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Abstract. It is well-known that civilization diseases shorten life ex-
pectancy. The most common causes of death in Poland, both for women
and men, are cancer and cardiovascular disease. The aim of the article is
to use the non-Gaussian scalar filter model to determine life expectancy
based on death rates after eliminating one of the above causes of death.
Based on the obtained results, it can be stated that depending on the
sex and type of the cause of death, the life expectancy may extend to
several years.
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1 Introduction

The creation of the first tables of life goes back to the 17th century. E. Halley used
the death records available in the years 1687-91 of the inhabitants of Wroc law,
on the basis of which he built the first life tables. The basis of the life table is the
set of deaths at the age of x completed years (usually for one-year age ranges x
from 0 to at least 100 years). Due to different length of life and gender diversity,
separate life tables are built for women and for men. Existing expectancy life
tables give the expected number of complete years remaining to live ex for a
person at age x without considering the cause of death. The following assumption
can, therefore, be made: elimination of the cause of death extends ex (mortality
occurs as a result of natural death).

The purpose of this article is to try to estimate how many years life can
last longer if mortality does not occur due to a specific disease, but because of
natural death. The appointment of a precise ex requires accurate data on the
number of people in the cohort who died at the age of x due to the cause of
y. Obtaining such data with the current restrictions of law in relation to The
General Data Protection Regulation (GDPR-RODO) is very difficult. On the
other hand, on the website of the Statistics Poland (GUS) there are data on the
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number of deaths in particular age groups (0, 1, 2, 3, 4, 5-9, 10-14, ..., 90-95
and 95 and more years) and at the level defined by the International Statistical
Classification of Diseases and Related Health Problems in Poland after revision
since 1997. These data allow the percentage of deaths to be determined in the
case of a selected cause in each calendar year for a fixed age group (for these
data, linear interpolation was used for each age of age group x). On this basis,
it is possible to correct the number of people in the cohort whose death will not
occur due to a given cause, but due to natural death, and then set the corrected
death rates. There are not many articles dedicated to modelling mortality rates
and determining ex with the assumption given above. According to the best
knowledge of the author, the methods proposed in the literature for determining
ex including the cause of death are most often based on the Lee-Carter model
and its mutations (e.g. [1], [14], [15], [17], [18], [19]). In some articles, modelling
and forecasting changes in mortality due to the established cause of death, time
series techniques (eg ARIMA(1,1,1), [7]) are more often used than stochastic
processes (e.g. birth and death process [2]). In others, instead of ex, the rate of
mortality of the number of people susceptible to a given disease ending in death
is indicated (e.g. [12]), which also allows life expectancy to be determined for the
studied cohort. However, no one has used the scalar model where a stochastic
process is a colored noise modeled by a scalar linear filter with white noise
input described by a scalar linear stochastic differential equations with constant
coefficients ([16], [9], [20]). The usefulness and advantages of this proposition in
relation to the Lee-Carter model were shown, among others, in [22].

The paper is organized as follows. In Section 2 basic notations and definitions
of stochastic hybrid systems are introduced. In Sections 3 materials and meth-
ods are presented: data set, the continuous non-Gaussian excitation model, the
procedure of parameters estimation and the determination of submodels based
on switching points to obtain hybrid model. In the case without restrictions on
parameters, the standard estimation methods (such as: maximum likelihood or
least squares) are used. Section 4 compares the empirical model with the theo-
retical model described in section 3 and discusses the obtained results. Section
5 with general conclusions ends the article.

2 Mathematical preliminaries

Throughout this paper we use the following notation. Let | · | and < · > be the
Euclidean norm and the inner product in Rn, respectively. We mark R+ = [0,∞),
T = [t0,∞), t0 ≥ 0. Let Ξ = (Ω,F , {Ft}t≥0,P) be a complete probability space
with a filtration {Ft}t≥0 satisfying usual conditions. Let σ(t) : R+ → S be the
switching rule, where S = {1, . . . , N} is the set of states. We denote switching
times as τ1, τ2, . . . and assume that there is a finite number of switches on every
finite time interval. Let Wk(t) (k = 1, . . . ,M) be the independent Brownian
motions. We assume that processes Wk(t) and σ(t) are both {Ft}t≥0 adapted.
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By the stochastic hybrid system we call the vector Itô stochastic differential
equations with a switching rule described by

