
FogFlow - computation organization for
heterogeneous Fog computing environments

Joanna Sendorek1, Tomasz Szydlo1, Mateusz Windak1, and Robert
Brzoza-Woch1

AGH University of Science and Technology,
Department of Computer Science, Krakow, Poland

Abstract. With the arising amounts of devices and data that Internet
of Things systems are processing nowadays, solutions for computational
applications are in high demand. Many concepts targeting more efficient
data processing are arising and among them edge and fog computing
are the ones gaining significant interest since they reduce cloud load. In
consequence Internet of Things systems are becoming more and more
diverse in terms of architecture. In this paper we present FogFlow -
model and execution environment allowing for organization of data-flow
applications to be run on the heterogeneous environments. We propose
unified interface for data-flow creation, graph model and we evaluate our
concept in the use case of production line model that mimic real-world
factory scenario.

Keywords: IoT, fog computing, stream processing, data-flow graphs

1 Introduction

Internet of Things (IoT) is becoming more and more present in our reality with
the development of intelligent buildings, smart cities[18] or mobile communi-
cations[2]. We are being surrounded by increasing number of electronic devices
including our everyday objects, like watches or mobiles, and whole systems man-
aging our environment, such as traffic monitoring or intelligent surveillance. Ma-
jority of those devices is able to be network-connected and this number is still
growing with hardware advancements causing increasing capabilities of simplest
appliances. This can be observed especially in the sensors area which gives foun-
dations for sensor networks solutions and architectures[1]. All of those devices
are potential sources of data which may be shared or gathered thanks to the
network access.

Constantly growing amount of real-time data has been causing a shift towards
data-orientation in the systems architectures as well as programming paradigms
over the last few years[9]. Even with computing clouds becoming recently more
developed and mature, processing data we have access to is still posing chal-
lenges. Although cloud solutions provide a way to achieve capabilities required
to handle significant amounts of data, they bring in response delays, coming from

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_49

https://dx.doi.org/10.1007/978-3-030-22744-9_49

2 Joanna Sendorek et al.

communication overhead, which are often unacceptable in the real-time appli-
cations. Therefore, current research in IoT domain is often focused on finding
a balance between responsiveness and robustness, resulting for instance in edge
computing[8] or fog computing[3] concepts. Mentioned ideas assume that some
of the computations can be moved closer to the data sources and in this scenario
cloud infrastructure may be responsible only for heavy analytic and global in-
formation handling. Also, it is beneficial to move computations responsible for
local decision making closer to the devices as it reduces response time. In order
to fully make use of available resources, cloud, edge and fog computing should
be treated as complimentary ones since each of them is most advantageous in
different aspect of whole system[10].

In the area of cloud and data processing a lot have been done recently
with multiple mature analytic solutions such as Apache Spark1, Google Cloud
Dataflow2 or Apache Flink3. However, since cloud and fog should be inter-
operating as mentioned, it is desirable to have a generic development model
for data-flow applications enabling to span fog and cloud[4]. Such a concept, but
limited only to multiple cloud solutions, is realized by Apache Beam4 - unified
model which enable defining data streams and running them on different back-
ends. In this paper, we take the idea of unification further and propose FogFlow
- the model and engine enabling defining data processing pipelines able to be
decomposed into the sub-pipelines that span fog or edge and the cloud. We base
our concept on graph model, commonly used in data-flow applications[16], [13].
Scientific contribution of this paper can be summarized as follows: (i) we define
unified graph-based model for abstract definition of data processing applications;
(ii) we discuss methods of decomposing and translating the graph model into
the set of processing nodes appropriate for given infrastructure; (iii) we propose
methodology and provide example of design and implementation data-processing
application able to be run in heterogeneous IoT environments.

Organization of the paper is as follows. Section 2 describes the related work
and section 3 discuses FogFlow - its components, model and implementation.
Section 4 describes the evaluation, while section 5 concludes the paper.

