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Abstract. Reducing the measurement effort that is made for identifi-
cation of parameters is an important task in some fields of technology.
This work focuses on calibration of functions running on the electronic
control unit (ECU), where measurements are the main expense factor.
An algorithm for information content analysis of recorded measurement
data is introduced that places the calibration engineer in the position to
shorten future test runs. The analysis is based upon parameter sensitiv-
ities and utilizes the Fisher-information matrix to determine the value
of certain measurement portions with respect to parameter identifica-
tion. By means of a simple DC motor model the algorithm’s working
principle is illustrated. The first use on a real ECU function achieves a
measurement time reduction of 67 % while a second use case opens up
new features for the calibration of connected cars.

Keywords: Parameter identification · Fisher-information matrix · Local
sensitivity · Measurement information · Measurement period reduction.

1 Introduction

The software of an electronic control unit (ECU) in a passenger car is an ex-
tensive program consisting of a couple of self-contained functions with strict
interfaces and a vast number of parameters. These functions are designed to run
in real-time and to model complex physical behaviour with a rough model struc-
ture only. But nevertheless a high flexibility regarding the output quantities is
achieved at the same time since much data is stored in lookup tables. Most of
the parameters for ECU functions result from these 1D- or 2D-lookup tables.

Since ECU models strongly rely on data tables, adapted product-specific
parameter calibration has to be done again and again for each vehicle type
making this process even more time-consuming and costly. By far the most
expensive task in calibration are the measurements, i.e. driving on public roads
or on test areas, and in the majority of cases more measurement time is carried
out and recorded than would actually be necessary.

In practice the tuning process of the parameter values is either done man-
ually or by means of an optimization algorithm. This work is mostly related
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2 C. Potthast

to cases where an optimizer is used since manual calibration requires a more
rigid measurement schedule with long holding times at fixed operating points
and hence leaving lesser leeway for compression. Investigations of the optimiza-
tion algorithm itself are not subject of this article because prior studies have
shown that a gradient-based optimizer for nonlinear least-squares curve fitting
problems is doing well on the special class of ECU functions.

This paper presents an algorithm that analyses existent measurements piece-
wise and separates important sections providing new information from sections
without content of further value. The main aim is to give advice on how to
shorten similar test runs in the future. Secondly, the algorithm may indicate
possibilities on how to speed up the parameter optimization. However, this only
works out if measurement parts can be left out for simulation.

The basic technology is the well-known Fisher-information matrix, which
has been used intensively for the design of experiments [1], [2] in various sci-
entific fields. The Fisher matrix is also used for prioritization of parameters in
order to identify most sensitive parameters first [3], [4] and hereby support-
ing a more target-oriented estimation process. However, the design of test runs
from scratch by utilizing typical eigenvalue-based criteria is impractical for iso-
lated ECU functions: a real test run produces input signals for the function that
cannot be defined prior to the real experiment because of influences from the
environment, the test track or road traffic.

The following section states the theoretical background before the algorithm
is described in section 3 by means of a simple DC motor model. The successful
application is demonstrated in section 4 for a new calibration feature of the
Connected Car and for a real ECU function, where a drastic time reduction of
67 % is achieved.

2 Theoretical Background

For this paper a nonlinear dynamic model in state space formulation is assumed

ẋ(t) = f(t,x(t),u(t),θ), t > 0, x(0) = x0

y(t) = h(t,x(t),u(t),θ), t ≥ 0,
(1)

where x ∈ Rn is the vector of states, y ∈ Rm is the vector of model outputs,
u ∈ Rq is the vector of model inputs and θ ∈ RL is the parameter vector. The
initial conditions for the states are x0 ∈ Rn.

