
Time-dependent link travel time approximation for large-
scale dynamic traffic simulations

Genaro Peque, Jr.1 Hiro Harada2 and Takamasa Iryo3

1,2,3Kobe University, Department of Civil Engineering, Japan
1gpequejr@panda.kobe-u.ac.jp

2171t139t@stu.kobe-u.ac.jp
3iryo@kobe-u.ac.jp

Abstract. Large-scale dynamic traffic simulations generate a sizeable amount of
raw data that needs to be managed for analysis. Typically, big data reduction
techniques are used to decrease redundant, inconsistent and noisy data as these
are perceived to be more useful than the raw data itself. However, these methods
are normally performed independently so it wouldn’t compete with the simula-
tion’s computational and memory resources.

In this paper, we propose a data reduction technique that will be integrated
into a simulation process and executed numerous times. Our interest is in reduc-
ing the size of each link’s time-dependent travel time data in a large-scale dy-
namic traffic simulation. The objective is to approximate the time-dependent link
travel times along the 𝑦 − axis to reduce memory consumption while insignifi-
cantly affecting the simulation results. An important aspect of the algorithm is its
capability to restrict the maximum absolute error bound which avoids theoreti-
cally inconsistent results which may not have been accounted for by the dynamic
traffic simulation model. One major advantage of the algorithm is its efficiency’s
independence from the input data complexity such as the number of sampled data
points, sampled data’s shape and irregularity of sampling intervals. Using a
10x10 grid network with variable time-dependent link travel time data complex-
ities and absolute error bounds, the dynamic traffic simulation results show that
the algorithm achieves around 80%−99% of link travel time data reduction using
a small amount of computational resource.

Keywords: large-scale dynamic traffic simulation, piecewise linear approxima-
tion, route planning, parallel computing.

1 Introduction

1.1 Background

Large-scale dynamic traffic simulations are becoming widespread partly due to the ex-
ponential growth of the computer's processing power, memory capacity and parallel-
ization capability. Along with it is the increasing need to manage the sizeable amount
of raw data that it generates. Typically, big data reduction techniques are used to de-
crease redundant, inconsistent and noisy data as it is perceived to be more useful than

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_44

https://dx.doi.org/10.1007/978-3-030-22744-9_44

2

the raw data itself. However, these methods are normally performed independently so
it wouldn’t compete with the simulation’s computational and memory resources. A ma-
jor challenge is when data reduction is integrated into the simulation process that is
executed numerous times since it needs to be simple, fast and efficient.

In this paper, we are interested in reducing the size of each link’s time-dependent
travel time data at each iteration of a large-scale dynamic traffic simulation. The simu-
lation is planned to be executed using a parallel computer with a distributed memory
architecture. Large-scale dynamic traffic simulations are normally conducted on mas-
sive networks with substantial number of links (e.g. a road network of Western Europe
has 42.6 million links) [1, 2]. Since travel time is a function of a single variable that is
strictly monotone (time), the problem can be defined as a piecewise linear approxima-
tion of the time-dependent link travel time data. There are already many existing algo-
rithms developed for this problem but most are interested in retaining the data’s signif-
icant features. Moreover, the space and time complexities of these algorithms are usu-
ally dependent on the input complexity such as the number of sampled data points,
sample data’s shape and irregularity of sampling intervals.

The piecewise linear approximation of polygons has several applications in various
fields such as pattern recognition [3], motion planning in robotics [4], vector graphics
and cartographic generalization [5], among others. The goal is to reduce the size or
complexity of a given data as much as possible while retaining its significant features.
One of the widely known piecewise linear approximation algorithms that have been
studied in various fields is the Ramer-Douglas-Peucker algorithm [6, 7, 8, 9]. This al-
gorithm decimates a curve composed of line segments into a similar curve with fewer
points. The major advantage of this algorithm is its efficiency’s independence from the
input data complexity. However, the algorithm is still computationally inefficient for
large-scale simulations and its error criterion isn’t well-suited for the reduction of time-
dependent link travel time data since it isn’t possible to restrict the absolute error bound.
This makes it inaccurate and inconsistent when applied to multiple links with different
input complexities.