2 Related work

To our best knowledge FogFlow, as the model aiming at unifying data process-
ing applications definition and enabling their execution in heterogeneous envi-
ronments, is a novel solution bridging the gap of existing concepts. However,
while developing FogFlow we relied on current research in the area of organizing
modern applications centred around IoT data processing.

Since many of nowadays systems are focused on data processing, the data-
flow paradigm is adopted altogether with IoT systems in many current works

1 spark.apache.org access for 15.03.19
2 cloud.google.com/dataflow/ access for 15.03.19
3 flink.apache.org access for 15.03.19
4 https://beam.apache.org/get-started/beam-overview/ access for 02.02.2019

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_49

https://dx.doi.org/10.1007/978-3-030-22744-9_49

FogFlow - computation organization for Fog environments 3

and research. For example, in [7] authors describe scalable IoT framework to
design logical data-flow using virtual sensors. In this solution, operators for data
processing are defined and then processed in the logical data-flow. The whole
modelling is based on the graph that is being executed in the proper topological
order. Data-flow architecture is also commonly used for application design - in
[5] author proposes data-flow architecture for smart city applications. In this
solution operations can manipulate data coming from different flows.

The necessity for designing and managing strategies for IoT services place-
ment dedicated for IoT and Fog computing has been acknowledged lately as
the natural consequence of heterogeneity in the IoT environments. Since com-
ponents of both IoT and Fog system infrastructures are often highly distributed
and they vary in the context of resources availability and computing capabilities,
efficient resource management strategies have to be implemented in order to max-
imize whole system response while minimizing overall solution cost and latency.
IFogSim [6] is a simulator for IoT and fog environments which enable assessment
of system efficiency due to the chosen metrics, such as energy consumption, net-
work latency and operational cost. IFogSim allows for system modelling and
evaluation of system focusing on resource management techniques. It is worth
noting that IFogSim uses graph model as the system representation and makes
usage of typical graph algorithm, Floyd-Warshall for all shortest path problem,
in order to carry out data transmission simulation. In very recent work [11] au-
thors present an extension to iFogSim allowing for the design of data placement
strategies based on ’divide and conquer’ approach. There are other methods
such as [12], where authors propose a strategy of data placement in fog infras-
tructure and it is based on graph partitioning. They use graph as the model of
infrastructure with edges standing for data-flows numbers passing between the
nodes.

The concept similar to the one presented in the paper is the Distributed
Dataflow (DDF) - the programming model described in [4] which aims at being
used with infrastructures of both fog an cloud. DDF framework is based on the
Node-RED5 tool, which allows for creating high-level application definition con-
structed as a graph. In a similar way to FogFlow application parts can be placed
on different elements of the infrastructure, but the same execution environment
(NodeRed) is required on all of the devices. In contrast to that, FogFlow enables
multiple execution environment and this is achieved, among all, via source code
generation.

3 FogFlow structure

We propose the FogFlow model and execution environment, which enables the
design of applications able to be decomposed onto heterogeneous IoT environ-
ments according to the chosen decomposition schema. We achieve this flexibility
of running applications in the multiple environments by abstracting out the

5 https://nodered.org/

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_49

https://dx.doi.org/10.1007/978-3-030-22744-9_49

4 Joanna Sendorek et al.

application definition from its architecture and the target implementation. In
order to provide one unambiguous, well-defined model of computations, we rely
on graph representation. We aim at fulfilling the following requirements for data-
driven IoT applications:

1. the application definition should be infrastructure-independent and contain
only logic of data processing;

2. execution of the application should be possible on different set of devices.

