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Abstract. Understanding the evolution of atomistic systems is essential
in various fields such as materials science, biology, and chemistry. The
gold standard for these calculations is molecular dynamics, which sim-
ulates the dynamical interaction between pairs of molecules. The main
challenge of such simulation is the numerical complexity, given a vast
number of atoms over a long time scale. Furthermore, such systems of-
ten contain exponentially many optimal states, and the simulation tends
to get trapped in local configurations. Recent developments leverage the
existing temporal evolution of the system to improve the stability and
scalability of the method; however, they suffer from large data storage
requirements. To efficiently compress the data while retaining the basins
of attraction, we have developed a framework to determine the accept-
able level of compression for an optimization method by application of
a Kantorovich-type theorem, using binary digit rounding as our com-
pression technique. Choosing the Lennard-Jones potential function as a
model problem, we present a method for determining the local Lipschitz
constant of the Hessian with low computational cost, thus allowing the
use of our technique in real-time computation.

Keywords: lossy compression · basins of attraction · nonlinear opti-
mization · Lennard-Jones potential.

1 Introduction

Simulating atomistic evolution is essential for predicting materials properties for
use in materials science, chemistry, and biology. Molecular dynamics (MD), the
gold standard for atomistic simulations, simulates the interactions of atoms and
molecules for a fixed period of time [1, 14]. The limited temporal scale is inherent
from the system’s sequential nature but poses great challenges for observing var-
ious transitions on MD time scales. Recent advances leverage statistics and mas-
sively parallel computers to accelerate the simulations, such as the accelerated
molecular dynamics method [18, 15] and the parallel replica dynamics method
(ParRep) [19]. In particular, the parallel trajectory splicing method (ParSplice)
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[12], as a generalization of ParRep, has drawn much attention in recent years
because of its superior computational performance by utilizing large-scale high-
performance computers to parallelize the state-to-state simulations in the time
domain. One major burden, however, is the need to store all the local minimizers
computed in the long MD simulation, since they are used as the initial guess for
the next state simulation. Since the number of local minimizers is exponential
in the number of atoms, storage space must be conserved, even though each
individual minimizer is a small set of numbers (e.g., 3D coordinates of the atom
positions). Lossy compression of these local minimizers can potentially result in
significant savings. By compressing the values, we can cache more values locally
on the compute node and send/receive less information from the global database.
However, a critical step is to identify the basins of local convergence for a par-
ticular numerical method. As long as the compressed data stays in the same
basin, we can recover the local minimizer by applying the numerical method to
the stored iterate.

In this work, for an atomic system and Newton’s method as the underly-
ing solver, we employ a Kantorovich-type theorem for studying the basins of
attraction of potential energy minima. We propose a mathematical framework
to estimate bounds for the compression level of an optimizer when using binary
digit rounding as the compression routine. One critical step is to calculate the
required information, namely, the local Lipschitz-type constant of the function’s
derivative. As the system gets large, an analytic expression for this information
is likely impossible. Therefore, a robust method to approximate this informa-
tion is required. By exploring the topology of the potential energy landscape,
we propose an efficient way to estimate the required constant. We prototype
our method on the simple, yet common, Lennard-Jones potential function and
validate our approach on various numerical examples.

2 Minimization of Lennard-Jones Potential

Given a configuration of n atoms in a cluster X = {x1, . . . ,xn}, we consider the
Lennard-Jones (LJ) potential function [8], a simplified model that simulates the
potential energy of the cluster based on inter-atom distances:

V̂n(X) = 4ε
∑
i<j

( σ

d̂(xi,xj)

)12

−

(
σ

d̂(xi,xj)

)6
 , (2.1)

where d̂(xi,xj) is the Euclidean distance between atoms xi,xj ∈ R3. The physi-
cal constants ε and σ are the depth of the potential well and inter-atom reaction
limit, respectively, both depending on the type of atom. Because of its impor-
tance in computational chemistry, finding optimal configurations that locally
minimize the potential energy (2.1) remains an active research area. For exam-
ple, Maranas et al. [10] proposed an exotic optimization algorithm to find many
stationary points, and Asenjo et al. [3] studied the mapping of the basins of
attraction for various optimization algorithms.
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Fig. 1: Left: landscape of function V2 given x2 as its only free variable. Right:
landscape of function V3 with reduced dimension by setting x2 = 21/6 (its equi-
librium distance) with DOF x3, y3.