Piecewise linear approximation algorithms usually rely on error bounds or complex-
ity minimization that further depends on the context of the application. In this paper,
the application lies in the context of link travel time approximation for time-dependent
route planning in large-scale dynamic traffic simulations. Increasing amounts of time-
dependent travel time data are usually generated as the number of iterations or the
length of the simulation time period of the traffic simulation increases. Depending on
the design of the traffic simulator [10, 11, 12], some of the data may be, among other
things, redundantly generated, insignificantly noisy and/or slowly changing (Fig. 1).
All of which can be approximated according to an absolute error bound without signif-
icantly affecting the simulation results. Thus, an absolute error bound restriction capa-
bility is an integral part of the approximation method in order to maintain an accurate
and consistent simulation result. Typically, travel time data is generated by a time-de-
pendent piecewise linear function that is strictly monotone in time. This implies that
time-dependent link travel time approximation is a special case of the piecewise linear
approximation of polygons; the piecewise linear curve is an open polyline and a func-
tion of one variable that is strictly increasing.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_44

https://dx.doi.org/10.1007/978-3-030-22744-9_44

3

Fig. 1. Some types of data that can be approximated.

There are several papers focusing on the approximation of piecewise linear functions
that might be used for large-scale dynamic traffic simulations with absolute error re-
striction capabilities [13, 14, 15]. For example, in Tomek [13] two simple heuristic
algorithms were proposed for functions of one variable. Both algorithms used a limit
on the absolute error values. The first algorithm was fast and gave satisfactory results
for sufficiently smooth functions while the second algorithm was slower but gave better
approximations for less well-behaved functions. In Imai and Iri [14], using the idea of
Suri [16], they developed an algorithm for the edge-visibility problem [17] which pro-
duces an optimal solution for a piecewise linear function of one variable that is strictly
monotone. The idea of the algorithm is to compute a minimum link path through a
tunnel using a light source covering the entry of a tunnel. The tunnel is produced by an
absolute upper and lower bound on the function given by an exogenously supplied ab-
solute error value. Then, a light source illuminates a part of the tunnel and divides it
into several invisible parts and a visible part. The intersection of boundaries of an in-
visible part and a visible part containing the exit of the tunnel is called a window where
the first point of the approximated function lies. From the window, another light source
illuminates part of the tunnel which creates another window. This process continues
until the other end of the tunnel is reached. A major advantage of this algorithm is its
𝑂(𝑁) complexity where 𝑁 is the number of points representing the piecewise linear
curve.

In the transportation context, Neubauer [15] applied Imai and Iri’s algorithm on a
real-world time-dependent link travel time data. The algorithm was primarily used to
preprocess the time-dependent travel time data to reduce its size and use it for route
planning. However, there are three main concerns of its use in the approximation of
time-dependent link travel time data. First, although Imai and Iri’s [14] algorithm is
simple and optimal given an absolute error value, lower bounds for link travel times
need to be checked and possibly adjusted as it may produce values lesser than some
links’ free-flow travel times or even produce negative values. Neubauer [15] addressed
this by using only relative upper bounds. When lower bounds were considered, it
yielded first-in, first-out (FIFO) violations. Second, the calculation of line distances,
intersections and angles to create a link’s travel time estimate still requires a substantial

Redundant data

Insignificant noise on data

Slowly changing data

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_44

https://dx.doi.org/10.1007/978-3-030-22744-9_44

4

amount of computational and memory resources. Furthermore, the algorithm’s effi-
ciency is dependent on the input complexity, specifically the sample data’s shape.
Third, an integral part of the algorithm is to create a polygon by offsetting the piecewise
linear curve above and below by a constant value. This implies that 2 copies of the 𝑁
points of the piecewise linear curve (above and below) also needs to be stored in the
memory during the approximation process. This is challenging when used during a
large-scale dynamic traffic simulation with limited memory capacity such as a parallel
computer with distributed memory architecture.

1.2 Contribution of this Paper

In this paper, a piecewise linear approximation algorithm is developed to reduce the
size of the time-dependent link travel time data generated by the large-scale dynamic
traffic simulation. Our main objective is to reduce each link’s memory consumption at
each iteration given that the maximum error bound can be restricted to avoid theoreti-
cally inconsistent results not accounted for by the dynamic traffic simulation model.

