
Nonsmooth Newton’s Method:
Some Structure Exploitation

Alberto De Marchi[0000−0002−3545−6898] and Matthias
Gerdts[0000−0001−8674−5764]

Department of Aerospace Engineering
Bundeswehr University Munich

Werner-Heisenberg-Weg 39
85577 Neubiberg, Germany
alberto.demarchi@unibw.de

matthias.gerdts@unibw.de

Abstract. We investigate real asymmetric linear systems arising in the
search direction generation in a nonsmooth Newton’s method. This ap-
plies to constrained optimisation problems via reformulation of the nec-
essary conditions into an equivalent nonlinear and nonsmooth system of
equations. We propose a strategy to exploit the problem structure. First,
based on the sub-blocks of the original matrix, some variables are selected
and ruled out for a posteriori recovering; then, a smaller and symmetric
linear system is generated; eventually, from the solution of the latter, the
remaining variables are obtained. We prove the method is applicable if
the original linear system is well-posed. We propose and discuss different
selection strategies. Finally, numerical examples are presented to com-
pare this method with the direct approach without exploitation, for full
and sparse matrices, in a wide range of problem size.

Keywords: Structure Exploitation · Linear Algebra · Nonsmooth New-
ton’s Method · Nonlinear Optimization.

1 Introduction

In this paper, we consider the real square nonsymmetric possibly large sparse
linear system Q A> C>

A
−SC T

xy
z

 =

fg
h

 (1)

where Q ∈ Rnx×nx , A ∈ Rna×nx , C ∈ Rnc×nx and S, T ∈ Rnc×nc are given ma-
trices and f ∈ Rnx , g ∈ Rna , h ∈ Rnc are given vectors (nx, na, nc being some
positive integers); S and T are non-zero diagonal matrices. The contribution of
this paper is the exploitation of the structure in problem (1) and its transforma-
tion into a smaller symmetric linear system, with a saddle-point structure, from
which the solution to (1) can be easily recovered. In particular, two stages are
discussed. First, a reduction step generates a smaller linear system and a way

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_32

https://dx.doi.org/10.1007/978-3-030-22744-9_32

to recover eliminated variables from the solution of this reduced system. This
step exploits the fact that matrix T is diagonal, and then symbolically solve for
(some of) the variables in z. Several different reduction strategies are discussed
and compared. The second step aims at rewriting the linear system in a sym-
metric form, allowing to adopt solvers for symmetric systems, which are usually
more time and memory efficient. Despite these advantages, some computational
overhead is needed, especially in the reduction step, which might introduce a
break-even point, that is, this exploitation may pay off, e.g., in terms of com-
putational time, only under certain conditions, e.g., large instances. In fact, an
optimal reduction strategy might exists, depending on the specific properties of
the problem; indeed, it may even depend on the specific values of the entries.
Throughout the paper, we investigate the influence of the reduction strategy on
the performance of the aforementioned two-steps exploitation; however, a de-
tailed optimization of the reduction policy is beyond the scope of this paper. We
point out that the proposed method could be combined with constraint-reduction
approaches as, e.g., those presented in [5,12].

Once the original problem (1), say V d = r for brevity, has been transformed,

a reduced symmetric linear system, say V̂ d̂ = r̂, is to be solved. To this end, any
method can be adopted. The choice may depend on the problem, in particular on
its size, fill-in, sparsity pattern, accuracy requirements and memory constraints,
availability of good preconditioners, and so on. Within this work, we compare
the effectiveness and the limitations of the proposed method for structure ex-
ploitation when a direct solver is adopted to tackle the linear system.

1.1 Motivation

Linear systems with the form (1) arise, e.g., from nonlinear complementarity
problems [6], nonlinear optimization problems with inequality constraints [7]
and discretized optimal control problems with state and control constraints [8,9].
Usually, these are reformulated through the Karush-Kuhn-Tucker (KKT) neces-
sary optimality conditions, then equivalently transformed into a nonlinear sys-
tem of equations with the so called NCP-functions [16] and finally solved with a
nonsmooth version of Newton’s method [14]. Some globalization strategies [9,11]

V , r V̂ , r̂ d̂

direct
solver

iterative
solver

d
reduction recovery

Fig. 1. Solution diagram: direct methods with (solid) and without (dashed) structure
exploitation are compared; iterative methods (dotted) are not considered here.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_32

https://dx.doi.org/10.1007/978-3-030-22744-9_32

and results in functions spaces [18] have been reported. It has been shown that,
for some NCP-functions, this approach is equivalent to a primal-dual active set
strategy [10]. Indeed, different NCP-functions exhibit different properties and
might affect the convergence behaviour [1,16]. With reference to the problem (1),
matrices Q, A and C can be considered as iterate-dependent linear-quadratic
approximations of an underlying nonlinear problem, while diagonal matrices S
and T originate from the NCP-function adopted and vectors f , g and h are the
residuals of the aforementioned nonlinear system of equations.