In this work, we follow the longstanding convention in [7] and consider the
reduced-unit optimization problem3

min
X

Vn(X) =
∑
i<j

(
1

d(xi,xj)12
− 1

d(xi,xj)6

)
, (2.2)

whereby we set d(xi,xj) =
d̂(xi,xj)

σ
and Vn =

V̂n
4ε

to eliminate the parameters

in (2.1). The coordinates of the atoms xi = (xi, yi, zi), i = 1, . . . , n are unknown
variables; and we fix atom 1 at (0, 0, 0), atom 2 at (x2, 0, 0), and atom 3 at
(x3, y3, 0). In addition to eliminating the need to postprocess a collection of dis-
tances in order to visualize the system, using coordinates in this manner offers
some mathematical advantages. First, for n ≥ 3 the function Vn has 3n− 6 de-
grees of freedom (DOF), while the pairwise distance formulation has O(n2) DOF.
Second, using coordinates eliminates the need for both configuration feasibility
and non-negative constraints on the variables, resulting in an unconstrained op-
timization problem. Third, fixing the coordinates of atoms 1–3 in the described
manner ensures distinguishable minimizers with reduced quantity. However, the
reduced LJ potential function Vn still has O(exp(n2)) unique minimizers [7], and
even enumerating the quantity of local minima of a cluster has been shown to
be an NP-hard problem [21]. Furthermore, each unique minimizer has at least
O(n3) equivalent permutations (for example, by interchange of atom numbering
and rotation).

Figure 1 illustrates the functions V2 and V3, respectively. We can see that
minimizing even such small systems can be challenging. First, when any pairwise
atom distance approaches zero, there exists a singularity in Vn. Second, when
any pairwise distance d(xi,xj) is large, the norm of the corresponding gradient
components are (numerically) very small. That is, there can be an infinite num-
ber of (nearly) critical points when ‖xi‖ → ∞ for some i. As such, a careful

3 Simplifying the units in this manner does not alter the topology of the critical points.
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choice of initial guess is necessary to ensure that the optimization algorithm
converges to the desirable minimizer. Many researchers (e.g., [17, 23]) leverage
geometric principles in their numerical methods to generate initial iterates.

3 Method and Small System Validation

In this section, we survey existing theorems that can guarantee the local conver-
gence of problem (2.2). The application of these theorems allows us to determine
a maximal amount that a local minimizer can be perturbed under a lossy com-
pression technique, while preserving its basin of attraction. That is, the given
optimization algorithm applied to the compressed data point converges to the
same optimal point. To quantify the amount of compression in terms of the
acceptable perturbation, we use binary digit rounding as a simple compression
technique.

For the optimization algorithm applied to recover the minimizer, we use New-
ton’s method to solve the first-order optimality conditions of (2.2), since conver-
gence can be guaranteed under certain conditions when the iterates are near a
root. Among the most well-known convergence results for Newton’s method, the
Kantorovich Theorem (KT) [9] continues to draw attention by many researchers
(e.g., [2, 13, 24]). The crux of the KT result guarantees that a solution X∗ of
Un(X) = V ′n(X) = 0 exists in a neighborhood of a point X(0) under some as-
sumptions, and that Newton’s method converges to X∗ when X(0) is the initial
iterate. Note that KT does not require knowledge of the optimal point, only
information based on the initial iterate, a workflow opposite to our compression
framework where X∗ is given. Instead, we exploit a variant of KT called the ball
of convergence about X∗ that assumes its prior knowledge.

First, we define B(X∗, r) as an open ball in a Banach space B with center
X∗ and radius r > 0, that is, B(X∗, r) = {X ∈ B : ‖X−X∗‖ < r}. In our case,
for any Un, n ≥ 3, we have B = R3n−6, and we choose the Euclidean norm on
B, abbreviating ‖X‖ := ‖X‖2. We use the same convention for the compatible

matrix operator norm, namely, ‖U ′n(X)‖ := ‖U ′n(X)‖2 = max
Y∈B

‖U ′n(X)Y‖2
‖Y‖2

.