Those requirements are able to be fulfilled with the assumption that each
data-processing step is stateless and all information required for further pro-
cessing is contained in the messages passed with data. Independence between
application definition and its execution is achieved by three-layered application
model corresponding with three-layered module architecture. Fig 1 depicts con-
ceptual diagram of FogFlow - both its architecture and application model. First
and most high-level layer of FogFlow is FogFlow API, which enables creating
application definition. Our API is organized in the functional style, enabling for
creation of data processing pipeline reflecting successive steps. Definition created
is then being transformed into data-flow graph representation managed by the
next layer - graph module. Core function of using graphs as the intermediate
application state is to provide one, unambiguous model which can be used in
the further processing. In the module discussed the data-flow graphs are fetched
into the form appropriate for the modification. This term includes both ad-
justments made to remove ambiguities introduced by user in the application
definition and those aiming at decomposing graph as preparation for multiple
devices execution. The last phase is translation happening in the execution
module which results in executables ready to be run on the provided devices.
The same data-flow definition is able to be run in the chosen environment via
appropriate modifications in the graph module and translation preparing
graphs to be executed.

Fig. 1: Conceptual diagram of FogFlow

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_49

https://dx.doi.org/10.1007/978-3-030-22744-9_49

FogFlow - computation organization for Fog environments 5

3.1 FogFlow API

FogFlow API is the part of FogFlow enabling for creation of data processing
pipelines in the functional style. There are two main entities defined in the API:

1. Flow - representing the whole data processing pipeline;
2. StreamData - representing data stream containing data of the specified type

at the given state of pipeline.

We decided upon using Java 8 for FogFlow API implementation. It enables
type-checking at compile time and ensuring that consecutive data processing
steps are valid. Table 1 presents list of methods defined for each of the entities
mentioned.

Table 1: FogFlow API methods.
StreamData<T> Flow

type name type name

StreamData<U> map void setUpEnvironment

StreamData<U>
aggregateOnCount-
SlidingWindow

void executeFlow

StreamData<U>
aggregateOnCount-
BatchWindow

StreamData<T> createStreamEntry

List<StreamData<T>> splitStream StreamData<T> createAsStreamsJoin
StreamData<T> filter
void sink

3.2 Data-flow graph representation

In the FogFlow, data-flow is represented as a graph, where nodes correspond to
processing functions while the vertices represent the flow of the messages be-
tween functions. The aforementioned FogFlow API is used to programmatically
construct the data-flow graph representation. Based on the number of incoming
and out-coming edges, the following types of graph nodes can be described:

– One-to-one nodes - those are nodes corresponding with processing functions
able to modify particular data stream;

– One-to-many nodes, also called split nodes - such nodes can execute split-
ting the incoming data stream into a few, based on the defined condition;

– Many-to-one nodes, also called join nodes - those are able to reverse action
of split by merging few data streams into one.

– Zero-to-one nodes, also called sources - entries for data streams;
– One-to-zero nodes, also called sinks - nodes representing termination of

data processing.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_49

https://dx.doi.org/10.1007/978-3-030-22744-9_49

6 Joanna Sendorek et al.

The described differentiation requires additional comment regarding split
and join nodes. First of all, multiple out-coming edges may occur implicitly when
user calls multiple one-to-one processing functions on particular stream therefore
creating multiple one-to-one nodes. The difference between this situation and
application of split node is that in the first case, all created nodes are assigned
same copy of the stream as the incoming edge while the usage of split node
is inevitably related with creating different data streams being substream
of the initial one. Second issue worth noting is that join nodes are the only
ones that enable multiple incoming edges and in consequence those are the nodes
responsible for the whole graph being directed acyclic graph and not a tree

in particular. From the perspective of computation results equivalence, joining
streams and next creating one-to-one node corresponds to multiple one-to-one
nodes being created for each of join terms. However, such a solution would be
both less intuitive for user and less effective to evaluate.

Taking into account, the specific data processing that the node can carry out,
we propose the following types of intermediate vertices gathered in table 2.

Table 2: Types of graph nodes and their representation
Node In-edges Out-edges Symbol

split 1 mutiple

join multiple 1

source 0 1

sink 1 0

Node In-edges Out-edges Symbol

window 1 1

map 1 1

filter 1 1

3.3 Graph modifications

As discussed previously, the choice of representing consecutive data-flow trans-
formations via graphs has been driven, among others, by the convenience of
adapting the whole graph analysis and algorithms to structure computations
efficiently. Treating each transformation of data as a separate graph node allows
for placing them on different devices according to the acquired policy. Moreover,
graph structure allow for straightforward simplifications with tree-like balancing,
pruning or path reductions.

