
1

Improving ODE integration on graphics
processing units by reducing thread divergence

Thomas Kovac1,2, Tom Haber1, Frank Van Reeth1, and Niel Hens2,3

1 Expertise centre for Digital Media, Hasselt University, Belgium
2 Center for Statistics, Hasselt University, Belgium

3 Chermid, Vaccine and Infectious Disease Institute, University of Antwerp, Belgium
{thomas.kovac,tom.haber,frank.vanreeth}@uhasselt.be

niel.hens@uantwerpen.be

Abstract. Ordinary differential equations are widely used for the math-
ematical modeling of complex systems in biology and statistics. Since
the analysis of such models needs to be performed using numerical inte-
gration, many applications can be gravely limited by the computational
cost. This paper present a general-purpose integrator that runs massively
parallel on graphics processing units. By minimizing thread divergence
and bundling similar tasks using linear regression, execution time can
be reduced by 40-80% when compared to a naive GPU implementation.
Compared to a 36-core CPU implementation, a 150 fold runtime im-
provement is measured.

Keywords: Pharmacometrics · Epidemiology · Parallelism · High-
Performance Computing · Graphics Processing Units

1 Introduction

Systems of coupled ordinary differential equations (ODEs) are widely used for
mathematical modeling of complex systems in epidemiology [6, 8], biology [9] and
pharmacology [5]. The analysis of such models is usually performed by numerical
integration, since analytical solutions can not be derived in general. Additionally,
many applications need to carry out a massive amount of simulations for which
the computational cost can be a serious limitation.

Performing such analyses on a central processing unit (CPU) can be quite
time-consuming, even on today’s multi-core processors. Graphics processing
units (GPU) have moved from being common computer graphics and image pro-
cessing instruments to powerful general-purpose devices [12]. GPUs are single-
instruction multiple-data (SIMD) devices, consisting out of hundreds of cores,
that give access to tera-scale performance on common workstations. The archi-
tecture is ideally suited for executing identical and independent operations on
different data, such as image processing.

This paper mainly focuses on ODE simulations that can be performed inde-
pendently and embarrassingly parallel. Many applications already exhibit this
behavior or the underlying algorithm can often be changed to be more favorable

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_35

https://dx.doi.org/10.1007/978-3-030-22744-9_35


2

to this situation. For example: sensitivity and parameter sweep analysis inher-
ently require the evaluation of many parameters. Optimization and Bayesian
sampling algorithms are typically sequential in nature, but parallel alternatives
exist for both: evolutionary/genetic algorithms [4, 7, 8] and sequential Monte-
Carlo methods [3, 11]. Alternatively, computing expectations [15] over differen-
tial equation based models is again massively parallel.

While the embarrassingly parallel nature matches perfectly with the GPUs
capabilities, branching in all but the simplest integration methods can cause
divergent program paths and a significant drop in performance [1]. The proposed
method rearranges tasks among available threads such that they are less likely
to diverge. A linear regression model is constructed to predict which tasks are
similar in behavior and grouped together accordingly.

2 Background

2.1 GPU

NVIDIA GPUs are comprised out of different layers of parallel processing; the
top level consists of Streaming Multiprocessors (SMs). Blocks of a kernel are
mapped onto an SM, which in turn executes it using user-allocated threads.
The multiprocessor creates, manages, schedules, and executes threads in groups
of 32 parallel threads called warps. For optimal performance, threads within a
warp are required to execute the same instruction at any given time. As a result,
whenever two or more threads diverge, operations of both branches need to be
executed for all warp threads. This can lead to a serious drop in performance [1].

2.2 Integration Methods

Among numerical integration algorithms, Runge-Kutta methods are a family of
explicit iterative methods, with a wide variety of orders and schemes [13]. The
Dormand-Prince method [2], also known DOPRI, is a fifth-order method where
the step-size is adjusted by the truncation error, which is approximated by the
difference between the fourth and fifth-order estimates. MATLAB’s ode45 is also
an implementation of the DOPRI method.

While these methods cannot cope well with stiff ODEs, many statistical or
biological models only exhibit stiffness at extreme parameter values.

2.3 Epidemiological Models

Epidemiologists use mathematical modeling of infectious diseases to improve
insight into disease dynamics, resulting in the creation of more effective vaccines
and antiviral drugs, better intervention/vaccination programs [6, 8, 15].