We propose an algorithm that only requires linear interpolation calculations with
respect to the given input points. The motivation is to develop an algorithm that is sim-
ple, fast and whose efficiency is independent of the input complexity such as the num-
ber of sampled data points, sampled data’s shape and irregularity of the sampling inter-
vals. Additionally, the algorithm should be capable of absolute error bound restriction
to avoid inaccurate and inconsistent results. The idea is to use linear interpolation along
the 𝑦 − axis to calculate and reduce the Euclidean distance of the real link travel time
and approximated link travel time. The approximated time-dependent link travel data
will then be retrieved by each driver for route planning. Subsequently, we will show
that only the Euclidean distances from the given input points to the estimated line seg-
ments need to be checked against the criterion function because these are the only points
where the absolute maximum error for each ordered subset can occur. Furthermore,
since linear interpolation only calculates points between any of the given input points,
the estimated link travel time values are assured to be bounded by these points in all
directions. One disadvantage of the algorithm is that the points of the approximated
function are restricted to the subset of the input function. It doesn’t allow arbitrary
points [16, 18, 19]. However, this is insignificant for our application.

1.3 Outline of this Paper

This paper is structured as follows. In the next section, a brief description of a dynamic
traffic simulation and the importance of link travel time data approximation is pre-
sented. In section 3, we formally define the piecewise linear approximation problem
and introduce some notations. Additionally, the proposed piecewise linear approxima-
tion algorithm for time-dependent link travel time data reduction is introduced includ-
ing the method in which travel time is retrieved after the approximation. In Section 4,
using a 10x10 grid network with variable time-dependent link travel time data com-
plexities and error bounds, results show that the algorithm is very simple, fast and effi-
cient both in time and space and is highly suitable for integration in large-scale dynamic

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_44

https://dx.doi.org/10.1007/978-3-030-22744-9_44

5

traffic simulation. A summary of the importance of our contribution and conclusion is
presented in the last section.

2 Large-Scale Dynamic Traffic Simulation

2.1 Travel Time Approximation in a Dynamic Traffic Simulation

Traffic simulators that can perform large-scale dynamic traffic simulations are becom-
ing increasingly popular as these provide more detailed means to represent the interac-
tion between travel choices, traffic flows, and time and cost measures in a temporally
coherent manner. In most cases, these are iteratively conducted and involves an inter-
play of the vehicular traffic loading and travelers’ route assignments [20] until a stop-
ping criterion is met (Fig. 2).

Fig. 2. Dynamic traffic simulation flowchart.

An iteration in a simulation usually represents a time period (from peak hours to an
entire day). Within this time period, time-dependent travel time data is generated for
each link sampled in specific time intervals. Thus, the longer the simulation time period,
the larger the size of the time-dependent link travel time data that needs to be stored for
travelers’ time-dependent route planning. Although it might not be necessary to store
the data of each iteration for route planning, these are usually necessary for post-pro-
cessing analysis.

In large-scale dynamic traffic simulations, massive networks will have substantial
number of links that generate time-dependent travel time data. This would require a
large amount of memory for storage (depending on the simulation time period and the
number of iterations) which is usually a very limited resource. However, some of these
sampled data may be, among other things, redundantly generated, insignificantly noisy
and/or slowly changing (Fig. 1). All of which can be approximated according to an
absolute maximum error bound without significantly affecting the simulation results.
Thus, other than requiring a simple, fast and efficient algorithm, a necessary feature is
the capability of the algorithm to restrict the absolute error bound consistently and ac-
curately. In some dynamic traffic simulations, travelers’ route assignments are assigned

Simulation initialization (iteration 0)

Shortest Path Search

Traffic Flow Calculation

Stop?
no

End
yes

ite
ra

tio
n

𝑛

Link Travel Time
Approximation

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_44

https://dx.doi.org/10.1007/978-3-030-22744-9_44

6

based on the shortest paths to their destinations (i.e. a deterministic route choice model)
[21]. This in turn depends on the time-dependent travel time data of the links along
these routes. An inaccurate or inconsistent approximation would lead to a different sim-
ulation result if a deterministic route choice model is a requirement. More importantly,
even if a deterministic route choice model isn’t a requirement it may still lead to theo-
retically inconsistent results not accounted for by the dynamic traffic simulation model.

Therefore, we are motivated in reducing the size of the time-dependent link travel
time data given that we are able to restrict the absolute error bounds of the approxima-
tion process.