Calibration aims at finding the unknown parameters θ, which result in the
best fit between model outputs y(t,θ) and measured responses yM (t) from the
real process under consideration. The error e(t,θ) denotes the difference between
measured and simulated outputs:

e(t,θ) = yM (t)− y(t,θ). (2)

The root mean square error (RMSE) is typically used to quantify the deviation
of a simulated signal consisting of N instants of time obtained with parameter
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set θ from a measurement of the i-th quantity of interest within the output
vector y:

RMSE(θ) =

√√√√√ N∑
k=1

e2i (tk,θ)

N
. (3)

2.1 The Error Stochastics

Assuming that real measurements include all kinds of systematic errors as well as
noise from the sensor, the measurement yM is considered to have a deterministic
and a stochastic part:

yM (t) = yM,det(t) + ε(t). (4)

Putting Eq. (4) into Eq. (2) gives:

e(t,θ) = yM,det(t)− y(t,θ) + ε(t) = η(t,θ) + ε(t). (5)

Thus, the total error consists of a deterministic part η and a stochastic part ε.
The stochastic part ε is assumed to be Gaussian white noise, where the samples
are independent of each other and have a normal distribution with zero mean:

εi(tk) ∼ N
(
0, σ2

εi

)
for i = 1, . . . ,m and k = 1, . . . , N. (6)

The probability density function p(εi(tk)) for one time sample tk from the i-th
output signal therefore is:

p(εi(tk)) =
1√

2πσ2
εi

exp

(
−ε

2
i (tk)

σ2
εi

)
. (7)

For one time sample tk and multiple output signals (m > 1) it holds:

p(ε(tk)) =

m∏
i=1

p(εi(tk)) = (2π)−
m
2 (detCε)

− 1
2 exp

(
−1

2

m∑
i=1

ε2i (tk)

σ2
εi

)
, (8)

where Cε ∈ Rm×m is the diagonal covariance matrix of the independent mea-
surement error

Cε = E
[
(ε− E(ε)) · (ε− E(ε))

>
]

= E
[
ε · ε>

]
=


σ2
ε1 0 · · · 0
0 σ2

ε2
...

. . .

0 σ2
εm

 . (9)

For multiple time samples (N > 1) and multiple output signals (m > 1) it holds:

p(ε) =

N∏
k=1

p(ε(tk)) = (2π)−
m·N

2

N∏
k=1

(detCε)
− 1

2 exp

(
−1

2

N∑
k=1

m∑
i=1

ε2i (tk)

σ2
εi

)
. (10)
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4 C. Potthast

In parameter estimation the exact (or true) values θ∗ of the parameter vector θ
are unknown. If during estimation the iteratively determined parameter values
are close to the true values and under the assumption that the model represents
all systematic properties of the process, i.e.

θ → θ∗ : η(t,θ) = 0 ⇒ ε(t) = yM (t)− y(t,θ∗) (11)

the density function for θ → θ∗ can be approximated in the following form:

p(θ) = (2π)−
m·N

2

N∏
k=1

(detCε)
− 1

2 exp

(
−1

2

N∑
k=1

m∑
i=1

(
yM (tk)− y(tk,θ)

)2
σ2
εi

)
. (12)

2.2 The Fisher-Information Matrix

The general formula for the Fisher-information matrix at a parameter vector θ̂
is derived from the probability density function and is as follows:

I(θ̂) = E

[
∂ log p(θ)

∂θ

∣∣∣∣
θ̂

· ∂ log p(θ)

∂θ

∣∣∣∣>
θ̂

]
. (13)

Due to the log function the gradient from Eq. (12) has the compact form:

∂ log p(θ)

∂θ
=

N∑
k=1

m∑
i=1

yM (tk)− y(tk,θ)

σ2
εi

· ∂ y(tk,θ)

∂ θ

=

N∑
k=1

(
∂ y(tk,θ)

∂ θ

)>
·C−1ε ·

(
yM (tk)− y(tk,θ)

)
.