One epidemiological model is the Susceptible-Exposed-Infected-Recovered
(SEIR) model which describes the flow of individuals through these mutually
exclusive disease states. This model is extensible to more complex diseases by

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_35

https://dx.doi.org/10.1007/978-3-030-22744-9_35


3

adding compartments. Santermans et al. [15] studied the Ebola outbreak of 2015
in West Africa. Equation 1 models SEIR dynamics over time, where S(t), E(t),
I(t), and R(t) are the number of susceptibles, exposed, infected and recovered,
respectively and N(t) = S(t) + E(t) + I(t) +R(t) denotes population size.

dS(t)
dt = −β(t)S(t) I(t)

N(t) ,

dE(t)
dt = β(t)S(t) I(t)

N(t) − γE(t),

dI(t)
dt = γE(t) − αI(t) − σI(t),

dR(t)
dt = σI(t),

(1)

3 Related Work

Seen et al. [16] show that a Runge-Kutta-Fehlberg method (RK45 ) with adaptive
step-size on GPU outperforms a CPU implementation, given that the problem
dimensions are large enough, as in 200 equations, or more. Having a Runge-Kutta
implementation with adaptive time steps, however, suffers from a phenomenon
called variable task-length [10]. The step-size modification can vary between
individual GPU threads, resulting in warp divergence and loss in performance.
Murray et al. [10] suggest bundling multiple data items into each thread, allowing
a thread to immediately advance onto the next task once an item is completed.

Stone et al. [18] implemented two parallel strategies; a so-called “one-thread”
method and “one-block” method. The former method employs one thread to
solve an ODE, the latter uses an entire block of threads. Both RK45 and CVODE
integration methods were ported to GPU using aforementioned parallel strate-
gies. Significant speedups were reported of all GPU adaptations, but without
thread divergence even greater speedups are possible.

Stone et al. [17] emphasize that an efficient and effective ODE integrator must
employ the available instruction-level parallelism of the underlying hardware as
well as the numerical efficiency. Having implemented a non-stiff Runge-Kutta
ODE solver on both GPU and Xeon Phi, the authors report the GPU version
being slower than the Xeon Phi version as thread divergence caused by the
adaptive step-sizes negatively impacts performance.

4 Methods

Related work shows multiple successful Runge-Kutta method ports to GPU.
Solutions where each thread solves an ODE suffer from performance loss due
to varying length of tasks caused by thread divergence. Results that employ
multiple threads to solve an ODE overcome this problem [17, 8], however not
nearly as many ODEs can be solved as compared to one-threaded solutions. In
this paper, the DOPRI integration method, an NVIDIA Tesla P100 GPU, a
one-threaded solution are employed and thread divergence is strongly reduced.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_35

https://dx.doi.org/10.1007/978-3-030-22744-9_35


4

Algorithm 1 Dormand-Prince

1: function Integrate(t, tOut)
2: while t <= tOut do . try to make a step with size dt
3: ynew, error ← TryStep(dt)
4: if error ≤ rtol then . step was successful
5: t ← t + dt
6: y ← ynew
7: dt ← GrowStepsize(dt, error) . potentially grow stepsize
8: else
9: dt ← ShrinkStepsize(dt, error) . step failed, shrink stepsize

return y

As can be seen in Algorithm 1, there are two causes of thread divergence in
one-threaded solutions: the test whether or not a step was successful and the
number of steps taken during integration. The former is less of a problem since
the branches are very small and care was taken to move all common operations
out of them. The latter is the main cause of performance loss since it results in
threads that idle for a long time. The number of steps required can wildly differ
from parameter to parameter. Ensuring that threads performing similar tasks
by bundling them by the required number of steps, accomplished by sorting
followed by partitioning, automatically reduces thread divergence as all threads
within a warp execute the same instructions.

A linear regression model is used to predict the number of integration steps
a task will require. This model is trained a-priori on a small set of parameters
(1000) and is used at runtime to group tasks that are similar in number of steps.
Transforming the rate parameters to log-space results in a higher predictive
performance. To demonstrate general applicability, the number of steps is also
predicted for the Nimotuzumab model [14]. Figure 1 shows that the model accu-
rately predicts the number of integration steps required, given the parameters,
for both the SEIR and Nimotuzumab model.