3 The Piecewise Linear Approximation Algorithm

3.1 Piecewise Linear Approximation

The problem of retaining significant features of polygonal curves through iterative ap-
proximation was formalized by Ramer [6]. The problem is to approximate a polygon
represented by points using an iterative approximation algorithm that produces another
polygon with a lesser number of points. More formally, an arbitrary two-dimensional
plane curve is represented by an ordered set 𝐶 of 𝑁 consecutive points along the curve.
The points in set 𝐶 can be interpreted as the vertices 𝑝௜ of a polygon 𝑃 with 𝑁 − 1
edges. A polygon 𝑃෨ with a reduced number 𝑁෩ − 1 of edges, whose vertices 𝑝௞ coincide
with the vertices of 𝑃, then corresponds to an ordered subset 𝐶ሚ of points such that 𝐶ሚ ⊆
𝐶. The problem is to find an ordered subset 𝐶ሚ of the ordered set 𝐶 such that the poly-
gon 𝑃෨ with vertices 𝑝௞ ∈ 𝐶ሚ approximates the curve based on an application-dependent
error criterion. A desirable property for the ordered subset 𝐶ሚ is that its size be as small
as possible.

The ordered subset 𝐶ሚ of vertices 𝑝௞ divides the set 𝐶 into ordered subsets 𝑆௞ ∈ 𝑆 of
the following form,

 𝑆௞ = ൛𝑝௦, 𝑝௦ାଵ, … , 𝑝|ௌೖ|ൟ, (1)

where 𝑝௦ = 𝑝௞ିଵ and 𝑝|ௌೖ| = 𝑝௞; 𝑠 = 1,2, … , |𝑆௞| and 𝑘 = 1,2, … , 𝑁෩ . The points 𝑝௦
and 𝑝௦ାଵ are consecutive points in polygon 𝑃 and the points 𝑝௞ିଵ, 𝑝௞ are consecutive
points in polygon 𝑃෨. The ordered subset 𝐶ሚ also partitions the polygon 𝑃෨ into curve seg-
ments and 𝑆௞ contains the points belonging to the 𝑘 − th curve segment. Then, the fol-
lowing constraints hold between the ordered sets 𝐶, 𝐶ሚ and 𝑆௞,

 ⋃ 𝑆௞
ே෩
௞ୀଶ = 𝐶 and ൫⋃ (𝑆௞ ∩ 𝑆௞ାଵ)ே෩

௞ୀଶ ൯ ∪ {𝑝ଵ} ∪ {𝑝ே} = 𝐶ሚ. (2)

Constraints for the generation of the polygon 𝑃෨ can now be conveniently included into
the conditions for the subsets 𝑆௞ and 𝐶ሚ. Conditions on the subsets 𝑆௞ correspond to con-
ditions for the approximation of a curve segment 𝑆௞ ∈ 𝐶 by a straight-line seg-
ment 𝑝௞ିଵ 𝑝௞തതതതതതതതതത and conditions on 𝐶ሚ can be regarded as global properties.

Generally, the objective is to find a subset 𝐶ሚ ⊆ 𝐶 of vertices with a minimum num-
ber of elements satisfying a specified criterion function 𝑔(𝑆௞) ≤ 𝜃, where 𝜃 is a con-
stant, given a polygon 𝑃 with a set of vertices 𝐶 = {𝑝ଵ, … , 𝑝௜ , … , 𝑝ே}. The solution to

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_44

https://dx.doi.org/10.1007/978-3-030-22744-9_44

7

the problem with an unknown number of inequalities is complicated but methods such
as dynamic programming [9] or graph searching techniques [22] can be used to get
optimal solutions at the expense of additional computational resource. An example of
a criterion function 𝑔(𝑆௞) used by Ramer [6] is the maximum-distance, 𝑔(𝑆௞) =

max൫𝑑𝑖𝑠𝑡(𝑝௞ିଵ, 𝑝௞)൯ ≤ 𝛼 where 𝑑𝑖𝑠𝑡(𝑝ଵ , 𝑝ଶ) is the Euclidean distance between the
points 𝑝ଵ and 𝑝ଶ; 𝑝௜ = ൫𝑥௣೔

, 𝑦௣೔
൯. In Ramer [6], an iterative approximation method was

used to divide 𝐶 into subsets which were tested against the maximum-distance crite-
rion. If the subset satisfied the criterion, the subset was retained. Otherwise, the subset
was divided and the resulting subsets were tested. The iteration was terminated when
all subsets 𝑆௞ satisfied the criterion 𝑔(𝑆௞) ≤ 𝜃. Various application-dependent criteria
have been developed to test subsets such as perimeter error [9], error of area [5], mean
square error or maximum deviation. Another possible criterion not based on error is to
minimize the size of 𝐶ሚ to a desirable number of points. In this paper, we deal with the
former, i.e. 𝑔(𝑆௞) ≤ 𝜃.