(14)

Some further calculations and simplifying assumptions stated in [3] lead to

I(θ̂) =

N∑
k=1

((
∂ y(tk,θ)

∂ θ

)>∣∣∣∣∣
θ̂

·C−1ε ·
(
∂ y(tk,θ)

∂ θ

)∣∣∣∣
θ̂

)

=

N∑
k=1

(
S>y
∣∣
tk,θ̂
·C−1ε · Sy|tk,θ̂

)
.

(15)

The Fisher-information matrix I ∈ RL×L is a symmetric positive semidefinite
matrix, which can be calculated easily as summation over all instants of time.
The only necessary quantities are the constant covariance matrix of measurement
noise Cε and the time-variant output sensitivity matrix Sy. Both are briefly
described in sections 2.4 and 2.5.

In order to achieve comparability between parameters often the normalized
Fisher matrix In(θ) is used. Since parameter values may differ by several orders
of magnitude, I(θ) is multiplied from left and right with a diagonal matrix with
parameter values on its main diagonal

In(θ) = θ>IL I(θ)IL θ, (16)
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where IL is the L × L identity matrix. It is worth mentioning that parame-
ter values of zero pose a problem to the described normalization because the
corresponding normalized sensitivity is set to zero and erroneous zero rows and
columns appear in In. The problem may be handled by setting zero parame-
ters to small values instead or, if reasonable, by renouncing normalization at all.
Although the selection algorithm introduced in section 3 is based upon the nor-
malized Fisher matrix this is not absolutely necessary since the algorithm uses a
parameter individual assessment, where the comparability between parameters
is virtually unnecessary.

2.3 Parameter Variances

The Cramér-Rao inequality
Cθ ≥ I−1(θ∗) (17)

says that the inverse Fisher-information matrix is a lower bound for the covari-
ance matrix Cθ of the parameter estimation error [5], [6], [7], where Cθ is defined
by:

Cθ = E
[
(θ − θ∗) · (θ − θ∗)>

]
. (18)

The algorithm for evaluation of information content of measurements introduced
in section 3 uses the square roots of the main diagonal elements of I (or In
respectively), i.e. the standard deviations for individual parameters j

σθj =
√
I−1jj (θ∗), j = 1, . . . , L. (19)

2.4 Covariance of the Measurement

There are several reasonable possibilities to determine the covariance of the
uncoupled measurement error Cε used in Eq. (15). Three are specifyed below:

a) Stationary Measurement Phase If the measurement contains stationary
periods of time the variance can simply be determined as sample variance

σ2
εi =

1

Nstat

Nstat∑
k=1

(
yMi,stat(tk)− ȳMi,stat

)2
(20)

from the Nstat measurement samples assumed to be stationary or as in [8]: with
Nstat − 1 in the denominator of Eq. (20). The constant value ȳMi,stat is the mean
value of the Nstat measured samples under consideration.

b) Difference between Measurement and Simulation In dynamic mea-
surements it is often impossible to find time periods, which can be regarded as
stationary. In these cases a formula proposed in [9] may be used:

σ2
εi =

1

N − L

N∑
k=1

(
yMi (tk)− yi(tk,θ)

)2
. (21)
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6 C. Potthast

c) Data Sheet The third possibility is to exploit given or known information
about the applied sensor, e.g. from the sensor manufacturer’s data sheet or just
from experiential knowledge of experts.

2.5 Sensitivities

It should be pointed out that in this context the sensitivities are the local output
sensitivities and should not be mixed up with the global sensitivities, whose
meaning and method of calculation is completely different [10]. Basically there
are three different options for determining the local output sensitivities:

a) Sensitivity Differential Equation System Defining shorter forms of state
and output sensitivity as

Sx =
∂x

∂θ
, Sy =

∂y

∂θ
(22)

both can be calculated using the sensitivity differential equation system (SDES)

Ṡx =
∂f

∂x
Sx +

∂f

∂θ
, t > 0 , Sx(0) =

∂x0

∂θ

Sy =
∂h

∂x
Sx +

∂h

∂θ
, t ≥ 0.