In this section, we present two examples illustrating decomposition onto two
devices and simple pruning. Figure 2 depicts fragment of data-flow consisting
initially of four nodes: map and split node being source for filter and data sink.
The most basic pruning algorithm used in FogFlow is described by the pseudo-
code 1 and it removes all of the branches from the graph that are not finished
by a sink node. In the example, the upper-side branch of split in unused since
it ends in the filter node. Therefore it is removed at this state of modification.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_49

https://dx.doi.org/10.1007/978-3-030-22744-9_49

FogFlow - computation organization for Fog environments 7

Fig. 2: Graph prunning
Fig. 3: Decomposition

Since the sink node on the bottom side of split has been assigned only part of
the data and now this is the only successor of the split, in order to maintain
unambiguous description, the split node should be now converted to filter node.
The graph after the pruning is equivalent to the one before in the sense that it
will give the same data transformation results. Nodes not participating directly
in the pruning (coloured in white) remain unchanged. The question may arise
when pruning will be beneficial in the practical sense. The issue with an API
styled in the functional way is that even though it is intuitive to use, it lacks
mechanisms imposing ambiguity. On the contrary, the graph description allows
for detecting any redundancies and reducing graph to the concise form. Apart
from concept illustrated by the example, other possible ways for graph data-
flow simplification would be: analyses of parallel edges, avoiding duplicating
vertices or path reduction. All of the mentioned modifications are valid under
the assumption that nodes are stateless as mentioned earlier.

Algorithm 1 Tree pruning algorithm.

1: function Prune(G)
2: usedNodes← ∅
3: for graphNode in G.V do
4: if graphNode is sink then
5: usedNodes← usedNodes ∪ graphNode

6: for sinkNode in usedNodes do
7: usedNodes← usedNodes ∪ ancestors of sinkNode

8: unusedV ertices← G.V \ usedNodes
9: return unusedV ertices

Figure 3 illustrates decomposition of the graph fragment onto two devices.
Flow fragment consists of three nodes being structured as one pipeline. Addi-
tionally, each of the nodes has been assigned to the one the two available devices
- dark nodes to one of the devices (let it be called device A) and white nodes
to the other (device B). The choice of exact algorithm or policy used for node

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_49

https://dx.doi.org/10.1007/978-3-030-22744-9_49

8 Joanna Sendorek et al.

tagging and device assignment is the whole broad topic and out of scope of this
paper, but there are a few approaches we consider:

– one of the algorithms described in 2 may be adopted;
– dynamic system analysis may be conducted in order to determine the devices

usage and balancing may be implemented;
– heuristic aiming at moving majority of processing as close to data source as

possible at each processing phase may be used - we discussed it in [14].

Regardless of the approach taken, in the example the nodes were tagged in a way
resulting in the window and succeeding sink node being to be moved onto device
B, while assigning all of the rest to the device A. The decomposition onto two
devices in the example is crossing one edge - the one connecting map with the
window node. Algorithm 2 describing the process of decomposition on the given
edge. Since the effect of decomposition should be two sub-graphs - representing
two independent data-flows able to be run on separated devices, this edge is
being removed. In order to maintain valid graph structure and provide a way
to pass data from device A to device B, two new nodes are inserted into graph:
sink node on device A and corresponding source node on device B. The exact
implementation of those so-called communication nodes depends on the devices
and the established protocol, but it does not affect the decomposition itself.

Algorithm 2 Decomposition on edge algorithm.

