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Abstract. Yield estimation of antenna systems is important to check their robust-

ness with respect to the uncertain sources. Since the Monte Carlo sampling-based 

real physics simulation model evaluations are computationally intensive, this 

work proposes the polynomial chaos-Kriging (PC-Kriging) metamodeling tech-

nique for fast yield estimation. PC-Kriging integrates the polynomial chaos ex-

pansion (PCE) as the trend function of Kriging metamodel since the PCE is good 

at capturing the function tendency and Kriging is good at matching the observa-

tions at training points. The PC-Kriging is demonstrated with an analytical case 

and a multi-band patch antenna case and compared with direct PCE and Kriging 

metamodels. In the analytical case, PC-Kriging reduces the computational cost 

by around 42% compared with PCE and over 94% compared with Kriging. In the 

antenna case, PC-Kriging reduces the computational cost by over 60% compared 

with Kriging and over 90% compared with PCE. In both cases, the savings are 

obtained without compromising the accuracy. 

Keywords: Yield estimation, microstrip multi-band patch antenna, Monte 

Carlo sampling, PCE, Kriging, PC-Kriging. 

1 Introduction 

Yield is the metric for checking the reliability of antenna system with respect to the 

uncertainties due to the manufacturing process [1, 2]. In particular, yield is the percent-

age of designs satisfying the design specifications. The process of yield estimation can 

be completed by running arbitrary number of high-fidelity simulation models [1], such 

as full-wave electromagnetic (EM) model [3], using Monte Carlo sampling (MCS) [4]. 

The high-fidelity physics model evaluations are typically time-consuming, making the 

MCS-based yield estimation computationally prohibitive. 

Metamodeling techniques [5, 6] are widely used to alleviate the computational bur-

den. There are generally two types of metamodels, data-fit metamodels [7] and multi-

fidelity metamodels [8]. Data-fit metmodels utilize the high-fidelity physics-based sim-

ulation model evaluations as training points, while the multi-fidelity metamodels can 

make use of physics-based simulation models of varying degree of accuracy. Multi-
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fidelity metamodels can be efficient when fast and good low-fidelity models are avail-

able. Data-fit metamodeling is more versatile because only one level of simulation 

model is needed. 

Advanced data-fit metamodels have been successfully used for antenna system mod-

eling and design at reduced computational costs. Rama Sanjeeva Reddy et al. [9] intro-

duced the radial basis function neural network into design of multiple function antenna 

arrays and obtained a success rate as high as 98%. Koziel et al. [10] constructed the fast 

data-fit Kriging metamodel as part of multi-objective design optimization of antennas 

handling arbitrary number of objective functions. Du et al. [11] introduced the PCE 

method for statistical metamodeling of the far field radiated by antennas undergoing 

random disturbances and validated the PCE model with a deformable canonical an-

tenna. 

This work introduces the PC-Kriging metamodel [12] for the yield estimation of 

multi-band patch antenna systems. PCE [13] is well-known for capturing the tendency 

of the objective function, whereas Kriging [14] handles the observation values at train-

ing points well. The PC-Kriging technique aims at integrating the advantages of both 

metamodeling methods expecting fewer training points required for constructing a re-

liable and fast model in lieu of the computationally expensive high-fidelity simulation 

model. This work demonstrates the PC-Kriging technique for the yield estimation of a 

multi-band patch antenna case. 

The remainder part of this paper is organized as follows. Section 2 provides the de-

tails formulating the yield estimation of antenna. Section 3 describes the metamodeling 

methodologies, including Kriging, PCE and PC-Kriging, utilized in this work. Then all 

metamodeling techniques are demonstrated and compared on numerical examples in 

Section 4. This papers ends with conclusion in Section 5. 

2 Yield Estimation of Antennas 

Let the antenna response of interest, evaluated using EM simulation models, be denoted 

by R(x), and x is the vector containing deterministic/uncertain design parameters. Let 

x0 represent the nominal design under ideal conditions. Let dx be the disturbance due 

to the manufacturing tolerances or uncertainties existing in the antenna system, and can 

be sample using pre-define empirical probabilistic distributions. Therefore, the actual 

designs taking the tolerances and uncertainties under consideration can be represented 

as x0 + dx. 