(23)

Eq. system (23) is usually created with a computer algebra system using symbolic
differentiation and solved numerically afterwards.

The advantage of solving the SDES over other methods like the simple dif-
ference quotient (see following paragraph) is that the resulting sensitivities are
very precise, if the numerical integration is handled well. The main drawback
of this kind of calculation is that the model must be able to be formulated as
continuous ODE system as stated in Eq. (1). For many practical models this
is already a criterion of exclusion, because models of real processes in indus-
try often contain switching parts like lookup tables or other types of switching
operations that require case-by-case analysis. Furthermore solving of the SDES
together with the model equations can be computationally expensive due to a
large number of state variables.

b) Difference Quotient If model equations are not accessible directly or
switching parts are included, often the simple difference quotient, which is basi-
cally equivalent to an external numerical differentiation, is used. The sensitivity
vector sj , i.e. the derivative of all outputs to a single parameter θj , arises from:

sj(t) =
∂y(t,θ)

∂θj
≈ y(t,θ +∆θjej)− y(t,θ)

∆θj
, j = 1, . . . , L, (24)

where ∆θj is the deflection of the j-th parameter that can be positive (forward)
or negative (backward). ej ∈ RL is the j-th unit vector. The major drawback
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of this procedure is the accuracy that decreases with larger absolute deflections
|∆θj |. On the other hand very small deflections lead to catastrophic cancellation
[11]. In addition to simple forward and backward differences also methods of
higher order (two-sided and fourth-order differences) are common. A guiding
value for choosing ∆θj depending on machine precision, reference point and
method order is given in [12].

c) Automatic Differentiation Another important variant for calculating sen-
sitivities is automatic differentiation (AD). Assuming the model is available as
computer code (in the first instance C-Code) the idea is to create a second code
that calculates the necessary derivates by exploiting the chain rule additionally
to the model equations itself, see [13], [14] and many others.

3 The Selection Algorithm

The purpose of the selection algorithm is to find measurements or just measure-
ment parts with high information content with respect to a subsequent parameter
optimization. A reverse interpretation, i.e. finding the least informative parts, is
also reasonable and intended. Since the Fisher matrix is summed up over time
and can be interpreted as measure for information content, every time sample
increases information. Information increase in turn is reflected in parameter vari-
ance decrease, which is used as measure for importance. For practical reasons
measurements are analysed section-wise instead of sample-wise from start to
end. Based on a threshold value the proposed algorithm decides from section to
section whether it is important or not. Algorithm 1 gives the selection process
as pseudocode.

Since the decision about section importance is made immediately and to-
gether with past sections the algorithm is suitable and explicitly designed for
online usage. However, for the sake of clarity Algorithm 1 demonstrates the
offline use case. The first step (line 1) is partitioning the measurement in Ns sec-
tions. It is worth mentioning that these sections may, but need not be of equal
length. The first section acts as initialization for a global Fisher matrix rep-
resenting the collected information of all important sections (line 2). The outer
for-loop (line 5) runs over all sections and combines the new information with the
already selected one (line 7). Inside the inner for-loop, that runs over all param-
eters, a section is chosen as important if at least one parameter related standard
deviation decreases by at least the predefined percentage threshold value δthr
(line 10). A positive decision for any parameter updates the global information
(line 11), while a negative decision dismisses the combined information without
global update.

Before a continued and summarizing discussion of assumptions and limits of
the proposed algorithm is given in section 3.2, the following section 3.1 demon-
strates algorithm as well as results with the help of a simple DC motor model.
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Algorithm 1 Calculate set of important sections S
1: Split measurement(s) in Ns sections
2: Iglobal ← calculate Fisher-information matrix for section 1 acc. to Eq. (15)
3: σglobalθ ← main diagonal from inverted Iglobal (Eq. 19)
4: S ← {1} // set section 1 as first element of set of important sections
5: for i = 2 to Ns do
6: I local ← calculate Fisher-information matrix for section i acc. to Eq. (15)
7: Icomb. ← Iglobal + I local
8: σcomb.θ ← main diagonal from inverted Icomb. (Eq. 19)
9: for j = 1 to L do