1: function Decompose(G, edge, deviceA, deviceB)
2: sourceV ertex← edge.source
3: targetV ertex← edge.target
4: newSourceV ertex← newSource(deviceB)
5: newSinkV ertex← newSink(deviceA)
6: G.E ← G.E \ edge
7: G.V ← G.V ∪ {newSourceV ertex, newSinkV ertex}
8: G.E ← G.E ∪ {E(sourceV ertex, newSinkV ertex),

E(targetV ertex, newSourceV ertex)}

3.4 Execution module and implementation

Execution module is responsible for translating data-flow graphs into executa-
bles ready for running on the given devices set. Up to this point, we have used
term ’devices set’ to describe multiple possible infrastructures that may be ex-
istent in the IoT system. However, in order to translate data-flow graphs into
executables for heterogeneous target environments, we distinguish three types
of infrastructure summarized in the table 3. At current state of work, FogFlow
provides execution with one runtime per type - further development regarding
this area is described in 5. While implementation details are out of scope for this

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_49

https://dx.doi.org/10.1007/978-3-030-22744-9_49

FogFlow - computation organization for Fog environments 9

Table 3: Types of infrastructure distinguished for FogFlow
Infrastructure Description Runtime

cloud
features

- focus on high-availability
- scalability,
- possible contenerization

Apache
Flink

use
cases

- runnning resource-demanding algorithms
- correlating data from different sources
- data persistence

edge
features

- ability to run local analytics,
- limited resources and small footprint,
- having application processors

Apache
Edgent

use
cases

- reducing data sent for further analytics
- local decision making and classification
- immediate events reaction

MCUs
features

- resource constrainted embedded
microcontrollers,
- impossibility of porting high-level libraries

C based

use
cases

- acquiring sensor-data
- basic preprocessing and reformatting

paper in which we focus on concept and methodology, we will briefly describe
execution module structure.

Cloud environments are the ones that are characterized by resource capabili-
ties and global knowledge of the whole environment. Therefore, application parts
best suited to be run in the cloud are the ones that correlate data from multiple
sources or are highly demanding. In FogFlow we currently provide support for
execution with Apache Flink framework to run such application components.
We chose Flink because of its efficiency (in-memory speed) and interoperability
with majority of commonly used cluster environments. On the contrary to cloud,
edge devices lack resources required to run distributed computations, but are
able to execute local analysis. We distinguish this group of devices by presence
of application processors allowing for high-level programs execution. Paramount
example of edge devices would be gateways passing data from lower-level devices
up to the cloud. They can be used to process and filter data streams and con-
duct non complex local analysis leading to rapid system reaction. For edge, we
decided upon using Apache Edgent6 runtime to execute data-flow graphs. The
lowest-level of infrastructure consitues of MCU’s - resources constrained embed-
ded microcontrollers. They lack ability to port any high-level libraries and using
two Apache technologies mentioned would be impossible. Data-flow parts placed
on such devices could contain data-gathering logic and basic preprocessing such
as changing format or cutting off unnecessary information. Data-flow may be
able to be executed with C based runtime.

Execution module is divided into submodules (implementation providers)
corresponding with the three types of runtime. Each submodule contains code

6 edgent.apache.org access for 15.03.2019

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_49

https://dx.doi.org/10.1007/978-3-030-22744-9_49

10 Joanna Sendorek et al.

that translates data-flow graph into the given target executable. When trans-
lating, we rely on the source code generation approach giving promising results
when small footprint processing running on the edge is concerned [15]. Both
Flink and Edgent rely on the slightly different graph models, are based on Java
programming language and have application programming interfaces allowing
for basic functional-style operations on data streams. With FogFlow it is pos-
sible to translate data-flow graphs crated with FogFlow API into their source
code in following steps:

1. data-flow graph and chosen implementation provider are passed to the exe-
cuting module;

2. data-flow graph is being translated into source code in the topological order
using provider implementation of FogFlow API

3. all of the external objects such as custom sources or sinks are serialized and
attached to the code;

4. proper java archive file is created including only dependencies of FogFlow
API and chosen implementation provider.

Translation targeting C code is far more complex and lower-level issue, with
many aspects needed to be taken into account: inter-language typing system,
objects serialization between technologies, constraints of C language or threads
execution in C. We do not not discuss this broad and hardware related topic
in the scope of this paper and our use case does not include data-flow graph
execution on MCU’s.