Now a counting function H(x) can be set up as [2] 

1,  if ( ) satisfied the design specifications
( )

0,  otherwise
H


 


R x
x      (1) 

Then the yield at the nominal design introduced above, i.e., the percentage of satifying 

designs out of the total designs, can be given as 

0 0

1
( ) [ ( )] / ,

N j

j
Y H d N


 x x x           (2) 
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where dx j, j = 1, 2, …, N, are the disturbances with pre-assigned empirical probabilistic 

distributions as introduced above. 

3 Methods 

This section describes the mathematical details of formulating the metamodeling meth-

ods, including Kriging, PCE and PC-Kriging. This work considers the response feature 

approach proposed by Koziel et al. [2], which can reduce the complexity of problem 

constructing metamodel for response of interest at specific frequencies rather than mod-

eling the whole signal. 

 

3.1 Kriging 

Kriging metamodeling technique is a type of Gaussian process regression, which takes 

the training points as the realization of the unknown random process. The generalized 

Kriging formulation [14] is the sum of a trend function fT(x)β and a Gaussian deviation 

term Z(x) as follows 

( ) ( ) ( )Kr TM Z x f x β x ,            (3) 

where f(x) = [f0(x), …, fp-1(x)]T  ℝp is defined with a set of the regression basis 

functions,  = [ꞵ0(x), …, ꞵp-1(x)]T  ℝp denotes the vector of the corresponding 

coefficients, and Z(x) denotes a stationary random process with zero mean, variance and 

nonzero covariance. In this work, Gaussian exponential correlation function is adopted 

with the form 

 
22

1

, ' exp '
m

k k k

k

R x x 


 
   

 
x x ,        (4) 

where θ = [θ1, θ2, …, θm]T denotes the vectors of unknown hyperparameters to be tuned. 

The Kriging predictor for any untried x can be written as 

1ˆ ˆ( ) ( ) ( ) ( ),Kr T T

SM   x f x β r x R M Fβ           (5) 

where a linear trend function f = [1, x1, x2, …, xm]T is used in this work, Fij = fj(xi) where 

i = 1, 2, …, N, j = 1, 2, …, N+1, N is the total number of training points, β̂  comes from 

generalized least squares estimation, r is the correlation vector between the point to be 

predicted (xpred) and training set points, here ri = R(xpred, xi; θ), R is the correlation matrix 

among training points with Rik = R(xi, xk; θ) where i, k = 1, 2, …, N, MS is the model 

response of the training points. β and σ2 are given by 

1 1 1( )T T

S

  β F R F G R M ,           (6) 

and 
2 11/ ( ) ( )T

S SN   M Gβ R M Gβ .         (7) 
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The maximum likelihood estimation on θ is found by solving 

21
arg min( log(det( )) log(2 ) / 2)

2 2

N
R N  θ .      (8) 

3.2 Polynomial Chaos Expansion 

PCE has the generalized formulation as follows [13] 

1

( ) ( ),PC

i i

i

M 




x Ψ x             (9) 

where xℝm is a vector with random independent components described by a probabil-

ity density function fX, MPC(x) is a map of x, i is the index of ith polynomial term, Ψi 

are multivariate polynomial basis functions, whereas αi are their corresponding expan-

sion coefficient. In practice, a truncated form of the PCE is used 

1

( ) ( )
P

PC

i i

i

M 


x Ψ x ,           (10) 

where MPC(x) is the approximate truncated PCE model, and P is the total number of 

sample points, which can be calculated as 

( )!
,

! !

p n
P

p n


             (11) 

where p is the order of the PCE, and n is the total number of random input variables. 

The coefficient vector α is found by solving a least-squares minimization problem 

ˆ argmin [ ( ) ( )].TE M  α α x x          (12) 

In this work, the least-angle regression (LARS) method is used to solve (12) by adding 

an L1 penalty term 

1
ˆ argmin [ ( ) ( )]TE M    α α x x α ,         (13) 

where λ is a penalty factor, ||α||1 is the L1 norm of the coefficients of PCE. 

3.3 Polynomial Chaos-Kriging 

PC-Kriging [12] is a recently developed class of metamodels that integrates the PCE 

and Kriging metamodels. In particular, PCE is utilized as the trend function for the 

Kriging metamodel. The modeling flow is as follows: 

1. Obtain observations (training points) from the physics-based simulation model. 

2. Generate a PCE model following Section 3.2. 

3. In Step 2, LARS technique selects the “important” basis terms, meaning those 

most correlated with the model response. 
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4. Plug those “important” basis terms into (5), then construct the Kriging model. 