10: if σcomb.θj
≤ σglobalθj

· (1− δthr/100) then

11: Iglobal ← Icomb. ; σglobalθ ← σcomb.θ

12: S ← S ∪ {i} // add section i to set of important sections
13: break
14: end if
15: end for
16: end for
17: return S

3.1 Exemplary DC motor model

The exemplary motor model is an adapted version from [15] with external load
torque and mechanical transmission. The model equations are as follows:

ẋ(t) =

[
İ(t)
ω̇(t)

]
=

[
−R/L −c/L
c/J −D/J

]
·
[
I(t)
ω(t)

]
+

[
1/L 0

0 −1/(i·J)

]
·
[
U(t)
TL(t)

]
y(t) =

[
I(t)
ωm(t)

]
=

[
1 0

0 30/π

]
·
[
I(t)
ω(t)

]
.

(25)

The equivalent circuit is shown in Fig. 1(a). Model inputs are voltage U and
load torque TL, outputs are armature current I and angular velocity ωm in the
non-SI unit rpm. All parameters (R, L, D, J , i, c) are assumed to be unknown. In
order to design the model being more realistic in terms of the target applications
(ECU functions) the motor constant is modelled as 1D-lookup table c = c(U),
i.e. the actual value of c depends on the input voltage and has to be interpolated
between supporting points as shown in Fig. 1(b).

Assuming that there is no need for the 1D-lookup table to fulfil a particu-
lar shape requirement (e.g. monotony), it is transformed into six independent
parameters c1, . . . , c6 in place of c and hence extending the length of parameter
vector θ from 6 to 11.

Fig. 2 shows the preconceived inputs as well as the output measurements
generated synthetically by a simulation with true parameters θ∗ (black line)
with superimposed white noise in accordance with Eq. (4). The green lines show
simulation results obtained with parameter start vector θ0. Amongst others
Table 1 lists the values of θ0 and θ∗.
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(a) Equivalent circuit.
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(b) Lookup table for motor constant c.

Fig. 1. Input and output signals for the DC motor model.
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Fig. 2. Input and output signals for the DC motor model.

Since the model outputs have different ranges of values, the normalized root
mean square error (NRMSE), see Eq. (26), is used as scalar dimensionless error
measure for both outputs together.

NRMSE(θ) =

√√√√√ N∑
k=1

(
IM (tk)− I(tk,θ)

)2
∆I2

+
N∑
k=1

(
ωMm (tk)− ωm(tk,θ)

)2
∆ω2

m

2N
(26)

In contrast to Eq. (3) the residuals are normalized with the corresponding ranges
of values ∆I and ∆ωm that are obtained from the deterministic measurement
parts I(t,θ∗) and ωm(t,θ∗):

∆I = ∆I(θ∗) = max (I(t,θ∗))−min (I(t,θ∗))

∆ωm = ∆ωm(θ∗) = max (ωm(t,θ∗))−min (ωm(t,θ∗)) .
(27)
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10 C. Potthast

Table 1. Different predefined / optimized parameter sets with resulting NRMSE values

Symbol R L D J i c1 c2 c3 c4 c5 c6 NRMSE
Unit Ω H kg/(m2s) kg m2 – —————— Nm/A —————– –

θ∗ 9.0 2.0 0.1 0.1 1.2 0.9 1.5 2.0 2.1 2.3 2.6 0.0499
θ0 1.8 7.0 0.2 0.05 4.2 0.18 4.5 0.2 7.14 4.6 2.08 0.5760
θ̄{1,...,37} 8.67 2.05 0.10 0.10 1.18 0.00 2.20 1.99 2.13 2.30 2.62 0.0497
θ̄S 8.13 2.01 0.10 0.10 1.32 0.00 2.35 1.96 2.15 2.33 2.63 0.0504
θ̄R1 7.60 2.22 0.10 0.09 4.20 7.93 1.70 2.01 2.18 2.35 2.67 0.1155
θ̄R2 8.39 2.04 0.10 0.11 1.19 0.29 2.42 2.04 2.35 2.04 2.63 0.0550
θ̄R3 9.84 1.99 0.10 0.09 4.20 5.54 26.91 2.07 2.05 2.21 2.59 0.1194

