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Abstract. Large scale cell based blood flow simulations are expensive,
both in time and resource requirements. HemoCell can perform such
simulations on high performance computing resources by dividing the
simulation domain into multiple blocks. This division has a performance
impact caused by the necessary communication between the blocks. In
this paper we implement an efficient algorithm for computing the me-
chanical model for HemoCell together with an improved communication
structure. The result is an up to 4 times performance increase for blood
flow simulations performed with HemoCell.
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1 Introduction

Blood flow simulation remains an area of active research. Many interesting prop-
erties have been identified with the help of simulations[4, 6, 9–11, 13]. There is an
increasing interest in blood flow simulations in which the blood cells (red blood
cells, platelets, white blood cells) are fully resolved [3, 8, 15, 16]. These simu-
lations can be used to understand and find underlying mechanics of complex
behaviour of blood flows including but not limited to platelet margination [9],
the formation of the cell free layer [6], the F̊ahræus–Lindqvist effect [2], the be-
haviour in microfluidic devices or the behaviour around micromedical implants
[1, 5]. Simulations that model blood as a pure fluid flow are not able to recover
these intricate properties of blood flow.

One of the challenges of suspension simulation codes is to parallelize them
such that interesting systems with sufficient number of cells (> 1000 cells) can
be simulated for an extended duration (> 0.1 s) in a reasonable time span (< 5
days). Only a few open source solutions exist for suspension simulations that need
to implement a complex mechanical model for the simulated cells, HemoCell [16]
and Palabos-LAMMPS [14] are examples of available open-source codes that can
be used to simulate blood flow. Other codes exists but are not (yet) available as
open-source.

HemoCell is a software package that is developed at the University of Ams-
terdam that is able to simulate blood flow at high shear rates (> 1000 s−1) and
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with a high number of cells (> 1000 cells). In this paper we present HemoCell
an highly efficient parallel code for blood flow suspension simulations.

HemoCell is built on top of Palabos [7] and offers support for complex sus-
pension simulations. Palabos is a general purpose lattice Boltzmann solver with
high performance computing capabilities. We will shortly introduce HemoCell
and its underlying models, followed by a discussion of challenges and solutions
for efficient parallel simulations. These include boundary communication of pro-
cessors for the suspension part, efficiently storing relevant information while
avoiding global communication, and efficiently computing the complex material
model associated with the cells within HemoCell. Next, we discuss the theoretical
and practical implications of the methods we used to implement the suspension
simulation software within HemoCell and provide performance measurements.

1.1 HemoCell

HemoCell [16] is an open source parallel code for simulating blood flows with
fully resolved cells that is built as a library on top of Palabos [7]. Palabos is
a versatile library which can be used to solve pure fluid flow problems with
the lattice Boltzmann method (LBM). Palabos offers relevant multi-processing
abilities. HemoCell implements the cell mechanics simulations and their coupling
to the fluid using the immersed boundary method (IBM), see also Figure 1.

Fig. 1. Overview of the Palabos and HemoCell libraries

HemoCell uses data parallelism to distribute the workload over many cores.
With the help of PalaBos HemoCell can divide the flow domain into multiple
rectangular blocks of each which represents a processor These domains are called
atomic blocks (AB). ABs are abstracted away from the user through the use
of functionals, which can be used to perform operations on a domain without
knowing about the underlying distributed structure. Furthermore, each simu-
lation can have multiple fields, which span the whole domain and represent a
specific part of the simulation. In Hemocell two fields are used, a fluid field and a
cell field. Palabos takes care of the boundary communication between processors
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for the fluid field. HemoCell takes care of the cell field and of the communication
between the two fields as required by the immersed boundary method [12].

The cells consist of vertices which are connected through links that make up
a boundary to represent a cell in the fluid. A RBC in HemoCell has 1280 vertices.
A complex mechanical model is used to calculate forces [16]. This mechanical
model requires that a cell is present on both processors whenever it is crossing
a boundary. This results in the two main bottlenecks and thus challenges for
HemoCell.

1. The material model of the cells needs to be calculated efficiently.
2. Dividing the cell field into multiple processors is complex because the mate-

rial model requires duplication of cells over boundaries.

2 Calculating the mechanical model of a cell

The cells within HemoCell are implemented as vertices and connections that
form a triangulated mesh. These cells compute the forces acting on its vertices
through a mechanical model [16]. Figure 2 shows a mesh used to represent a red
blood cell.

Fig. 2. Mesh representing red blood cell in HemoCell

Závodszky et al. [16] model the forces acting on the vertices of a cell as
follows:

Ftotal = Flink + Fbend + Fvolume + Farea + Fvisc (1)

Below we list all five forces and explain in detail what information is needed
to compute them.