4 Use case and evaluation

In this section we present an example usage of FogFlow to organize computations
for vibrations detection of the working assembly line in our laboratory. Schema
of our environment has been depicted in figure 4. The goal of the presented use
case is to measure vibrations generated by the working assembly line. The mi-
cromachined microelectromechanical system (MEMS) accelerometer is gathering
three dimensional data allowing for vibration measurement and it is read by
connected embedded device. For each 128 samples gathered in the batch win-

dows we calculate Root Mean Square (RMS)[17] defined as

√∑j
i=j−γ x

2
i

γ , where

γ states for the window size and in the case described equals to 128. In the local
network we also have Raspberry Pi gateway. Another component of environment
is the private cloud with database accessible from both the assembly line and
gateway.

Results of the vibration analysis are then written to the database in the cloud
for further analysis. Processing pipeline is defined as follows:

1. data is received from the device with accelerometer using MQTT protocol;
2. data is parsed - only the component aligned with x axis is being extracted

from three dimensional data and interpreted as floating-point number;

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_49

https://dx.doi.org/10.1007/978-3-030-22744-9_49

FogFlow - computation organization for Fog environments 11

Fig. 4: Laboratory environment schema

3. data is gathered in 128-elements batch windows and for each window RMS
is calculated;

4. results are written to the database.

Listing 1.1 presents application definition corresponding with the described
pipeline created with FogFlow API.

f l ow . setUpEnvironment () ;
StreamData<Str ing> rece ivedMessage = f low .

createStreamEntry (new MqttExternalReceiver ()) ;
StreamData<Double> x = rece ivedMessage . map(new

MessageParser ()) ;
StreamData<Double> rms = x . aggregateOnCountBatchWindow

(128 , new RmsLambda()) ;
rms . s ink (new DatabaseWriter ()) ;
f low . executeFlow () ;

Listing 1.1: Assembly line data processing pipeline in FogFlow API.

Created application definition is then transformed into data-flow graph. At
this point graph nodes are assigned to the particular devices in our laboratory
and then graph is decomposed accordingly. Given the infrastructure described,
we decompose data processing application with the two schemas:

1. cloud-based data processing - where all of the data from the accelerometer
is received in the cloud and processed there;

2. cloud database operations with edge computing pre-processing - where all
of the data is received on gateway, pre-processed there and send to cloud for
further steps.

In the scenario 1, the whole pipeline is aimed at executing with Apache Flink
and in scenario 2, the underlying data-flow graph is decomposed into two sub-
graphs. This process is illustrated in figure 5. With cloud based data processing,
Apache Flink is used for the whole execution. One thing requires discussion at
this point - the impact of possible number of production lines on the processing

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_49

https://dx.doi.org/10.1007/978-3-030-22744-9_49

12 Joanna Sendorek et al.

efficiency. In such a simple scenario, we propose creating separate pipeline for
each of the lines. Therefore, execution of all of them in one environment, such as
Apache Flink, is a embarrassingly parallel problem with only potential bottleneck
being database writing. Since cloud allows for high distribution of computations,
significant processing capabilities may be achieved. However, major drawback of
this scenario is that of all the data from accelerometer is sent to the cloud
generating great amount of network traffic leading to unnecessary delays and
greater costs.

Fig. 5: Data-flow graph decomposition with two scenarios.

We measured data traffic which is being processed at different stages of data-
flow. First of all, accelerometer is sending data as fast as it gets consecutive mea-
surements, which gives approximately 950 messages per second (msg/s) which
with the MQTT protocol for communication gives a traffic of 149 596 B/s. After
batch window reduction is applied this is reduced to approximately 584 B/s.
In the second scenario, reduction of data in the batch windows is conducted by
Raspberry Pi gateway with the Apache Edgent.