As it is recorded in Table 1 the true parameters θ∗ lead to a NRMSE of
0.0499 which pretty much reflects the predetermined standard deviations that
originally have been put into the noise distributions for the measurement gener-
ation, i.e. NI

(
0, (0.05·∆I)2

)
for the current output and Nωm

(
0, (0.05·∆ωm)2

)
for the angular speed output respectively. The largest NRMSE in Table 1 is
unsurprisingly produced with the start parameters θ0, which are intentionally
designed to give a worse fit, while the lowest NRMSE is the result of an opti-
mized vector θ̄{1,...,37} based upon the complete measurement and hence can be
regarded as reference. The index set {1, . . . , 37} indicates that the time samples
from all 37 sections have been used for optimization, since the total measure-
ment period of 10 s has been partitioned into 37 sections of nearly equal length,
see visualization in Fig. 3 (left).

The relevant quantities for the selection algorithm are the standard deviations
that are calculated according to Eq. (19) on the basis of the normalized Fisher
matrix Eq. (16). The required covariance of measurement noise Cε is a diagonal
matrix with the variances used in the already mentioned noise distributions
NI and Nωm

on the main diagonal. The required sensitivities are calculated
using difference quotient formula Eq. (24) since the tabled motor constant c
complicates the creation of the SDES, see Eq. system (23), drastically. The
threshold value δthr is set to 60 %.
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Fig. 3. Normalized standard deviations if the complete measurement is considered
(left) and if only the most important sections (set S) are considered (right).
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Fig. 3 depicts the resulting parameter variations: on the left every instant of
time is used for calculation while on the right it is assumed that the selection
algorithm has been applied and each not selected section is skipped and high-
lighted black. As can be seen in Fig. 3 (right) the deviations are monotonically
decreasing within each of the 11 sections in set S while remaining constant in
the unpicked ones. It should be mentioned that all standard deviations start at
∞ and only accept real numbers when the corresponding parameter becomes
sensitive for the first time.

The optimization result with all sections in S is given in Table 1 followed
by three results for performance comparison purposes. The latter use section
sets R1, R2 and R3 containing as many randomly selected sections as contained
in S. Of course, the given NRMSE values are calculated on the basis of the whole
measurement and not only for the underlying measurement subset, i.e. the pa-
rameter set after optimization is used for a subsequent simulation of the whole
10 s and the result is put into Eq. (26). It turns out that the measurement parts
in S produce a fit only slightly worse than the reference, while a random selec-
tion is less reliable performing sometimes comparably well (R2) and sometimes
significantly worse (R1, R3).

3.2 Assumptions and Limitations

Some characteristics of the selection algorithm deserve further discussion:

– In view of measurement period reduction an unambitious partitioning gen-
erally leads to a couple of measurement snippets that are hard or impossible
to combine into a realizable test run. Therefore a more anticipatory segmen-
tation is essential for practical usage.

– In view of computation time reduction during optimization an adequate
segmentation is also important since stopping the simulation and restarting
at arbitrary points without having simulated the parts in between changes
the characteristics of a dynamic model.

– The threshold value δthr is the main tuning parameter of the algorithm. It
may vary between 0 % (select everything) and 100 % (select nothing except
for section 1). The choice depends on the desired share of important seg-
ments. Values between 40 % and (more ambitious) 80 % have turned out to
be sensible.