Theorem 1. (Rheinboldt [16]) For Un : N ⊆ Rm → Rm, suppose Un(X∗) =
0 and that (U ′n(X∗))−1 exists. Furthermore, for some r1 > 0, there exists a
constant L∗ > 0 such that

‖(U ′n(X∗))−1(U ′n(X)− U ′n(Y))‖ ≤ L∗‖X−Y‖ (3.3)

for all X,Y ∈ B(X∗, r1). Then, if r1 <
2

3L∗
, Newton’s method converges uniquely

to X∗ for any X(0) ∈ B(X∗, r1).

Alternatively, we have the following.
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Theorem 2. (Wang [20]) For Un : N ⊆ Rm → Rm, suppose Un(X∗) = 0 and
that (U ′n(X∗))−1 exists. Furthermore, for some r2 > 0, there exists a constant
L∗∗ > 0 such that

‖(U ′n(X∗))−1U ′n(X)− I‖ ≤ L∗∗‖X−X∗‖ (3.4)

for all X ∈ B(X∗, r2). Then, if r2 ≤ 2
L∗∗

, Newton’s method converges uniquely

to X∗ for any X(0) ∈ B(X∗, r2).

A ball B(X∗, r) satisfying either Theorem 1 or 2 is a ball of convergence for
X∗, and any compressed minimizer that lies in B(X∗, r) preserves the basin of
attraction of X∗ under Newton’s method.

Notice that the given theorems require that Un(X∗) be exactly zero. For com-
puter/numerical calculations this assumption is almost never true. To adapt this
condition, one can perform a comprehensive convergence test for terminating the
iterates to ensure that the sequences {Un(X(k))} and {X(k)} are both converg-
ing. This numerical issue is negligible when accurate minimizers are computed.
All computed X∗ for our numerical tests are accurate to at least 10 decimal
places.

While different lossy compression techniques can be implemented depending
on their intended use, our work focuses on providing a theoretical bound on
the maximum amount of perturbation that any lossy compression scheme can
afford, in order to preserve a basin of attraction. We use significant binary digit
truncation/rounding as the underlying compression technique since it is compu-
tationally cheap to implement and easy to quantify. Furthermore, the resulting
relative perturbations are small and easy to control, since rounding a real number
to c significant binary digits (bits) produces a maximum relative perturbation

of
2−(c+1)

1 + 2−(c+1)
. For example, rounding to 4 significant bits has a maximum rela-

tive perturbation of 3.03%, and to 8 bits with more than 0.0195%, a potentially
significant reduction in memory from the standard 52 significant bits of IEEE
double precision. We use X(0),c to denote X∗ compressed to c significant bits,
which is used as the initial guess for Newton’s method.

To understand the usage of the stated theory and how it may be applied at
large scales, we offer a brief analysis of the 2-atom (1 free variable) LJ potential
function V2. We apply Newton’s method to the first-order conditions of (2.2)
by solving 0 = U2(X) = U2(x2) = −12x−132 + 6x−72 , for x∗2 = 21/6. To apply
Theorems 1 and 2, we must choose radii r1 and r2 small enough to meet their
corresponding Lipschitz inequality. This step may not be straightforward, how-
ever, because both L∗ and L∗∗ depend on r. In this one-dimensional case, we can
explicitly solve for these radii because we know that the maximum values of |U ′2|
and |U ′′2 | are attained at 21/6 − r for any 0 < r < 21/6. We have the following:∣∣∣∣−2184(21/6 − r1)−15 + 336(21/6 − r1)−9

156(21/6)−14 − 42(21/6)−8

∣∣∣∣ < 2

3r1
=⇒ r1 < 0.02432,∣∣∣∣156(21/6 − r2)−14 − 42(21/6 − r2)−8

r2(156(21/6)−14 − 42(21/6)−8)
− 1

r2

∣∣∣∣ ≤ 2

r2
=⇒ r2 ≤ 0.06276.
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Therefore, given the radii needed for different truncations rc = |x(0),c2 − x∗2|,
either the Rheinboldt or the Wang criterion can guarantee that Newton’s method
converges to x∗2 = 21/6 for compression as far as 4 bits (rc = 0.0025). Note that
Newton’s method succeeds beyond the theoretical guarantee for all compressed

x
(0),c
2 down to 1 bit, but it does fail for c = 0, where x

(0),c
2 = 2.0 and the Newton

iterates coincide with large x2 of nearly critical configurations.