1. The link force Flink acts along the edges and between neighbouring points.
The force on a single vertex i (F i

link) can be described as follows:

F i
link =

m∑
n=1

Clink
Ei,in − |ixn − ix|

Ei,in

(2)
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Where Ei,in is the equilibrium length between two vertices, ix is the location
of vertex i, m is the number of direct neighbours of vertex i and in is the n’th
direct neighbour of vertex i. Clink consists of all the constant terms that do
not change during a simulation as explained by Závodszky et al. [16].

2. The bending force Fbend uses patches which are defined as a plane that goes
through the average location of all direct neighbours of vertex i. The normal
direction of this plane is defined as the average normal of all neighbouring
triangles that include vertex i. The distance along the normal direction of
this plane towards vertex i is used to calculate the bending force on vertex i,
a negative term is added to the neighbours of i to make the force zero-sum.

F i
bend = Cbend

(
Epatch

i −
(∑m

n=1 i
x
n

m
− ix

)
·
(∑m

n=1 normal (tni )

L

))
−

m∑
n=1

1

Nm
i

F in
bend (3)

Where Epatch
i is the equilibrium distance between the patch and the vertex

i along the patch normal. tni is the n’th triangle that is a direct neighbour
of vertex i. normal() returns the normal pointing outward from a triangle.
L is the length of the summation of the normal vectors of all the triangles
that are part of the patch, thus this division results in a unit vector along
the average normal direction. The dot product results in a length term along
the patch normal. Nm

i is the number of direct vertex neighbours of in. C
again of all the constant terms that do not change during a simulation.

3. The area force Farea acts on all the triangles that are part of the mesh.
Therefore the force on a single vertex is a sum over all neighbouring triangles:

F i
area =

m∑
n=1

Carea

(
Earea

int
− area (int )

Earea
int

)
(ix −middle (int )) (4)

Where area() calculates the area of a triangle, Earea
int

is the equilibrium value

for the area of triangle int . middle() calculates the average of the three
triangle vertices of triangle int . Carea() is a function that takes the area ratio
as input and outputs a force coefficient.

4. The volume force Fvolume results from the total volume of the cell, thus
information about all vertices is needed. The force is distributed over the
vertices proportional to the area of the direct neighbouring triangles of that
vertex.

F i
volume =

volume(celli)− Evolume
celli

Evolume
celli

m∑
n=1

Cvolume
area (tni )

Earea
tni

normal (tni ) (5)

Where volume () calculates the volume of a complete cell, this function
needs every vertex of the cell as input. Evolume

celli
is the equilibrium volume of

celli and normal() is the normal direction of triangle tni .
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5. The viscous force Fvisc limits the relative velocity of neighbouring vertices
connected with an edge.

F i
visc =

m∑
n=1

Cvisc ·
((

vi − vin
)
·
(

ixn − ix

|ixn − ix|

))
·
(

ixn − ix

|ixn − ix|

)
(6)

Where vv and vin are the velocity of vertex i and in respectively.
∑m

n=1 sums
over all direct vertex neighbours of i.

2.1 Implementation of the mechanical model

for triangle in cell.triangles:

volume += volume_from_triangle(triangle);

normal,area,center = triangle_properties(triangle)

area_force = ((area - eq(area))/eq(area)) * C_area

for vertex in triangle:

vertex.force += (center-vertex)*area_force

volume_force = ((volume - eq(volume))/eq(volume)) * C_volume

for triangle in cell.triangles:

triangle_volume_force = triangle_volume_force_formula()

for vertex in triangle:

vertex.force += triangle_volume_force

for vertex in cell:

for neighbour in vertex:

middle += neighbour

vertex.force +=bending_force_formula(middle, vertex)

for edge in cell:

vertex.force += link_force_formula(edge)

vertex.force += visc_force_formula(edge)

Fig. 3. Pseudocode explaining how we optimized the calculation of the mechanical
model within HemoCell.

The formulas for calculating force on each independent vertex are explained
above. Between the calculation of the separate forces there are some overlaps,
for example the calculation of the area of a triangle is used for both the volume
and area forces Equation 4 and 5. This leaves room for optimization within
implementing the calculations. In figure 3 a pseudo code of the implementation
is shown. In this implementation we have tried to calculate each necessary value
only once. Furthermore, we try to minimize the number of loops. Most notably
in the first loop which calculates Farea all the necessary calculations for Fvolume

are stored for the second loop. In addition Flink and Fvisc are calculated in the
same loop as well.
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3 Implementation of the cell field communication
structure

When the cell field is divided up into multiple atomic blocks it becomes necessary
to implement a communication structure. For a regular fluid field this simply
constitutes to communicating the values of the fluid cells in the boundary layer
to their corresponding neighbours. However it is not so simple for the cell field.
The number of vertices in a communication boundary can change over time
and therefore the communication size is not static but dynamic. Furthermore
at every communication step it has to be determined which vertices are present
within a communication boundary and which vertices are not.