dx(t) = f(x(t), t, σ)dt+

M∑
k=1

gk(x(t), t, σ)dWk(t), (σ(t0),x(t0)) = (σ0,x0), (1)

where x ∈ Rn is the state vector, (σ0,x0) is an initial condition, t ∈ T and M is
a number of Brownian motions. f(x(t), t, σ(t)) and gk(x(t), t, σ(t)) are defined
by sets of {f(x(t), t, l)} and {gk(x(t), t, l)}, respectively i.e. f(x(t), t, σ(t)) =
f(x(t), t, l), gk(x(t), t, σ(t)) = gk(x(t), t, l) for σ(t) = l. Functions f : Rn ×
T × S → Rn and gk : Rn × T × S → Rn are locally Lipschitz and such that
∀l ∈ S, t ∈ T f(0, t, l) = gk(0, t, l) = 0, k = 1, . . . ,M . These conditions together
with these enforced on the switching rule σ(t) ensure that there exists a unique
solution to the hybrid system (1).

Hence it follows that equation (1) can be treated as a family (set) of subsys-
tems defined by

dx(t, l) = f(x(t), t, l)dt+

M∑
k=1

gk(x(t), t, l)dWk(t), l ∈ S (2)

where x(t, l) ∈ Rn is the state vector of l- subsystem.
We assume additionally that the trajectories of the hybrid system are con-

tinuous. It means, when the stochastic system is switched from l1 subsystem to
l2 subsystem in the moment τj , then

x(τj , l1) = x(τj , l2), l1, l2 ∈ S. (3)

3 Material and methods

3.1 Data

From the HMD database, both data describing death rates of men and women
from 2002-2016 were taken, as well as for each year 1958-2016 and for each
age X (X = 0, ..., 110) the number of people (lx) surviving age X (eg for men
from 2016: l0 = 100000, l1 = 99541, . . . , l100 = 731, . . .). Based on lx, qx as
the probability of death in the period up to 1 year was determined, and next
µx as death rates computed. Using the data of Statistics Poland regarding the
number of deaths due to cardiovascular disease (cause C) and cancer (cause I),
the percentages of these deaths in the number of all deaths for each calendar
year were separately determined. These percentages were used to correct (usually
increase) lx - the number of survivors aged x, and consequently, qx and µx. The
modelling of adjusted mortality ratios µx was based on the non-Gaussian scalar
filter model, whose analysis and purposefulness of the application in the present
study was included in the works of, among others, [22]-[24], while the general
form is contained in subsection 3.2.
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3.2 Model with a non-Gaussian linear scalar filters (non-Gaussian
LSF)

We consider a family of mortality model with a continuous non-Gaussian scalar
linear filter described by

µx(t, l) = µlx0 exp{αlxt+

3∑
i=1

qlxiy
i(t, l)}, (4)

dy(t, l) = −βlx1
y(t, l)dt+ γlx1

dW (t), (5)

Introducing new variables y1(t, l) = y(t, l), y2(t, l) = y2(t, l), y3(t, l) =
y3(t, l) and applying Ito formula we obtain

dy2(t, l) = [−2βlx1
y2(t, l) + (γlx1

)2]dt+ 2γlx1
y1(t, l)dW (t), (6)

dy3(t, l) = [−3βlx1
y3(t, l) + 3(γlx1

)2y1(t, l)]dt+ 3γlx1
y2(t, l)dW (t), (7)

where µx(t, l) is a stochastic process representing a mortality rate for a person
aged x at time t, αlx, βlx1

, qlx1
, qlx2

, qlx3
, µlx0, γlx1

are constant parameters, l ∈ S;
W (t) is a standard Wiener process.

Taking natural logarithm of both sides of equation (4) and applying Ito
formula we find

d lnµx(t, l)=
[
αlx−(βlx1

qlx1
− 3(γlx2

)2)y1(t, l)

−(2βlx1
qlx1
− 6(γlx2

)2)y2(t, l)− (γlx2
)2 −3βlx1

qlx3
y3(t, l)

]
dt

+
[
γlx1

qlx1
+ 2γlx1

qlx2
y2(t, l) + 3γlx1

qlx3
y3(t, l)

]
dW (t)

(8)

Introducing a new vector state

zx(t, l) = [zx1
(t, l), zx2

(t, l), zx3
(t, l), zx4

(t, l)]T

= [lnµx(t, l), y1(t, l), y2(t, l), y3(t, l)]T ,
(9)

equations (8) and (5) - (7) one can rewrite in a vector form
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dzx(t, l)=



