3.6.3 and HBase 
version is 1.2.6. The CPU utilization of each primary node is monitored by Ganglia. 
4.1 Data insertion performance verification 

The experimental steps are as follows. 
1) 30 million pieces of sensor data are randomly selected from the monitoring 

system of the IoT, and then 3 groups of data are randomly selected from these 
data. The data volumes are 10,000 pieces, 100,000 pieces and 250,000 pieces of 
data respectively. 

2) The data is sent to the Topic through Kafka Producer. The MongoDB cluster with 
4 nodes obtains data from Kafka Broker. 

3) Build a HBase cluster with 4 nodes under the same hardware configuration, and 
get data from the same Kafka Broker in 2). 

4) Record the insertion time and CPU utilization, and repeat the insertion five times 
to get the average. 

The insert performance comparison between MongoDB and HBase is shown in 
Figure 4. 
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Fig. 4. Performance comparison of data insertion between MongoDB and HBase  

It shows that when the data scale is small, the insertion performance of the 
MongoDB cluster and the HBase cluster is close; however, when the data volume is 
100,000 pieces of data, MongoDB cluster data insertion performance is obviously 
better than that of HBase cluster; when the data volume is 250,000, the insert operation 
time of MongoDB cluster data is only 37.04% of that of HBase cluster. Ganglia 
recorded the CPU utilization in the process of data insertion, and the results are as 
follows. 

 
Fig. 5. CPU utilization comparison of data insertion 

It can be seen that with the increase of data quantity, the CPU utilization of 
MongoDB slightly increase, but the change range is not large, and the change of CPU 
utilization of HBase is relatively stable. 
4.2 Data query performance 

The test steps are as follows.  
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1) Respectively, MongoDB cluster and HBase cluster are used to query 10,000, 
100,000 and 250,000 pieces of data from 30 million pieces of data set in 
experiment 4.1.  

2) Record the insertion time and CPU utilization, and repeat the query operation five 
times to get the average. 

 The insert operation performance comparison between MongoDB and HBase is 
shown in Figure 6. 

 
Fig. 6. Performance comparison of data query between MongoDB cluster and HBase cluster 

When the data size is small, the data query performance of MongoDB cluster is close 
to that of HBase cluster, but always lower than that of HBase.With the increase of data 
volume, the query time of HBase increased greatly, while the growth of MongoDB is 
small and far smaller than that of HBase. When the query data volume is 250,000, the 
MongoDB cluster’s data query time is only 2.38% of HBase cluster’s. As a result, when 
the amount of data is large, the query speed of MongoDB is faster. 

Ganglia recorded the CPU utilization in the process of data query, and the results are 
shown in Figure 7. 

 
Fig. 7. CPU utilization comparison of data query 
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With the increase of queries, the CPU utilization of MongoDB and HBase increase 
slowly, and the CPU utilization of MongoDB is significantly higher than that of HBase. 

Through the above two comparative experiments, we can see that when the sensor 
data volume is large, the insertion and query efficiency of MongoDB cluster is much 
higher than that of HBase. Although the CPU utilization is slightly higher than that of 
HBase, it is basically between 10% and 20%. Therefore, in the case of high throughput 
and high concurrency, it is feasible to use MongoDB to store sensor data. 

5 Summary and Outlook 

This paper summarizes the problems encountered in the data processing of IoT sensor 
in aquaculture, namely the massive, non-structural and real-time processing, and 
proposes and implements the aquaculture monitoring system based on Flink, Kafka and 
MongoDB. Taking sensor data acquired in aquaculture monitoring as experimental 
data, the data insertion and query performance of MongoDB and HBase were tested 
and compared. The experimental results show that MongoDB is much more efficient 
than HBase in storing and querying massive sensor data, which can meet the storage 
and management requirements of massive and real-time data of the aquaculture IoT. At 
the same time, MongoDB supports dynamic data model, making the system easier to 
expand. 

The subsequent research will focus on Flink, which combines distributed computing 
and machine learning technology to calculate the real-time data of the IoT, providing 
real-time disaster warning and decision-making services for aquaculture. 
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