50 100 150 200 250

50

100

150

200

250

steps

p
re

d
ic

ti
o
n

R2 = 0.93

150 200 250 300 350 400
150

200

250

300

350

400

steps

p
re

d
ic

ti
o
n

R2 = 0.98

Fig. 1. Number of actual steps plotted against the prediction for the SEIR model (left)
and the Nimotuzumab model (right). For both models that the number of integration
steps required, based on the parameters, can be accurately predicted.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_35

https://dx.doi.org/10.1007/978-3-030-22744-9_35


5

5 Results

All results are based on the SEIR model from Santermans et al. [15]. 10K param-
eters were sampled from their prior to create a realistic dataset. Since runtime
depends heavily on the parameters, random subsets of 7168 parameters are cre-
ated and performance distributions are shown. The predictor is always trained
on random subsets of 1000 parameters.

The top left plot of Figure 2 shows the distribution of the number of steps
attempted by the integrator. While the average number of steps is 160, the
spread is quite significant. The top right plot compares distributions of runtime
for random subset of parameters, bundled using the predictor as well as bundled
employing a-priori knowledge of the number of steps. Bundling tasks according to
similarity clearly has a positive effect on performance. On average, a 40% increase
is observed and the predictor performs slightly worse compared to the case with
a-priori knowledge. Compared to a CPU implementation (36-core Intel Skylake
Xeon 6140; 192GB RAM), a 150-fold improvement in runtime is measured.

50 100 150 200 250 300
0

200

400

600

800

1,000

steps

co
u
n
ts

250 300 350 400
0

100

200

300

time (µs)

fr
eq

u
en

cy

unsorted

sorted

predicted

50 100 150 200 250
0

100

200

300

400

steps

co
u
n
ts

250 300 350 400 450
0

100

200

300

400

time (µs)

fr
eq

u
en

cy

unsorted

sorted

predicted

Fig. 2. Left: distributions of integrator steps of the original dataset sampled from the
prior [15] and an altered dataset where the parameters were re-sampled such that
the distribution is approximately uniform. Right: distribution of runtime for random
subsets of the original dataset, bundled using a-priori knowledge of the number of steps
and bundled using the predictor for both datasets.

To indicate the impact of the distribution of steps, the original dataset is
re-sampled such that the distribution of steps is approximately uniform. Bottom
plots of Figure 2 show the performance distribution for the uniform dataset. On
average, the performance is increased by 80%.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_35

https://dx.doi.org/10.1007/978-3-030-22744-9_35


6

Clearly, when the distribution of steps is extremely peaked, the performance
difference will be quite small. In the worst case, every parameter will require the
same number of steps with no change in performance due to bundling.

Figure 3 shows performance for a implementation which forces the integrator
to use the same step-size for all threads in a warp similar to Murray et al. [10].
After attempting a step and computing the error, a local shuffle operation is
performed to compute the largest error and all threads continue with this error
instead. As a result, all threads will take the same branch and make the same
decision in terms of step-size. However, due to the additional cost of the local
shuffle as well as the extra steps taken by the integrator, this method is roughly
2x slower. Even for this implementation bundling the parameters helps.

550 600 650 700 750 800 850
0

20

40

60

80

time (µs)

fr
eq

u
en

cy

unsorted

sorted

predicted

Fig. 3. Runtime distribution for an implementation forcing fixed step-sizes for all
threads within the same warp and a comparison with bundling the tasks.

6 Conclusion and Future Work

GPUs are massively parallel single-instruction multiple-data devices capable of
tera-scale performance. However, the small differential equation based models
typically used in statistics and biology are not ideally suited for these devices
due to the branching nature of numerical integration algorithms. This branching
causes SIMD units to diverge, resulting in a significant performance drop. By
rearranging the order of tasks, bundling similar tasks together, this problem
can be alleviated to some extent. A linear regression model, trained on a small
set of parameters, is used for predicting the similarity of tasks. The runtime
improvement depends on the distribution of the number of steps in the tasks:
the more spread out the distribution, the bigger the expected improvement. The
experiments show improvements of 40% to 80%.