Cells need information from all their vertices to calculate the mechanical
forces. Almost all forces (Farea, Flink, Fbend, Fvisc) that act on the vertices only
need information from their direct neighbours to be calculated. However the
volume force Fvolume needs information of all the vertices of the cell to be calcu-
lated. Therefore whenever a single vertex of a cell is present in an atomic block,
the boundaries must include every other vertex of the corresponding cell as well.
This means that the size of the boundary must be larger than the largest possible
diameter of a cell. Figure 4 shows that a larger boundary size means that the
number of neighbours and thus the communication will increase if the atomic
blocks get too small.

Fig. 4. Visualization of the boundary size needed for the cell field.

There is a simple way to implement this boundary, namely by communication
of vertices in the boundary. We will use this communication pattern as the base
upon which we propose improvements, see figure 5. In the näıve implementation
firstly all neighbours are determined that overlap with the boundary of the
atomic block. Within HemoCell a RBCs (the largest cell) can stretch up to 12 µm.
Thus all neighbours within a 12 µm range send the vertices corresponding to the
overlap they have with the boundary. This method has two drawbacks: First a
lot of unnecessary data is communicated and second when the boundary size is
larger than an atomic block the number of neighbours with which communication
is necessary grows, usually in the form of (2N + 1)3− 1 Where N is the number
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of neighbours in a single direction. So going from N = 1 to N = 2 creates
124− 26 = 98 extra neighbours.

We implemented an improved and consequently faster method to commu-
nicate vertices in boundaries. The main idea is to only communicate vertices
of cells that are needed. For this an extra communication step needs to be im-
plemented. In this extra communication step an atomic block sends a list with
all the IDs of the cells that need to be communicated to its neighbours. In the
next communication step only these vertices are communicated. It is not possi-
ble to get rid of the inefficient boundary communication entirely as vertices very
close to the domain are needed for non-local force calculations (e.g. inter cellular
forces). However, this is much more efficient if only a very small boundary needs
to be communicated.

neighbours = block.neighbours(12)

for neighbour in neighbours:

send_particles = block.findparticles(

intersect(block, neighbour)

MPI_Isend(neighbour,send_particles.size())

MPI_Isend(neighbour,send_particles)

While (MPI_WaitAny(neighbours)):

MPI_Recv(neighbour, size)

MPI_Recv(neighbour, recv_particles, size)

block.add_particles(recv_particles)

neighbours = block.neighbours(1)

#Same communication pattern as left code block

#But with a boundary of size one

Neighbours = block.neighbours(12)

requested_cells = block.findlocalcellIds()

for neighbour in neighbours:

MPI_Isend(neighbour,requested_cells)

for neighbour in neighbours:

MPI_Probe(neighbour) #Get any neighbour

MPI_Recv(neighbour, requested_cells)

send_particles =

block.findParticlesFromCells(requested_cells)

MPI_Isend(neighbour, send_particles)

for (neighbour in neighbours):

MPI_Probe() #Get any neighbour

MPI_Irecv(neighbour,recv_buffer)

for (neighbour in neighbours):

MPI_WaitAny(receive) #Wait for any receive

block.addParticles(recv_buffer)

MPI_WaitAll(sends)

Fig. 5. The left block shows in pseudocode a näıve implementation of the boundary
communication. The right block shows our optimized implementation of the boundary
communication algorithm.

3.1 Comparison between näıve and optimized implementation of
the boundary communication algorithm

To test the performance gain of our optimized boundary communication algo-
rithm we have set up a simulation which is executed both with the näıve and
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the optimized implementation. The simulation consists of a cubic 128 µm3 vol-
ume that is periodic in all directions. Within this volume 7736 red blood cells
are present. Figure 6 shows the simulated domain. An external body force is
applied to drive the cell suspension inside the volume. The volume is simulated
for 0.1 seconds and statistics are collected over the whole duration. The results
are plotted in figure 7.

Fig. 6. The domain with wich the simulations are perfomed with a differing number
of processors

The results show a significant improvement of HemoCell in two ways. Firstly,
the base performance has improved by ≈ 36 %, this can be deducted from the
difference in wall clock time per iteration in Figure 7 for 8 cores. Secondly,
the strong scaling (dividing the same domain into more smaller atomic blocks)
properties are better. In the worst case (512 µm3 per atomic block) the edges of
an atomic block are only 8 µm long. This means that the boundary of each block
overlaps with 124 neighbours. In this case we see a performance improvement of
≈ 4 times over the näıve version. Over the whole range we see that our improved
communication performs better.
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a)

b)

Fig. 7. Statistics for each of the simulations. The fluid part is handled by Palabos. The
dotted line shows perfect linear scaling. a) shows the statistics for the näıve implemen-
tation of the communication. b) shows the statistics for our improved implementation.
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4 Conclusions

Improving the performance of fully resolved blood flow simulations allows us to
perform simulations up to 4 times faster. For a simulation of 1 s a total number
of 10 million timesteps is required. This means that the improved version of
HemoCell only needs one day to complete this simulation with ABs of 512 µm3,
whereas the näıve version would need four days.