In this case, choosing Theorem 1 or 2 does not make a difference in the
amount of binary digit compression. However, the ball of convergence provided
by Theorem 2 can be three times more generous, given the different prefactors
in the radius conditions. More specifically, if the derivative U ′n is linear, for any
configurations X,Y, we have

‖U ′n(X)− U ′n(X∗)‖
‖X−X∗‖

=
‖U ′n(X)− U ′n(Y)‖

‖X−Y‖
.

Provided that U ′n(X) is approximately linear near X∗, then

sup
X∈B(X∗,r)

‖(U ′n(X∗))−1U ′n(X)− I‖
‖X−X∗‖

≈ sup
X,Y∈B(X∗,r)

‖(U ′n(X∗))−1(U ′n(X)− U ′n(Y))‖
‖X−Y‖

.

Thus r2 ≈ 3r1, suggesting that Wang’s theorem can offer a ball of convergence
up to 3 times the size of Rheinboldt’s. Furthermore, the univariate calculation
of L∗∗ in (3.4) is more easily tractable than the bivariate calculation required

in (3.3), in the sense that Y = argsup
X∈B(X∗,r)

{
‖(U ′n(X∗))−1U ′n(X)− I‖

‖X−X∗‖

}
can be

described as a single configuration(s), leading to better estimation of L∗∗(n, r).
For these reasons, we focus on applying Wang’s theorem through the rest of the
paper.

Given the goal to provide a radius r2 guaranteed to satisfy Theorem 2, so
that Newton’s method converges to X∗ for any initial guess X(0),c ∈ B(X∗, r2),
we propose Alg. 1 as the first contribution.

Algorithm 1 Derivation of allowable radius for compression of X∗

1: Given a local minimizer X∗ and radius r > 0 of perturbation in lossy compression,
calculate

L∗∗(n, r) = sup
X∈B(X∗,r)

‖(U ′n(X∗))−1U ′n(X)− I‖
‖X−X∗‖ . (3.5)

2: Define the radius of the convergence ball r2 = min

{
r,

2

L∗∗(n, r)

}
.

3: (optional) If either r � 2

L∗∗(n, r)
or

2

L∗∗(n, r)
� r, choose r̂ between r and

2

L∗∗(r)
, and return to step 1 using r̂.

4: Any compressed value X(0),c ∈ B(X∗, r2) converges to X∗ using Newton’s method.
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Figure 2 illustrates the results of applying Alg. 1 to U6 for various radii to
find an acceptable convergence ball radius. The curve for 2/L∗∗ is due to the
approximation described in the forthcoming sections. Note that an acceptable
radius can always be derived after one guess of r; but by following step 3 and
refining to r̂ based on the results of step 1, continual improvement can be realized
until the user decides to stop.
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2

Fig. 2: Behavior of Alg. 1 for U6. For any r, the result is the minimum of r and
2/L∗∗(r), which for incremental r is shown by the black markers. The maximal
r based on Lest

∗∗ is 0.0352.

4 Approximation of L∗∗

The 2-atom case allows us to explicitly solve for the radius of convergence because
we know the location of argsup{L∗∗(2, r)}. As the system becomes large (n ≥ 3),
however, finding an analytic solution for this information is exceedingly difficult.
The critical step is to find L∗∗(n, r) for a given r satisfying (3.4). For any r
less than the distance to the nearest critical configuration, we assume that the
supremum for (3.5) is located at the boundary of the ball.4 Then, problem (3.5)
is equivalent to finding the configuration X which maximizes

L∗∗(n, r) = max
X∈∂B(X∗,r)

{
‖(U ′n(X∗))−1U ′n(X)− I‖

r

}
, (4.6)

where ∂B denotes the boundary of the ball B.
It is straightforward that certain entries of U ′n(X) approach infinity if X

approaches a singular configuration X(s), where two or more atoms coincide
and Vn returns infinite energy. Therefore, any singular configuration maximizes
||U ′n(X)− U ′n(X∗)||. Furthermore, the shortest route to perturb a configuration
to be singular is to move the two closest atoms toward each other. These obser-
vations inspire us to propose an efficient approach to approximate L∗∗ in Alg. 2,
which is denoted as Lest

∗∗ .