0 −βlx1
qlx1

+ 3(γlx1
)2 −2βlx1

qlx2
+ 6(γlx1

)2 −3βlx1
qlx3

0 −βlx1
0 0

0 0 −2βlx1
0

0 3(γlx1
)2 0 −3βlx1


zx(t,l)dt

+



αlx + qlx2
(γlx1

)2

0

(γlx1
)2

0


dt

+



γlx1
qlx1

+ 2γlx1
qlx2

y1(t, l) + 3γlx1
qlx3

y2(t, l)

γlx1

+2γlx1
y1(t, l)

+3γlx1
y2(t, l)


dW (t)

(10)

The unknown parameters are

lnµl0, α
l
x, β

l
x1
, qlx1

, qlx2
, qlx3

, γlx1
.

Using the method of the moment equations (see Appendix 3 in [22]) we
find the nonstationary solutions of the first and second moment of the process
zx1

(t, l), lS (see Appendix 4 in [22])

E[zx1
(t, l)] = αlxt+ αl0x , (11)

E[z2x1
(t, l)] = (αlx)2t2 + 2αlxα

l
0xt− 2αlx

(γlx1
)2

2βlx1

t+ cl0x (12)

where αl0x and cl0x are constants of integration.

3.3 The procedure of parameters estimation and the determination
of submodels (based on switching points)

To find the parameters estimation and the determination of the switching points
for non-Gaussian linear scalar filters (non-Gaussian LSF) we use similar proce-
dure to the one described in [22].
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Due to the limited number of observations (from 2002 to 2016) the parameter
estimation procedure was performed for two types of models, namely:

– for the moment model with non-Gaussian LSF without switchings (for only
one l)

– for the moment model with non-Gaussian LSFs with switchings, i.e. for l ∈ S
using the estimation methods for each subsystem (next subsection).

Parameters estimation We note that the first and second moments of zx1
(t, l)

= lnµx(t, l) depend on only six parameters αlx, αl0x = lnµlx0(t), cl0x , qlx2
, βlx1

,
(γlx1

)2

2βlx1
and does not depend on the others, namely qlx1

, qlx2
, qlx3

. As it was shown

in [22], only two parameters: αlx and αl0x = lnµlx0
(t), l ∈ S are used and are

found separately from minimization of the following square criterion

I1 =
(
E[zx1

(t, l)]− αlxt− αl0x
)2
. (13)

Next, we assume for simplicity that qlx1
= qlx2

= qlx3
= 1. Then from the

second moments of z2x1
(t, l), i.e. E[z2x1

(t, l)] we find the two parameters pl1 and

pl2, where pl1 =
(γlx1

)2

2βlx1
and pl2 = cl0x , the relationship of which is nonlinear, namely

E[z2x1
(t,l)]= (αlx)2t2 + 2αlxα

l
0xt− 2αlxp

l
1t+ pl2 (14)

Hence, the square criterion has the form

I2 =
(
E[z2x1

(t, l)]− (αlx)2t2 − 2αlxα
l
0xt+ 2αlxp

l
1t− pl2

)2
(15)

In this case, all parameters (αlx, α
l
0x , p

l
1 and pl2) in the formula (14) - (15)

based on the numerical algorithm of nonlinear minimization with additional
conditions of αl0x parameters (∀x αl0x < 0) were assessed. The algorithm works
by generating a population of random starting points and next uses a local
optimization method from each of the starting points to converge to a local
minimum. As the solution, the best local minimum was chosen.

The procedure of the determination of switching time points To identify
the switching time points st the procedure based on the Chow test [8] (which
allows to assess whether the respective regression coefficients are different for
split data sets) due to limited series of time observations only on three- and
six-years intervals was used.

Step 1. Split the 2002-2016 mortality data (source: [11]) into two groups of
intervals. The first group consists of six-years intervals e.g.:

τ̃6(1) = {2002, 2003, ..., 2007}, . . . , τ̃6(10) = {2011, 2012, ..., 2016}

The second group consists of three-years intervals e.g.:
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τ̃3(1) = {2002, 2003, 2004}, . . . , τ̃3(13) = {2010, 2011, ..., 2015}

Note: τ̃3(1)∪ τ̃3(4) = τ̃6(1), . . . and so on. In the next steps of the algorithm,
the following sets of indices will be considered: τ̃3(i), τ̃3(i + 3) and τ̃6(i) for
i=1,...,10.