Table 4: Processing capabilities for Apache Edgent
simple data source MQTT data source

Intel Core i5 2 cores 462 929 msg
s

41523 msg
s

Raspberry Pi 20 145 msg
s

9861 msg
s

We conducted artificial tests of Apache Edgent processing capability where
we replaced MQTT data source with the data spawner. In table 4 we gathered
results obtained both with MQTT source and spawner in different setups. It is
worth noting that even when running on Raspberry Pi it can process 9861 msg/s
with the MQTT client as the data source. That means that in this particular
setup the amount of data being processed is limited only by sending speed of
the device with MEMS accelerometer, which is determined by communication
protocol. It demonstrates that even devices with relatively constrained resources
are able to significantly reduce amount of data processed in the cloud. FogFlow
enables their seamless integration with whole IoT system infrastructure.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_49

https://dx.doi.org/10.1007/978-3-030-22744-9_49

FogFlow - computation organization for Fog environments 13

5 Summary and future work

In this paper we have presented FogFlow which allows for defining data pro-
cessing applications able to be run with different technologies with the unified
interface. We have described concept of modelling such applications and decom-
posing them onto given set of devices. At current state of work we have focused
on designing FogFlow and developing end-to-end process for applications design
and execution. Among the goals that are our current priority there is extending
existing implementation of execution module with C-based one. We plan also to
create toolkit of lambdas and data providers/sinks in order to facilitate FogFlow
API usage. At the moment we are also working on developing more sophisticated
ways for graph modifications and decomposition.

Acknowledgment

The research presented in this paper was supported by the National Centre
for Research and Development (NCBiR) under Grant No. LIDER/15/0144 /L-
7/15/NCBR/2016.

References

1. Akyildiz, I.F., , Sankarasubramaniam, Y., Cayirci, E.: A survey on sen-
sor networks. IEEE Communications Magazine 40(8), 102–114 (Aug 2002).
https://doi.org/10.1109/MCOM.2002.1024422

2. Aloi, G., Caliciuri, G., Fortino, G., Gravina, R., Pace, P., Russo, W.,
Savaglio, C.: Enabling iot interoperability through opportunistic smartphone-
based mobile gateways. Journal of Network and Computer Applications
81, 74 – 84 (2017). https://doi.org/https://doi.org/10.1016/j.jnca.2016.10.013,
http://www.sciencedirect.com/science/article/pii/S1084804516302405

3. Bellavista, P., Berrocal, J., Corradi, A., Das, S.K., Foschini, L., Zanni, A.: A sur-
vey on fog computing for the internet of things. Pervasive and Mobile Computing
52, 71 – 99 (2019). https://doi.org/https://doi.org/10.1016/j.pmcj.2018.12.007,
http://www.sciencedirect.com/science/article/pii/S1574119218301111

4. Giang, N.K., Blackstock, M., Lea, R., Leung, V.C.M.: Developing IoT appli-
cations in the Fog: A Distributed Dataflow approach. In: 2015 5th Interna-
tional Conference on the Internet of Things (IOT). pp. 155–162 (Oct 2015).
https://doi.org/10.1109/IOT.2015.7356560

5. Grgoire, J.: A data flow architecture for smart city applications. In: 2018 21st
Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN).
pp. 1–5 (Feb 2018). https://doi.org/10.1109/ICIN.2018.8401639

6. Gupta, H., Vahid Dastjerdi, A., Ghosh, S.K., Buyya, R.: ifogsim: A toolkit
for modeling and simulation of resource management techniques in the in-
ternet of things, edge and fog computing environments. Software: Prac-
tice and Experience 47(9), 1275–1296 (2017). https://doi.org/10.1002/spe.2509,
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2509

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_49

https://dx.doi.org/10.1007/978-3-030-22744-9_49

14 Joanna Sendorek et al.

7. Kim-Hung, L., Datta, S.K., Bonnet, C., Hamon, F., Boudonne, A.: A scal-
able iot framework to design logical data flow using virtual sensor. In:
2017 IEEE 13th International Conference on Wireless and Mobile Com-
puting, Networking and Communications (WiMob). pp. 1–7 (Oct 2017).
https://doi.org/10.1109/WiMOB.2017.8115775