4 We observe this assumption to be true for all Un through numerical experimentation.
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Algorithm 2 Approximation of L∗∗ via the shortest path

1: Choose a radius of perturbation r.
2: Choose the closest pair of atoms in the X∗ configuration (with respect to the

perturbation required to move the pair to singularity).
3: Find X(p) by perturbing X∗ with only the chosen pair of atoms from step 2, toward

each other along their shortest path, in the amount of r (when n ≥ 6 the path is
linear and atom movement is equal at distance of r/2).

4: Compute Lest
∗∗ (n, r) =

‖(U ′n(X∗))−1U ′n(X(p))− I‖
r

.

To validate Alg. 2, we first approximate L∗∗ by random sampling, a practi-
cal approach to approximate Lipschitz-type constants [22]. Specifically, given a
minimizer X∗ and radius r, we generate K = 106 vectors {dk, k = 1, . . . ,K},
where each component of dk is a uniformly chosen random number in [−1, 1],
and normalized so that ‖dk‖ = 1. Then we compute

Lrand
∗∗ (n, r) = max

k=1...K

{
‖(U ′n(X∗))−1U ′n(Xk)− I‖

r
:
Xk = X∗ + rdk,

‖dk‖ = 1

}
. (4.7)

Figure 3 tracks the configurations X(r) = argmax
{
Lrand
∗∗ (3, r)

}
for increasing

radii, ranging from 0.01 to 1.05, incremented by 0.02. Again, we enforce the semi-
fixed positions for atoms 1–3 as described earlier. X∗ is the equilateral triangle
labeled by the stars. Each X(r) configuration consists of a cyan marker (position
of atom 3), a magenta marker (position of atom 2), and the fixed atom 1. As r
increases, atom 3 of X(r) moves along the cyan path and atom 2 of X(r) moves
along the magenta path, where for both atoms a darker shade corresponds to
a configuration with larger r. Eventually, the two atoms meet at (0.84, 0, 0)
when r = 1.05, which coincides with the nearest singular configuration of X∗.
As hypothesized, the observed path of the X(r) follows the shortest path as
described in Alg. 2.

The tendency for the configurations X(r) to track along the shortest path
continues for larger systems, illustrated in Fig. 4 for U4 (left) and U6 (right).
In each plot, 40 configurations of X(r) = argmax

{
Lrand
∗∗ (n, r)

}
are displayed,

corresponding to 0 ≤ r ≤ 0.8. As before, any X(r) configuration consists of an
atom of each color, as well as atom 1, while the star markers indicate the equi-
librium positions of the atoms, which in these cases form a regular tetrahedron
and a regular octahedron, respectively. With U4, the position of atom 2 remains
near its X∗ position in all X(r), while atoms 3 and 4 perturb toward each other
as r increases. For U6, atoms 2 and 3 remain near their respective X∗ coordi-
nates in all X(r), while either the pair of atoms 4 and 5 or the pair of atoms 5
and 6 perturb toward each other as r increases. Specifically, for any r, the X(r)

configuration has atoms 5 and 6 perturb toward each other at an approximate
distance of r/2 each, while atoms 1 to 4 remain nearly stationary, or, atoms 4
and 5 move together about r/2 and the remaining atoms perturb very little.
This alternating behavior occurs as the nearest singular configuration to X∗ is

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_36

https://dx.doi.org/10.1007/978-3-030-22744-9_36


Data Compression for Optimization 9

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

x

0

0.2

0.4

0.6

0.8

1

y

atom 1 atom 2

atom 3

Fig. 3: For 0.01 ≤ r ≤ 1.05, 53 configurations of X(r) which maximize Lrand
∗∗ (3, r).