3.2 Vertical Linear Interpolation Algorithm

The polygon 𝑃 in this study is a special case of the piecewise linear approximation
problem in [6] due to its special structure. The 𝑦 coordinates of the 𝑥 and 𝑦 coordinates
of points 𝑝௜ in the ordered set 𝐶 are defined by a function 𝑦 = 𝑓(𝑥) where 𝑥 is strictly
monotone, 𝑝 ≡ (𝑥, 𝑦) ∈ ℝା

ଶ and 𝑓: ℝା → ℝା. This implies that polygon 𝑃 is an open
polyline with no intersecting edges. From now on this will be denoted as 𝑃ᇱ. The values
of the 𝑥 and 𝑦 coordinates for each 𝑝௜ ∈ 𝐶 will be denoted as 𝑥௣೔

 and 𝑦௣೔
, respectively.

Fig. 3. Link travel time data approximated by the vertical linear interpolation algorithm.

For a time-dependent link travel time data, an estimated 𝑦෤௣ value is a time-dependent
travel time for a particular time 𝑥෤௣ of a link along a certain route of a traveler’s desti-
nation in a specific iteration. Hence, in the piecewise linear approximation of the time-
dependent travel time data defined by the polyline 𝑃ᇱ, we propose an algorithm which
linearly interpolates the values 𝑦௣෤ೖ

 of projected points 𝑝෤௞ to the line 𝑝௞ିଵ 𝑝௞തതതതതതതതതത from
each point 𝑝௦ in the ordered subset 𝑆௞ for all 𝑆௞ ∈ 𝑆 as shown in Fig. 3 above. Linear

𝒑𝒊ି𝟑

𝒑𝒊ି𝟐

𝒑𝒊ି𝟏

𝒑𝒊 𝒑𝒊ା𝟏

𝒑𝒊ା𝟐

𝒑𝒊ା𝟑

𝒑𝒊ା𝟒

𝒑𝒊ା𝟓

𝒑𝒊ା𝟔

𝒑𝒊ା𝟕

𝒑𝒊ା𝟗

𝒑𝒌ି𝟏

𝒑𝒌

𝒑𝒌ା𝟏

𝒑𝒌ା𝟐

𝒑𝒊ା𝟖

tr
av

el
 ti

m
e

time

𝒙෥𝒑 ∈ 𝒙𝒑𝒌ష𝟏
, 𝒙𝒑𝒌 𝒙෥𝒑 ∈ 𝒙𝒑𝒌

, 𝒙𝒑𝒌శ𝟏
𝒙෥𝒑 ∈ 𝒙𝒑𝒌శ𝟏

, 𝒙𝒑𝒌శ𝟐

𝒙෥𝒑

𝒚෥𝐩

𝒑𝒊ି𝟏

𝒚෥𝒋

𝒚෥𝒑

𝒑𝒌

𝒑𝒊

𝒑

𝒑𝒊𝒋

𝒙𝒑𝒌ష𝟏
𝒙𝒑𝒌

𝒑෥𝒌

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_44

https://dx.doi.org/10.1007/978-3-030-22744-9_44

8

interpolation is chosen because it is very simple and fast to calculate and its efficiency
is independent of the input complexity. The algorithm is characterized by the projection
of each 𝑝௦ ∈ 𝑆௞ to the line 𝑝௞ିଵ 𝑝௞തതതതതതതതതത orthogonal to the 𝑥 − axis. The value of a projec-
tion from 𝑝௦ is calculated using the point’s 𝑥௣ೞ

 value and is determined by the equation,

 𝑦௣෤ೖ
= ฬ𝑦௣ೖషభ

+ ൫𝑥௣ೞ
− 𝑥௣ೖషభ

൯ ൬
௬೛ೖ

ି௬೛ೖషభ

௫೛ೖ
ି௫೛ೖషభ

൰ฬ. (3)

From the values created by equation (3), we are interested in the criterion function
𝑔(𝑆௞) which represents the line with the maximum length among all of the lines pro-
jected by all the points 𝑝௦ ∈ 𝑆௞ to the line 𝑝௞ିଵ 𝑝௞തതതതതതതതതത. This is given by 𝑑𝑖𝑠𝑡(𝑝௦, 𝑝෤௞) =