The global relation between parameters and number of steps can sometimes
be hard to capture with a predictive model. However, optimization algorithms
and Bayesian samplers typically explore the parameter space only locally. There-
fore, future work will look into an online learning method which captures only
this local behavior and requires no a-priori training.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_35

https://dx.doi.org/10.1007/978-3-030-22744-9_35


7

References

1. Bialas, P., Strzelecki, A.: Benchmarking the cost of thread divergence in cuda.
In: International Conference on Parallel Processing and Applied Mathematics. pp.
570–579. Springer (2015)

2. Dormand, J.R., Prince, P.: A family of embedded Runge-Kutta formulae. Journal
of Computational and Applied Mathematics 6(1), 19–26 (1980)

3. Doucet, A., Freitas, N., Gordon, N. (eds.): Sequential Monte Carlo Methods in
Practice. Springer New York (2001)

4. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer Berlin
Heidelberg (2003)

5. van der Graaf, P.H., Benson, N.: Systems pharmacology: Bridging systems biology
and pharmacokinetics-pharmacodynamics (PKPD) in drug discovery and develop-
ment. Pharmaceutical Research 28(7), 1460–1464 (may 2011)

6. Hens, N., Shkedy, Z., Aerts, M., Faes, C., Damme, P., Beutels, P.: Modeling Infec-
tious Disease Parameters Based on Serological and Social Contact Data: A Modern
Statistical Perspective, vol. 63. Springer Science & Business Media (03 2013)

7. Kennedy, J., Eberhart, R.: Particle Swarm Optimization (1995)
8. Kovac, T., Haber, T., Van Reeth, F., Hens, N.: Heterogeneous computing for epi-

demiological model fitting and simulation. BMC Bioinformatics 19(1), 101 (2018)
9. Murray, J.D.: Mathematical Biology I. An Introduction, Interdisciplinary Applied

Mathematics, vol. 17. Springer, 3 edn. (2002)
10. Murray, L.: GPU Acceleration of Runge-Kutta Integrators. IEEE Transactions on

Parallel and Distributed Systems 23(1), 94–101 (2012)
11. Nemeth, B., Haber, T., Liesenborgs, J., Lamotte, W.: Relaxing scalability limits

with speculative parallelism in sequential monte carlo. In: 2018 IEEE International
Conference on Cluster Computing (CLUSTER). IEEE (sep 2018)

12. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E.,
Purcell, T.: A survey of general-purpose computation on graphics hardware (2007)

13. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes
3rd Edition: The Art of Scientific Computing. Cambridge University Press, New
York, NY, USA, 3 edn. (2007)

14. Rodŕıguez-Vera, L., Ramos-Suzarte, M., Fernández-Sánchez, E., Soriano, J.L., Gui-
tart, C.P., Hernández, G.C., Jacobo-Cabral, C.O., de Castro Suárez, N., Codina,
H.C.: Semimechanistic model to characterize nonlinear pharmacokinetics of nimo-
tuzumab in patients with advanced breast cancer. The Journal of Clinical Phar-
macology 55(8), 888–898 (2015)

15. Santermans, E., Robesyn, E., Ganyani, T., Sudre, B., Faes, C., Quinten, C., Bortel,
W.V., Haber, T., Kovac, T., Reeth, F.V., Testa, M., Hens, N., Plachouras, D.:
Spatiotemporal evolution of ebola virus disease at sub-national level during the
2014 west africa epidemic: Model scrutiny and data meagreness. PLOS ONE 11(1)
(jan 2016)

16. Seen, W.M., Gobithaasan, R.U., Miura, K.T., Ismail, M.T., Ahmad, S., Rah-
man, R.A.: GPU Acceleration of Runge Kutta-Fehlberg and Its Comparison with
Dormand-Prince Method. AIP Conference Proceedings 1605(1), 16–21 (2014)

17. Stone, C.P., Alferman, A.T., Niemeyer, K.E.: Accelerating finite-rate chemical ki-
netics with coprocessors: Comparing vectorization methods on GPUs, MICs, and
CPUs. Computer Physics Communications 226, 18–29 (2018)

18. Stone, C.P., Davis, R.L.: Techniques for solving stiff chemical kinetics on graphical
processing units. Journal of Propulsion and Power 29(4), 764–773 (Jun 2013)

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_35

https://dx.doi.org/10.1007/978-3-030-22744-9_35