Each X(r) configuration consists of one cyan marker (atom 3), one magenta
marker (atom 2), and atom 1. Darker markers indicate an X(r) from a greater r,
while the star markers are the position of the atoms in the optimal configuration.
As r increases, the X(r) follow the shortest path toward the nearest singular
configuration of X∗.

not unique, since both the 4–5 and 5–6 pair singularities are equidistant from
X∗. Note that once the system is large enough (n ≥ 6), the path followed by
X(r) toward the nearest singular configuration is linear, since the nearest pairs
of atoms each have three free variables.

atom 2

0

0.2

1.5

0.4

0.6

0.8

z

1

atom 1

atom 4

0

x

0.5 0.2

atom 3

0.4

y
0.60.80 1

atom 3

0.5

atom 1

atom 6

atom 4

-0.5

0 0

y

0z

0.5

atom 2

0.5

x
-0.5

atom 5

1 1.5

Fig. 4: For n = 4 (left) and n = 6 (right), 40 configurations of X(r) which
maximize Lrand

∗∗ (n, r), for 0 ≤ r ≤ 0.8. Atoms of the X(r) are coordinated by
color tone. The perturbed configurations follow the shortest path toward the
nearest singular configuration X(s), as indicated by the arrows. For U6, there
are two X(s), so the X(r) follows both paths, alternating by chance.

Now, we compare the two estimations of L∗∗, from the proposed Alg. 2 and
from random sampling due to (4.7). We focus on the cases n ≥ 6 whose shortest
paths are strictly linear. Taking the global minimum configurations from [5] for
each X∗, in Fig. 5, we compare the behavior of Lrand

∗∗ and Lest
∗∗ for U6, U8, and
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U10, separately in each column.5 The top row shows for the cases when r ≤ 0.8,
which is the approximate distance to the nearest singularity for these X∗. The
bottom row zooms in to the cases when r ≤ 0.05. The curve of L = 2/r is drawn
so that an estimate for the radius of convergence can be inferred from the plots
by its intersection with the L∗∗ curves. It is clear that Lest

∗∗ (n, r) ≥ Lrand
∗∗ (n, r) for

all test cases, and therefore Lest
∗∗ (n, r) is a more accurate estimate. For brevity,

the cases n = 7, 9 are not plotted here, but consistent behavior is observed at
all radii.
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Fig. 5: Comparison of Lest
∗∗ with Lrand

∗∗ for U6, U8, U10, showing Lest
∗∗ is a better

estimate for L∗∗. The curve of 2/r is included since L∗∗ ≤ 2/r determines the
radius of the ball of convergence.

Next, we compute the corresponding binary digit compression levels for sys-
tems of size n = 6, . . . , 10, and we test the convergence of the compressed min-
imizers using Newton’s method. Table 1 catalogs these results. Its first column
shows the system size by number of atoms; the second column shows the re-
turned radius of the ball of convergence (to the nearest 0.002) after applying the
proposed method, and the third column shows the corresponding compression
levels in terms of number of bits. The last column shows that, in practice, New-
ton’s method still converges to the same X∗ with even higher compression levels
than the theoretical guarantee.

5 Numerical Results in Higher Dimensions

In this section, we apply the proposed method to larger atomic systems to show
its scalability. For the optimal configuration chosen, we use the global minimums

5 Similar results hold for other local minimizers.
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Table 1: For n = 6, . . . , 10, the radii of convergence, maximal compression ability
based on Lest

∗∗ , and convergence results for the compressed minimizers X(0),c

using Newton’s method. The theoretical ct obtained by our method provides a
guarantee for compression so that c ≥ ct implies that X(0),c converges to X∗

with Newton’s method.

n max r : r ≤ 2/Lest
∗∗

theoretical ct (in bits):
‖X(0),c −X∗‖ ≤ r

practical cp (in bits):
X(0),c → X∗

6 0.034 5 2:24
7 0.034 6 2:24
8 0.030 6 4:24
9 0.026 7 4:24
10 0.026 6 5:24

tabulated in [5] and first published in [7, 11]. Because of the partially fixed po-
sitions of atoms 1,2, and 3, we observe that some permutations of a minimizer
X∗ (in terms of interchanging atom numbering) can cause the spectral radius
of (U ′n(X∗))−1 to be multiple orders of magnitude larger than others, result-
ing in significantly larger L∗∗(r) than other permutations. This observation is
particularly true when atom 3 is nearly on the x-axis. Therefore, we choose per-
mutations of these minimizers so that the matrix (U ′n(X∗))−1 has lower spectral
radius.
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Fig. 6: Left: Lest
∗∗ (r) values for the U20 to U140 functions. The curve of 2/r is