We have shown that it is possible to merge the calculation the forces of the
mechanical model in such a way that there is less computation than when all the
forces are computed separately. This is achieved by re-using intermediate values
and combining loops where possible.

By improving the communication structure better strong scaling results are
achieved for HemoCell. Furthermore, the base performance with large ABs is
improved as well.

Acknowledgments

This work was supported by the European Union Horizon 2020 research and
innovation programme under grant agreement no. 675451, the CompBioMed
project and grant agreement no. 671564, the ComPat project.

References

1. Augsburger, L., Reymond, P., Rufenacht, D., Stergiopulos, N.: Intracranial stents
being modeled as a porous medium: flow simulation in stented cerebral aneurysms.
Annals of biomedical engineering 39(2), 850–863 (2011)

2. Bagchi, P.: Mesoscale Simulation of Blood Flow in Small Vessels. Biophysical Jour-
nal 92(6), 1858–1877 (3 2007)

3. Bernaschi, M., Melchionna, S., Succi, S., Fyta, M., Kaxiras, E., Sircar, J.: MUPHY:
A parallel MUlti PHYsics/scale code for high performance bio-fluidic simulations.
Computer Physics Communications 180(9), 1495–1502 (9 2009)

4. Czaja, B., Závodszky, G., Azizi Tarksalooyeh, V., Hoekstra, A.: Cell-resolved blood
flow simulations of saccular aneurysms: effects of pulsatility and aspect ratio. Jour-
nal of The Royal Society Interface 15(146), 20180485 (2018)

5. Farb, A., Burke, A.P., Kolodgie, F.D., Virmani, R.: Pathological mechanisms of
fatal late coronary stent thrombosis in humans. Circulation 108(14), 1701–1706
(2003)

6. Fedosov, D.A., Caswell, B., Popel, A.S., Karniadakis, G.E.: Blood Flow and Cell-
Free Layer in Microvessels. Microcirculation 17(8), 615–628 (11 2010)

7. Latt, J.: Palabos, parallel lattice Boltzmann solver (2009), https://palabos.org
8. Moeendarbary, E., Ng, T.Y., Zangeneh, M.: Dissipative Particle Dynamics: intro-

duction, methodology and complex fluid applications — a review. International
Journal of Applied Mechanics 01(04), 737–763 (12 2009)

9. Mountrakis, L., Lorenz, E., Hoekstra, A.G.: Where do the platelets go? A simula-
tion study of fully resolved blood flow through aneurysmal vessels. Interface Focus
3(2), 20120089–20120089 (2 2013)

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_42

https://dx.doi.org/10.1007/978-3-030-22744-9_42


Optimizing parallel performance of HemoCell 11

10. Mountrakis, L., Lorenz, E., Hoekstra, A.G.: Scaling of shear-induced diffusion and
clustering in a blood-like suspension. EPL (Europhysics Letters) 114(1), 14002 (4
2016)

11. Ouared, R., Chopard, B.: Lattice Boltzmann Simulations of Blood Flow: Non-
Newtonian Rheology and Clotting Processes. Journal of Statistical Physics 121(1-
2), 209–221 (10 2005)

12. Peskin, C.S.: The immersed boundary method. Acta Numerica 11 (1 2002)
13. Skorczewski, T., Erickson, L., Fogelson, A.L.: Platelet Motion near a Vessel Wall

or Thrombus Surface in Two-Dimensional Whole Blood Simulations. Biophysical
Journal 104(8), 1764–1772 (4 2013)

14. Tan, J., Sinno, T.R., Diamond, S.L.: A parallel fluid–solid coupling model using
LAMMPS and Palabos based on the immersed boundary method. Journal of Com-
putational Science 25, 89–100 (3 2018)

15. Ye, T., Phan-Thien, N., Lim, C.T.: Particle-based simulations of red blood cells—A
review. Journal of Biomechanics 49(11), 2255–2266 (7 2016)

16. Závodszky, G., van Rooij, B., Azizi, V., Hoekstra, A.: Cellular Level In-silico Mod-
eling of Blood Rheology with An Improved Material Model for Red Blood Cells.
Frontiers in Physiology 8, 563 (8 2017)

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_42

https://dx.doi.org/10.1007/978-3-030-22744-9_42