4 Numerical Examples 

The proposed PC-Kriging metamodeling technique is demonstrated on two numerical 

examples in this section. The first example is the modeling of a short column function 

which was first utilized by Eldred et al. [15] for demonstrating uncertainty quantifica-

tion. The second example is a multi-band patch antenna system which has normal dis-

tributions of zero mean and standard deviation of 0.08 mm modeling the disturbances 

[2]. 

4.1 Short Column Function 

The short column function [15] models a structural column with uncertainties due to 

the material properties. The function is given as 

2

2 2 2 2

4
( ) 1

M P
f

bh Y b h Y
  x ,          (14) 

where b is the width of the cross section and equals 5 mm, h is the depth of the cross 

section and equals 15 mm, Y, M and P are the uncertain parameters in this case and Y ~ 

Lognormal(5, 0.5) MPa is the yield stress, M ~ Normal(2,000, 400) MNm is the bend-

ing moment, and P ~ Normal(500, 100) MPa is the axial force. 

In this case, we set up the 1% of standard deviation (σ) of the testing points as the 

accepted root mean squared error (RMSE). Figure 1 shows the plot of the RMSE of all 

three metamodeling techniques versus the number of training points. The plot shows 

that all metamodeling approaches can reduce the RMSE when increasing the total num-

ber of training points. The Kriging, PCE and PC-Kriging metamodels, however, need 

different number of samples to reach the 1%σtesting accuracy. In particular, Kriging 

needs around 1,200 training points and PCE around 120 training points, whe- 
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Fig. 1. Metamodeling accuracy versus the computational cost. 

reas PC-Kriging requires only around 70 training points. Thus, PC-Kriging needs 

around 42% fewer samples than PCE and around 94% fewer than Kriging. In this case, 

the PC-Kriging metamodel at each number of training points utilizes a 14th degree of 

the PCE as the trend function. 

4.2 Multi-Band Patch Antenna 

The geometry of the microstrip dual-band patch antenna utilized in this work is given in 

Fig. 2. The antenna is implemented on a 0.762 mm thick Taconic RF-35 dielectric sub-

strate (εr = 3.5). The independent geometry parameters are x = [L l1 l2 l3 l4 W w1 w2 g]T. 

The EM model R is implemented in CST [1, 2]. The nominal design, corresponding to 

the antenna resonances allocated at the frequencies 2.4 GHz and 5.8 GHz, is x0 = [14.18 

3.47 12.44 5.06 15.56 0.65 8.29 5.60]T (all dimensions in mm). 

The antenna yield is estimated for the following specs: |S11| ≤ –10 dB for both 2.4 

GHz and 5.8 GHz. It is assumed that Gaussian distribution of the geometry deviation 

vector dx has a zero mean and a standard variance of 0.08 mm. The parametric study on 

the convergence of the yield value versus the number of training points is shown in Fig. 

3. The PCE, Kriging and PC-Kriging metamodeling approaches are compared with the 

direct Monte Carlo sampling technique involving 500 EM evaluations of R. 
As shown in Table 1, to reach satisfactory yield estimations, the PCE and Kriging 

require around 200 and 50 training points, respectively. The proposed PC-Kriging re-
quires only 20 training points. Thus, in this case the PC-Kriging needs over 90% fewer 
samples than PCE and more than 60% fewer samples than Kriging. 
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Fig. 2. Geometry of the dual-band patch antenna. 

Table 1. Computational cost for satisfactory yield estimation of the multi-band patch antenna. 

Geometry Methodology Yield Estimation Number of Samples 

Gaussian 

σ = 0.08 mm 

EM Model 0.490 500 

PCE 0.580 200 

Kriging 0.532 50 

PC-Kriging 0.528 20 

 

Fig. 3. Convergence of yield estimation as a function of the number of training points for the 

considered metamodeling techniques as well as direct EM-based Monte Carlo simulation. 
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5 Conclusion 

The PC-Kriging metamodeling technique has been proposed for rapid multi-band patch 

antenna yield estimation. PC-Kriging aims at combining the advantages of both PCE 

and Kriging metamodels for a further reduction on the computational cost. The results 

of multi-band patch antenna yield estimation show that PC-Kriging can be used to es-

timate the yield at a significantly lower computational cost than using Kriging or PCE. 

Further studies are needed to fully determine how the well proposed approach works. 

Future work will also consider problems of higher complexity. 
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