included because L∗∗ ≤ 2/r determines the radius of the ball of convergence.
Right: distances to nearest singularity ‖X∗ −X(s)‖ for each X∗. An increase in
L∗∗(n, r) corresponds to a decrease in ‖X∗ −X(s)‖.

For systems with n = 20, 40, 60, 80, 100, 120, and 140 atoms, Fig. 6 (left)
shows the shortest-path estimates Lest

∗∗ (n, r), respectively. For a fixed radius r,
the corresponding Lest

∗∗ (n, r) are increasing in n for n ≤ 80, but the values plateau
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Table 2: Compression ability based on Lest
∗∗ and corresponding convergence re-

sults of Newton’s method for U20 through U140 functions.

n max r : r ≤ 2/Lest
∗∗ Lest

∗∗ (r) Lrand
∗∗ (r)

theoretical ct (in bits):
‖X(0),c −X∗‖ ≤ r

practical cp (in bits):
X(0),c → X∗

20 0.032 62.89 30.22 6 5:24
40 0.030 63.96 25.28 7 5:24
60 0.020 90.39 25.08 8 5:24
80 0.014 136.0 30.01 10 5:24
100 0.018 109.7 23.42 9 5:24
120 0.014 128.1 23.87 10 6:24
140 0.014 127.0 23.18 10 6:24

for 80 ≤ n ≤ 140. These changes in Lest
∗∗ (n, r) correspond to a decrease and

leveling off of the distances to nearest singularity ‖X∗−X(s)‖ for each X∗, which
are plotted in Fig. 6 (right). It follows from Hoare [6] that the smallest inter-
atom distances in any n-atom structure cannot fall far below the equilibrium
distance of 21/6, so that these observed distances to singularity have approached
a lower bound. Indeed, for the 1000 atom minimizer recorded in [23], the minimal
distance to singularity is 0.733. Further, we have Lest

∗∗ (1000, 0.014) = 135.5,
a corresponding maximum compression level ct = 13, and Newton’s method
succeeds for all X(0),c for c ≥ 9. As both this minimal distance to singularity
and Lest

∗∗ are consistent with the 80-140 atom cases, this is an indication that
our proposed method scales to much larger atom systems.

Now, we further emphasize the accuracy of Lest
∗∗ by comparing it to the ran-

dom sampling approximation from (4.7), again with K = 106 guesses. The com-
parison is done at the radius that we deduced is optimal using Alg. 1 with Lest

∗∗ .
As shown in Table 2, the shortest-path estimates are significantly higher than
the random sampling estimates in all test cases. The corresponding compression
levels deduced from Lest

∗∗ are reported in the fifth column. We apply Newton’s
method on X(0),c from all compression levels, where the last column shows that
Newton’s method converges to the same X∗ for compression levels exceeding the
theoretical guarantee.

6 Conclusions

In this work, we propose a framework to guide the amount of compression that
can be applied to an optimal atom configuration with the Lennard-Jones po-
tential function, so that the compressed value converges to the same optimal
configuration under Newton’s method. Furthermore, we develop a shortest-path
estimate by exploring the topology of the Lennard-Jones function to provide the
necessary information required by the framework. We show that the shortest-
path estimate outperforms the estimate from random sampling. We also demon-
strate the reliability and stability of the proposed framework for systems of
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varying size, so that the provided compression level guarantees the preservation
of the basins of attraction.

Our proposed framework also can be applied in a wider range of applica-
tions. One potential application is the compression of the large neural nets in
deep learning. As the trained neural net is moved from a resource-rich setting
to different model architectures with restrictive computation constraints such as
memory and speed, the large-scale model with billions of trained weights and
hyperparameters needs to be compressed. In this case, one can study the com-
pression accuracy given the proposed framework so that certain accuracy can be
preserved from the perspective of optimization.