ห𝑦௣ೞ
− 𝑦௣෤ೖ

ห where 𝑝௦ and 𝑝෤௞ have both the same 𝑥௣ೞ
 value. More formally, the criterion

function is defined by the equation,

 𝑔(𝑆௞) = max
௣ೞ

{𝑑𝑖𝑠𝑡(𝑝௦, 𝑝෤௞)|𝑝௦ ∈ 𝑆௞} ≤ 𝛼𝛽 = 𝜃, (4)

where the 𝛼 is a constant and 𝛽 is a scaling factor. The scaling factor 𝛽 is necessary
when the same constant 𝛼 is used for different polylines 𝑃ᇱ with different properties.
Then, each of the 𝑔(𝑆௞) value for each 𝑆௞ is added into a max heap 𝑄 where its root
node 𝑄௥ has a value of 𝑔෤ = max

௞
𝑔(𝑆௞). The variable 𝑔෤ represents the maximum Eu-

clidean distance of 𝑃෨ᇱ from 𝑃ᇱ along the 𝑦 − axis.
The criterion in the selection of the next ordered subset 𝑆௞෨ to divide into two smaller

ordered subsets 𝑆௞෨ భ
 and 𝑆௞෨ మ

 is given by 𝑆௞෨ = arg max
ௌೖ

𝑔(𝑆௞) where 𝑆௞෨ = 𝑆௞෨ భ
+ 𝑆௞෨ మ

−

൫𝑆௞෨ భ
∩ 𝑆௞෨ మ

൯, 𝑘෨ଵ − 1 = 𝑘෨ − 1 and 𝑘෨ଶ = 𝑘෨ . Additionally, the ordered subsets 𝑆௞෨ భ
 and

𝑆௞෨ మ
 replaces 𝑆௞෨ in the set 𝑆. The point 𝑝ప̃ where the ordered subset 𝑆௞෨ is divided at is

denoted by,

 𝑝ప̃ = arg max
௣ೞ

{𝑑𝑖𝑠𝑡(𝑝௦, 𝑝෤௞)|𝑝௦ ∈ 𝑆௞}, (5)

where 𝑆௞෨ భ
= ൛𝑝௞෨ భିଵ, … , 𝑝ప̃ൟ , 𝑆௞෨ మ

= ൛𝑝ప̃, … , 𝑝௞෨ మ
ൟ and 𝑝ప̃ = 𝑆௞෨ భ

∩ 𝑆௞෨ మ
; 𝑘෨ − 1 < 𝚤̃ < 𝑘෨ .

When 𝑆௞෨ is divided into 𝑆௞෨ భ
 and 𝑆௞෨ మ

, it creates new 𝑔൫𝑆௞෨ భ
൯ and 𝑔൫𝑆௞෨ భ

൯. However,

both 𝑔൫𝑆௞෨ భ
൯ and 𝑔൫𝑆௞෨ భ

൯ aren’t guaranteed to be less than 𝑔෤. Thus, both 𝑔൫𝑆௞෨ భ
൯ and

𝑔൫𝑆௞෨ భ
൯ need to be evaluated and placed into the max heap 𝑄. The process of ordered

subset selection and division is repeated until the stopping criterion 𝑔෤ ≤ 𝛼𝛽 is satisfied
or the max heap is empty.

Table 1 below summarizes the vertical linear interpolation algorithm (Algorithm 1)
through a pseudocode.

Table 1. Vertical linear interpolation algorithm pseudocode.

Algorithm 1 (Vertical linear interpolation algorithm)
Required input: 𝐶, 𝛼 and 𝛽
Initialization: 𝑆ଶ = 𝐶, 𝑔(𝑆2) = 0 and 𝐶ሚ ← 𝑝ଵ, 𝑝ே
for each 𝑝௦ ∈ 𝑆ଶ\𝑝ଵ, 𝑝ே do
 if 𝑔(𝑆2) < 𝑑𝑖𝑠𝑡(𝑝௦, 𝑝෤ଶ) = ห𝑦௣ೞ