8. Mao, Y., You, C., Zhang, J., Huang, K., Letaief, K.B.: A survey on
mobile edge computing: The communication perspective. IEEE Com-
munications Surveys Tutorials 19(4), 2322–2358 (Fourthquarter 2017).
https://doi.org/10.1109/COMST.2017.2745201

9. Milutinovic, V., Kotlar, M., Stojanovic, M., Dundic, I., Trifunovic, N., Babovic,
Z.: DataFlow Systems: From Their Origins to Future Applications in Data An-
alytics, Deep Learning, and the Internet of Things, pp. 127–148. Springer Inter-
national Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-66125-4 5,
https://doi.org/10.1007/978-3-319-66125-4 5

10. Munir, A., Kansakar, P., Khan, S.U.: Ifciot: Integrated fog cloud iot: A novel ar-
chitectural paradigm for the future internet of things. IEEE Consumer Electronics
Magazine 6(3), 74–82 (July 2017). https://doi.org/10.1109/MCE.2017.2684981

11. Naas, M.I., Boukhobza, J., Parvedy, P.R., Lemarchand, L.: An extension to ifogsim
to enable the design of data placement strategies. In: 2018 IEEE 2nd Interna-
tional Conference on Fog and Edge Computing (ICFEC). pp. 1–8 (May 2018).
https://doi.org/10.1109/CFEC.2018.8358724

12. NAAS, M.I., Lemarchand, L., Boukhobza, J., Raipin, P.: A graph
partitioning-based heuristic for runtime iot data placement strate-
gies in a fog infrastructure. In: Proceedings of the 33rd Annual ACM
Symposium on Applied Computing. pp. 767–774. SAC ’18, ACM,
New York, NY, USA (2018). https://doi.org/10.1145/3167132.3167217,
http://doi.acm.org/10.1145/3167132.3167217

13. Sena, A.C., Vaz, E.S., Frana, F.M.G., Marzulo, L.A.J., Alves, T.A.O.: Graph tem-
plates for dataflow programming. In: 2015 International Symposium on Computer
Architecture and High Performance Computing Workshop (SBAC-PADW). pp.
91–96 (Oct 2015). https://doi.org/10.1109/SBAC-PADW.2015.20

14. Szydlo, T., Brzoza-Woch, R., Sendorek, J., Windak, M., Gniady, C.: Flow-based
programming for iot leveraging fog computing. In: 2017 IEEE 26th International
Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE). pp. 74–79 (June 2017). https://doi.org/10.1109/WETICE.2017.17

15. Szydlo, T., Sendorek, J., Brzoza-Woch, R.: Enabling machine learning on resource
constrained devices by source code generation of the learned models. In: Shi, Y.,
Fu, H., Tian, Y., Krzhizhanovskaya, V.V., Lees, M.H., Dongarra, J., Sloot, P.M.A.
(eds.) Computational Science – ICCS 2018. pp. 682–694. Springer International
Publishing, Cham (2018)

16. Teranishi, Y., Kimata, T., Yamanaka, H., Kawai, E., Harai, H.: Dynamic data flow
processing in edge computing environments. In: 2017 IEEE 41st Annual Computer
Software and Applications Conference (COMPSAC). vol. 1, pp. 935–944 (July
2017). https://doi.org/10.1109/COMPSAC.2017.113

17. Trkay, S., Akay, H.: A study of random vibration characteristics of
the quarter-car model. Journal of Sound and Vibration 282(1), 111
– 124 (2005). https://doi.org/https://doi.org/10.1016/j.jsv.2004.02.049,
http://www.sciencedirect.com/science/article/pii/S0022460X04002974

18. Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of things
for smart cities. IEEE Internet of Things Journal 1(1), 22–32 (Feb 2014).
https://doi.org/10.1109/JIOT.2014.2306328

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_49

https://dx.doi.org/10.1007/978-3-030-22744-9_49