Some gaps between the theory and numerical approximation need to be stud-
ied that are beyond the scope of this work. For example, a rigorous proof for the
optimality of the proposed shortest-path estimate is desirable, to offer a truly
definitive convergence guarantee. If such a result is unavailable, an error bound
could be developed that measures the gap between the true L∗∗ and estimate
Lest
∗∗ , which is guaranteed to be only a lower bound for L∗∗. A similar error anal-

ysis should investigate the effect of using approximations for the inverse Hessian
(U ′(X∗))−1 and operator norm ‖ · ‖2 in the computation of Lest

∗∗ , as in practice
either are likely to be precisely computed. Furthermore, one can extend the pro-
posed framework to local convergence theory for quasi-Newton methods (e.g.,
[4]) to preserve the corresponding basins of attraction.

Acknowledgments

We thank Florian Potra and Stefan Wild for their discussions and insights on
this work. This work was supported by the Exascale Computing Project (17-SC-
20-SC), a collaborative effort of two U.S. Department of Energy organizations
(Office of Science and the National Nuclear Security Administration) responsi-
ble for the planning and preparation of a capable exascale ecosystem, including
software, applications, hardware, advanced system engineering, and early testbed
platforms, in support of the nation’s exascale computing imperative. The mate-
rial was also based in part on work supported by the U.S. Department of Energy,
Office of Science, under contract DE-AC02-06CH11357.

References

1. Alder, B.J., Wainwright, T.E.: Studies in molecular dynamics, I: general method.
The Journal of Chemical Physics 31(2), 459–466 (1959)

2. Argyros, I.K., George, S.: Ball convergence comparison between three iterative
methods in banach space under hypothese only on the first derivative. Applied
Mathematics and Computation 266, 1031–1037 (2015)

3. Asenjo, D., Stevenson, J.D., Wales, D.J., Frenkel, D.: Visualizing basins of attrac-
tion for different minimization algorithms. The Journal of Physical Chemistry B
117(42), 12717–12723 (2013)

4. Dembo, R.S., Eisenstat, S.C., Steihaug, T.: Inexact Newton methods. SIAM Jour-
nal on Numerical Analysis 19(2), 400–408 (1982)

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_36

https://dx.doi.org/10.1007/978-3-030-22744-9_36


14 M. Retzlaff et al.

5. Doye, J.: Table of Lennard-Jones cluster global minima, http://www-
wales.ch.cam.ac.uk/ jon/structures/LJ/tables.150.html

6. Hoare, M.R.: Structure and Dynamics of Simple Microclusters, pp. 49–135. John
Wiley & Sons, Ltd (2007)

7. Hoare, M., Pal, P.: Physical cluster mechanics: Statics and energy surfaces for
monatomic systems. Advances in Physics 20(84), 161–196 (1971)

8. Jones, J.E.: On the determination of molecular fields, II: from the equation of state
of a gas. Proc. R. Soc. Lond. A 106(738), 463–477 (1924)

9. Kantorovich, L.V.: Functional analysis and applied mathematics. Uspekhi Matem-
aticheskikh Nauk 3(6), 89–185 (1948)

10. Maranas, C.D., Floudas, C.A.: A global optimization approach for Lennard–Jones
microclusters. The Journal of Chemical Physics 97(10), 7667–7678 (1992)

11. Northby, J.: Structure and binding of Lennard–Jones clusters: 13≤ N≤ 147. The
Journal of Chemical Physics 87(10), 6166–6177 (1987)

12. Perez, D., Cubuk, E.D., Waterland, A., Kaxiras, E., Voter, A.F.: Long-time dy-
namics through parallel trajectory splicing. Journal of Chemical Theory and Com-
putation 12(1), 18–28 (2015)

13. Potra, F.: A superquadratic variant of Newton’s method. SIAM Journal on Nu-
merical Analysis 55(6), 2863–2884 (2017)

14. Rahman, A.: Correlations in the motion of atoms in liquid argon. Physical Review
136(2A), A405 (1964)

15. Sørensen, M.R., Voter, A.F.: Temperature-accelerated dynamics for simulation of
infrequent events. The Journal of Chemical Physics 112(21), 9599–9606 (2000)
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