Step 2. For i = 1 , l = 1 :

Using estimated parameters α̂l0 and α̂l1 of the regression model: µx,t = αl0+αl1t+
εt for the years 2002-2016 (t ∈ 1, . . . , 15) we determine three types of sums of
residual squares (based on the above regression):
- the first one for the 3-element subinterval Sτ̃3(i) =

∑
k∈τ̃3(i) e

2
k,

- the second one for the 3-element subinterval Sτ̃3(i+3) =
∑
k∈τ̃3(i+3) e

2
k,

- the third one for Sτ̃6(i) =
∑
k∈τ̃6(i) e

2
k for i = 1, . . . , 10.

Step 3. To test the existence of a switching point, we propose to apply the
Chow test of statistic Femp [8] based on the Fisher-Snedecor distribution F:

Femp,i =

Sτ̃6(i)−Sτ̃3(i)−Sτ̃3(i+3)

m
Sτ̃3(i)+Sτ̃3(i+3)

n1+n2−2m

(16)

where: m is the number of the estimated parameters (with intercept), n1 = n2 =
3 are numbers of observations in two neighbor rolling subintervals.

If Femp,i > Fr1,r2,α (alternatively: p − value ≤ α, where α is the level of
significance; usually α = 0.05) then reject null hypothesis H0 with the set of
statistical hypotheses as follows:

H0 : αl0x = αl+1
0x
∧αlx = αl+1

x ∧ cl0x = cl+1
0x

against the alternative H1 : ¬H0

and accept as the switching point the first element of the set τ̃3(i+ 3), where:
Fr1,r2,α is a value of theoretical Fisher-Snedecor distribution F with r1 = m and
r2 = n1 + n2 − 2m at significance level α.

If we have rejected H0 then we have found a switching point sl between
subsystem l and subsystem l+1 and we add it to the set of switching points,
l = l + 1 .

Step 4 Go back to Step 2, i = i + 1 , repeat Step 2 and Step 3 until i=13.
Step 5 Finally, we have created the set of switching points sj , j = 1 , ...,N − 1

and the corresponding N intervals of the mortality data.

4 Results

Based on empirical central death rates µx,t for all ages x (x=0,...,100) the pa-
rameters of the models non-Gaussian SLF without and with switchings (in the
case that at least one switching point has appeared) were evaluated and two sets
of theoretical mortality rates µ̂x,t were determined.

Selected results for a 40, 65, 67 and 70 year old woman and man are shown
in Tables 1-2

Due to the small number of observations (only 15 years), there was no switch-
ing point in every age group. Based on the results of the Chow test in table 1
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Table 1. Chow test values, 3- and 6-year intervals 2002-2016 (woman-W, man-M).

Sex Age 02-07 03-08 04-09 05-10 06-11 07-12 08-13 09-14 10-15 11-16

40 0.65 1.42 141.32 0.30 1.25 4.35 2.37 11.49 8.88 3.31
W 65 2.86 10.92 3.05 0.14 6.26 1.96 0.03 2.90 1.81 0.09

67 4.57 5.10 3.32 6.38 5.41 1.11 1.04 0.23 1.72 1.93
70 3.69 0.70 0.03 2.70 1.42 0.03 2.09 7.47 3.97 0.30

40 1.36 1.05 127.50 9.97 2.54 28.52 4.31 5.37 17.02 2.64
M 65 93.61 12.62 0.62 0.11 3.61 0.98 0.06 1.04 0.14 1.57

67 0.23 0.27 1.15 4.38 0.59 1.32 1.10 0.69 0.07 6.41
70 2.20 0.12 0.96 0.23 1.43 0.13 0.49 2.36 0.27 0.46

Table 2. Life expectancy ex: all causes of death, after removing cause C (ex,C) and I
(ex,I) separately - selected years of life for women (exW ) and men (exM ).

age x exW exW ,C exW ,I exM exM ,C exM ,I

40 42.56 48.31 50.27 35.57 42.88 44.80
65 20.13 24.91 27.91 15.86 23.10 25.10
67 18.56 23.17 26.34 14.65 21.79 23.87
70 16.25 20.60 24.03 12.89 19.87 22.08

for selected age groups, it can be seen that there is only one switching point
for women aged 40 and men aged 65 years, while for men aged 40 years, there
are two switching points. Removal of the cause of death as expected generally
extends the life expectancy. If the cause of death C is removed, the average life
expectancy will increase, depending on the age group, from 4.35 to 5.75 years for
women and from 6.98 to 7.31 for men. If the cause of I is removed, the average
life expectancy will be extended by approx. 7.8 years for women and approx.
9.2 for men (see table 2). In addition, it can be seen that in all cases empirical
mortality rates without taking into account the cause of death decrease over
time, which means an increase in life expectancy.