− 𝑦௣෤మ
ห do

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_44

https://dx.doi.org/10.1007/978-3-030-22744-9_44

9

 𝑔(𝑆2) ← 𝑑𝑖𝑠𝑡(𝑝௦, 𝑝෤ଶ)
max heap, 𝑄 ← 𝑔(𝑆ଶ)
𝑔෤ ← 𝑄௥ where 𝑄௥ is the max heap’s root node
𝐶ሚ ← 𝑝ప̃[𝑄௥]
while 𝑔෤ > 𝛼𝛽 and 𝑄 ≠ ∅ do
 𝑘෨ ← 𝑘[𝑄௥] and 𝑝ప̃ ← 𝑝ప̃[𝑄௥]
 remove 𝑄௥ from 𝑄
 split 𝑆௞෨ into 𝑆௞෨ భ

 and 𝑆௞෨ మ
 along 𝑝ప̃

 replace 𝑆௞෨ ∈ 𝑆 with 𝑆௞෨ భ
 and 𝑆௞෨ మ

 for each 𝑝௦೔

∈ 𝑆௞෨ ೔
\𝑝௞෨ ೔ିଵ, 𝑝௞෨ ೔

, 𝑖 ∈ {1, 2} do

 if 𝑔൫𝑆𝑘𝑖
൯ < 𝑑𝑖𝑠𝑡൫𝑝௦೔

, 𝑝෤௞೔
൯ = ቚ𝑦௣ೞ೔

− 𝑦௣෤ೖ೔
ቚ do

 𝑔൫𝑆𝑘𝑖
൯ ← 𝑑𝑖𝑠𝑡൫𝑝௦೔

, 𝑝෤௞೔
൯

 for each 𝑆௞೔
, 𝑖 ∈ {1, 2} do

 max heap, 𝑄 ← 𝑔൫𝑆௞೔
൯

 𝑔෤ ← 𝑄௥
 𝐶ሚ ← 𝑝ప̃[𝑄௥]
Return 𝐶ሚ

In Fig. 4 below, a visual demonstration of how the vertical linear interpolation algo-

rithm iteratively approximates an open polyline 𝑃ᇱ is shown. Iteration 1 shows 𝑆௞ as
the entire polyline 𝑃ᇱ and its line segment 𝑝௞ିଵ 𝑝௞തതതതതതതതതത approximation (red line). Addition-
ally, it shows that vertical lines orthogonal to the 𝑥 − axis (blue lines) are projected
from the points 𝑝௦ ∈ 𝑆௞ (black dots) to the line segment 𝑝௞ିଵ 𝑝௞തതതതതതതതതത. The vertical line with
the maximum length 𝑔෤ (green line) is also shown. The set 𝑆௞ is then divided into two
line segments 𝑝௞ିଵ 𝑝௞തതതതതതതതതത and 𝑝௞ 𝑝௞ାଵതതതതതതതതതത in iteration 2 from the point 𝑝ప̃ at which 𝑔෤ oc-
curred in the previous iteration. This process is repeated for each 𝑆௞ where 𝑔෤ occurs
until the stopping criterion 𝑔෤ ≤ 𝛼𝛽 is met. After the algorithm terminates, the points of
the polyline 𝑃෨ᇱ denoted by the ordered subset 𝐶ሚ is returned.

Fig. 4. Iterative piecewise linear approximation of an open polyline using Algorithm 1.

A condensed algorithm flowchart for Algorithm 1 is shown in Fig. 5 below. The
algorithm is performed to each link in the network at each iteration using the criterion
function 𝑔෤ ≤ 𝛼𝛽. The algorithm flowchart is a generalized representation of a piece-
wise linear approximation algorithm where the type of estimation (violet box) and stop-
ping criterion (diamond) can be replaced based on the application.

Iteration 1 Iteration 2 Iteration 3

𝒑𝒌ି𝟏

𝒑𝒌

𝒑𝒌ି𝟏

𝒑𝒌

𝒑𝒌ା𝟏

𝒑𝒌ି𝟏

𝒑𝒌

𝒑𝒌ା𝟐

𝒑𝒌ା𝟏

𝒈෥ = 𝒈 𝑺𝒌

𝒈෥

𝒈෥𝒈 𝑺𝒌 𝒈 𝑺𝒌
𝒈 𝑺𝒌ା𝟐

𝒑ଙ̃ 𝒑ଙ̃

𝑺𝒌෩ 𝑺𝒌෩ 𝑺𝒌෩

𝒑ଙ̃

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_44

https://dx.doi.org/10.1007/978-3-030-22744-9_44

https://dx.doi.org/10.1007/978-3-030-22744-9_44

https://dx.doi.org/10.1007/978-3-030-22744-9_44

https://dx.doi.org/10.1007/978-3-030-22744-9_44

https://dx.doi.org/10.1007/978-3-030-22744-9_44

https://dx.doi.org/10.1007/978-3-030-22744-9_44