Example Let us consider a quadratic program (QP) with linear equality and
inequality constraints. Hence, we seek an x ∈ Rnx minimizing 1

2x
>Qx + q>x,

subject to constraints Ax = a, Cx ≤ c, where Q, A, C and q, a, c are
given matrices and vectors, respectively. Here the inequalities are understood
componentwise. Linear constraints ensure that regularity conditions are met,
then the KKT conditions are necessary for optimality; these read:

Qx+ q +A>λ+C>µ = 0 (2a)

Ax = a (2b)

0 ≤ µ ⊥ Cx ≤ c (2c)

where λ and µ denote the Lagrange multipliers. In (2c), inequality and com-
plementarity constraints hold componentwise. Let us consider an NCP-function
ϕ : R2 → R, e.g., the original or the penalized Fischer-Burmeister function [1,7],
which by definition satisfies

ϕ(a, b) = 0 ⇔ 0 ≤ a ⊥ b ≥ 0 (3)

for any pair (a, b). Thanks to this property, the KKT system (2) is equivalently
rewritten as a nonlinear system ψ(z) = 0, collecting vector z = (x,λ,µ) ∈ Rnz ,
nz := nx + na + nc, and with vector-valued function ψ : Rnz → Rnz defined by

ψ(z) =

Qx+ q +A>λ+C>µ
Ax− a

ϕ(c−Cx,µ)

 (4)

Here the NCP-function ϕ applies componentwise. A (globalized) possibly nons-
mooth Newton’s-type method generates a sequence {zk} through the recurrence
zk+1 = zk + αkdk, k = 0, 1, 2, . . . , where the step length αk > 0 is determined,
e.g., by a line-search procedure of Armijo’s type and the search direction dk

is the solution of the linear equation V kd = −ψ(zk) [7,8,9,11,14]. The matrix
V k is an element of the Clarke’s generalized Jacobian (that is the convex hull
of the Bouligand differential [2]) of ψ at zk, namely V k ∈ ∂ψ(zk) [8,11]. The
NCP-function ϕ is the only element in (4) which can possibly make function ψ
nonsmooth. Hence, from (4), one obtains

V k =

 Q A> C>

A

−SkC T k

 (5)

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_32

https://dx.doi.org/10.1007/978-3-030-22744-9_32

with diagonal matrices Sk = diag
(
sk1 , s

k
2 , . . . , s

k
nc

)
and T k = diag

(
tk1 , t

k
2 , . . . , t

k
nc

)
,

whose entries are pairwise coupled via the (possibly generalized) differential of
the NCP-function ϕ. Defining vk := c − Cxk the inequality constraint viola-
tion at the k-th iterate, for i = 1, 2, . . . , nc, the coupling for the i-th inequality
constraint reads [1,7,8]: (

ski , t
k
i

)
∈ ∂ϕ

(
vki , µ

k
i

)
(6)

We remark that matrices Sk and T k are diagonal because the NCP-function
ϕ applies componentwise in (4). Then, the linear system V kd = −ψ(zk) to
compute the search direction dk corresponds exactly to problem (1).

1.2 Outline

This work is organized as follows. Section 2 outlines the structure exploitation
strategy and introduces an underlying assumption. In Sections 2.1 and 2.2 the
two main steps are developed and discussed. Section 3 validates the proposed
approach numerically, for both full and sparse matrices, with different reduc-
tion strategies, showing effectiveness and limitations of the proposed algorithm.
Section 4 concludes the paper and presents ideas for future research.

2 Structure exploitation

Problem (1), also denoted V d = r for brevity, can be directly solved via any lin-
ear algebra package, e.g., MA48 [4], PARDISO [15], SUPERLU [13], mldivide
in MATLAB [17]. However, we aim at exploiting our knowledge about the struc-
ture of matrix V ; computational effort and achieved accuracy might benefit
from this, especially for large-scale and sparse linear systems. Firstly, we notice
that matrix V and vector r are often computed blockwise and then assembled.
Hence, matrices Q, A, C and vectors s, t, f , g and h are here considered as the
starting ingredients for solving (1). Overall, two directions are explored, mainly
exploiting the diagonal structure of S and T . In Section 2.1 a reduction step is
discussed, eliminating some variables and introducing a smaller asymmetric lin-
ear system. Then, in Section 2.2, this is transformed into a symmetric one which
is equivalent. Nonetheless, these operations for reorganizing the linear system
and successive recovering of variables constitutes an overhead of computation.
This means that these procedures might be worthy only for certain problems,
likely large instances with lots of inequality constraints. In Section 3, numerical
tests show that this break-even point corresponds to relatively small problem
instances (for the tested implementation).

We point out that the proposed method relies on the following assumption
on the diagonals of S and T ; it reads:

Assumption 1 For i = 1, 2, . . . , nc, it holds (si, ti) 6= (0, 0).

This is a mild requirement, in that it corresponds to problem (1) to be well-posed.
One can show the following result:

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_32

https://dx.doi.org/10.1007/978-3-030-22744-9_32

Lemma 1. If problem (1) admits a unique solution, then Assumption 1 holds.