Value of empirical, theoretical death rates µ̂x, µ̂x,C (without the cause of
death C) and µ̂x,I (without the cause of death I) determined by the nGLSF
model (nGLSFC - without the cause of death C, nGLSFI - without the cause of
death I) and forecasts from 2017 to 2025 (denoted by an additional letter f, i.e.
nGLSFf) for women (W) and men (M) are included in Figures 1-8.

The following conclusions can be drawn from the figures 1-8:

1. For a 40-year-old woman, the difference between µ̂40 and µ̂40,C , as well as
between µ̂40 and µ̂40,I is more or less stable, while for men it is decreasing,
which means that C and I definitely increase their share in the total number
of deaths and they are definitely the dominant causes of deaths in this age
group.

2. For a 65-year-old woman, the difference between µ̂65 and µ̂65,C is more or
less stable, whereas between µ̂65 and µ̂65,I it decreases, thus becoming the
dominant cause of death in time, while in the case of men, the trend is
slightly decreasing.
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Fig. 1. Values of death rates for women aged 40 - empirical and theoretical values as
well as forecasts based on the nGLSF model respectively

µM,40

Years

D
ea

th
 r

at
e

2005 2010 2015 2020 2025

0.
00

10
0.

00
20

0.
00

30

Empirical
nGLSF
nGLSFC
nGLSFI
nGLSFf
nGLSFCf
nGLSFIf

Fig. 2. Values of death rates for men aged 40 - empirical and theoretical values as well
as forecasts based on the nGLSF model respectively
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Fig. 3. Values of death rates for women aged 65 - empirical and theoretical values as
well as forecasts based on the nGLSF model respectively
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Fig. 4. Values of death rates for men aged 65 - empirical and theoretical values as well
as forecasts based on the nGLSF model respectively
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Fig. 5. Values of death rates for women aged 67 - empirical and theoretical values as
well as forecasts based on the nGLSF model respectively
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Fig. 6. Values of death rates for men aged 67 - empirical and theoretical values as well
as forecasts based on the nGLSF model respectively
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Fig. 7. Values of death rates for women aged 70 - empirical and theoretical values as
well as forecasts based on the nGLSF model respectively
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Fig. 8. Values of death rates for men aged 70 - empirical and theoretical values as well
as forecasts based on the nGLSF model respectively
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3. For a 67-year-old woman and man, the situation is similar to the case of a
65-year-old.

4. In the case of a 70-year-old woman the difference between µ̂70 and µ̂70,C to
2008 is slightly decreasing, and since 2008 it is slightly growing, while the
difference between µ̂70 and µ̂70,I is decreasing until 2012, then more or less
stable; in the case of men, the trend is slightly diminishing with a decreasing
disparity between µ̂70,C and µ̂70,I

where
µ̂x,C - death rate without a cardiological cause,
µ̂x,I - death rate without a cancer cause.

5 Conclusions

The purpose of this article was to try to estimate how many years life can
last longer if death does not occur because of a specific disease, but because
of natural death using a non-Gaussian linear scalar filter model. Determining
the exact life expectancy ex of individual people requires accurate data on the
number of people in the cohort who died in the age of x due to the cause of C or
I. Obtaining such data (e.g. from a hospital) is very difficult due to the current
restrictions of law and in connection with the Act on protection of personal
data GDPR. Nevertheless, the attempt to determine life expectancy with the
exclusion of death due to C or I illness using the proposed model and the method
of estimation seems realistic. Thus, the results obtained in the article should
be treated as an approximation of the real life expectancy ex. Determining the
”real” ex after exclusion of the cause of death would occur if, in fact, one observes
a cohort for nearly 100 years. Currently, however, the implementation of such an
experience seems unrealistic and therefore the methods of stochastic simulation
should be further developed.
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