– The measurement section order is crucial for the resulting set S. For online
usage this is logical and unavoidable if an immediate decision is necessary.
For offline usage it always has to be taken into account that the algorithm’s
decision is based upon the preceding measurements.

– Since the theory only holds for models without systematic errors, see Eq. (11),
and true parameters, the used start parameter values should not be too far
away from the true ones. Real applications in the context of ECU function
calibration allow the use of start parameters from previous projects and
therefore satisfy this precondition.
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– It would be unreasonable to expect that the algorithm always finds either
the best sections or only the necessary ones. It must be kept in mind that
the basis is just a stochastic analysis not necessarily valid for every single
spot check. Also the fitting quality depends strongly on the last link in the
chain: the optimization algorithm.

4 Real industry applications

Two applications show how the algorithm can be applied beneficially in industry.

4.1 Shortening of a Standard Measurement Program

The goal of the first application is to shorten an established measurement pro-
gram used for calibration of an ECU function that calculates temperatures in the
exhaust gas system of a passenger car. The task for the calibration engineer is to
carry out the measurements and tune 59 parameters so that the model predicts
measured temperatures as good as possible. The original program requires a car
ride of several hours in total. For reasons of confidentiality more details about
the model’s interior structure and the measuring process cannot be revealed.

Although the function has two output signals (temperatures of exhaust gas
and exhaust pipe), Fig. 4 only shows gas temperatures for the benefit of a more
compact presentation. The upper digram in Fig. 4 shows the standard test run
consisting of 11 independent real measurements separated by vertical lines. The
measurement order does not matter, they are just plotted one after another in
the same diagram in order to save space and to show the total length.
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Fig. 4. Temperature characteristics of original and shortened measurement program.
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The segmentation for Algorithm 1 is done in such a way that some sections,
which are necessary for preserving the conventional test run structure, are pre-
selected. Using a threshold value δthr = 40 % the result from Algorithm 1 after
some manual tuning leads to a shorter test run that was put into practice, see
lower graph in Fig. 4.

Two optimizations of original and shortened test run result in different pa-
rameter sets reducing the initial error from approx. 60 ◦C to 11 ◦C in both cases.
Applied to a third comparison measurement the two parameter sets produce
similar good fits. The RMSE for parameters from the standard test is 11.78 ◦C
and the parameters from the short test run lead to 12.67 ◦C. The slight worsen-
ing of almost 1 ◦C is very acceptable in view of the achieved time reduction of
67 % and the related cost saving.

4.2 Online Parametrization of Connected Cars

The second application deals with calibration data selection in the context of
the Connected Car [16]. The use case is to decide online which parts of the car’s
recorded data is of value for calibration. The benefit from connecting cars in
this setting is that parametrization can be carried out not only for a single car
but for a fleet as well. Measurements can be transferred to a central cloud space
or server and updated parameters can be sent back and flashed into the ECU
software. The need for an importance decision of measurement data right in the
car is caused by limitations of the data transmission via mobile net: the limiting
factor is either bandwith (3G network) or cost (4G network).

The Connected Car application of this measurement selection algorithm is
also subject of a related published patent application [17].

5 Conclusion

In this paper an algorithm was presented that distinguishes important measure-
ment parts from unimportant ones. The algorithm may either be used online dur-
ing the test run for immediate decisions as used e.g. for reducing measurement
data being transferred via mobile network in the Connected Car application, see
section 4.2. Or it may be used offline for analysing and shortening of pre-built
measurement plans as shown for the exhaust temperature ECU function, see
section 4.1.

Currently the simplest method for sensitivity calculation is used: the differ-
ence quotient. Especially in the context of ECU software it should be switched
to automatic differentiation. Future work will concentrate on a modified version
of the algorithm focussing on offline uses cases where the order in which the
algorithm reads the measurement sections should no longer affect its selection
result. The future calibration trend towards Big Data (i.e. measure and record
everything) will increase the need for thinning out measurements and will open
up further beneficial applications for the selection of important measurements
parts.
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