Proof (by contradiction). Let us assume there exist d unique solution to (1)
and i such that (si, ti) = (0, 0). Hence, the row of V corresponding to the i-th
inequality constraint consists of zeros only. Then, the matrix V is rank deficient
and the problem is undetermined. Two cases are possible, depending on the value
of hi on the right-hand side. If hi = 0, then (1) admits infinitely many solutions,
hence solution d is not unique. If hi 6= 0, then the linear system is unsolvable
(impossible) and d cannot be a solution. ut
Remark 1. Assumption 1 requires a mild condition to be satisfied by the NCP-
function ϕ. For instance, a sufficient condition is that for any given pair (a, b) ∈
R2 there exists a pair (s, t) ∈ ∂ϕ(a, b) such that (s, t) 6= (0, 0); this allows to
choose always suitable entries for S and T . The Fischer-Burmeister function
and the max function, among other NCP-functions, have this property.

Let us denote I := {1, 2, . . . , , nc} the index set for the inequality constraints,
I0re := {i ∈ I | ti 6= 0} and I0sy := {i ∈ I | si 6= 0} the largest index sets that
allow respectively the reduction step and the symmetrization step, discussed
below. Thanks to Assumption 1, these satisfy I0re ∪ I0sy = I. Let us consider an
index subset Ire ⊆ I0re, sufficiently large to satisfy Ire ∪ I0sy = I. Then, for the
associated complement Ire := I\Ire, it holds Ire ⊆ I0sy. With this construction, it
is possible to apply the reduction step, ruling out a given set Ire of variables, and
subsequently the symmetrization step on the linear system with the remaining
variables, namely those in Ire.
Remark 2. We stress that in general it is I0re ∩ I0sy 6= ∅ and hence the choice
of Ire is not unique. This suggests there could be an optimal reduction strat-
egy, possibly dependent on V and with some degree of computation awareness.
However, this issue is beyond the scope of this paper.

In Section 3, we compare the following definitions of Ire through numerical
investigations:

Itre :=
{
i ∈ I

∣∣∣ |ti| ≥ ε} (7a)

Isre :=
{
i ∈ I

∣∣∣ |si| ≤ ε} (7b)

Itsre :=
{
i ∈ I

∣∣∣ |ti| ≥ |si|} (7c)

where ε > 0 is a given, sufficiently small value, introduced as a numerical
tolerance in (7a)–(7b). For ε → 0+, these sets approach the largest and the
smallest possible reduction sets, respectively, namely reducing the most and the
least of the variables. Instead, the set defined in (7c) represents an arbitrary
trade-off, introduced for the sake of comparison; see Fig. 2.

Remark 3. One could think about performing either the reduction or symmetriza-
tion step. However, (i) under Assumption 1, once the system is reduced, the sym-
metrization step is straightforward, inexpensive and likely effective; (ii) the sym-
metrization step might be impossible without preliminary reduction, depending
on the invertibility of S.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_32

https://dx.doi.org/10.1007/978-3-030-22744-9_32

0 ε
0

ε

|s|

|t|

0 ε
0

ε

|s|

|t|

0 ε
0

ε

|s|

|t|

Fig. 2. Reduction sets (7) in the |s|-|t| plane: Itre (left), Isre and Itsre (right).

2.1 Reduction

The idea behind the reduction step stems from the observation that problem
(1) may be separable, i.e. that it may be possible to compute the value of some
variables a posteriori, namely once the others are given. In fact, a solution to
problem (1) must satisfy

Tz = SCx+ h (8)

where matrix T is diagonal. Given an index set Ire ⊆ I0re, it is possible to
compute zi, for every i ∈ Ire, from (8) once the solution vector x is known. To be
sure, let us build matrices T re := diag (ti | i ∈ Ire) and T re := diag (ti | i 6∈ Ire)
and define zre and zre the corresponding vectors of unknown variables which
can and cannot be reduced, respectively. Then, partitioning the linear system
(1) accordingly with these definitions yields:

Q A> C>re C
>
re

A
−SreCre T re

−SreCre T re

x
y
zre
zre

 =

f
g
hre

hre

 (9)

where matrices Cre, Cre, Sre, Sre and vectors hre and hre are constructed anal-
ogously, based on Ire. The matrix T re is nonsingular, by definition, and then,
from (9), one can formally solve for zre, obtaining

zre = T−1re (SreCrex+ hre) , (10)

whose evaluation is straightforward because T re is diagonal. Plugging (10) back
into (9) leads to a smaller linear system, after rearrangements, without reduced
variables zre, namely: Q̂ A> C>re

A
−SreCre T re

 x
y
zre

 =

 f̂
g
hre

 (11)

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_32

https://dx.doi.org/10.1007/978-3-030-22744-9_32

where matrix Q̂ and vector f̂ are defined by:

Q̂ := Q+C>reT
−1
re SreCre (12a)

f̂ := f −C>reT−1re hre (12b)

The larger the set Ire, the more reduced variables, the smaller the obtained
linear system (11). In turn, the computation of Q̂ may be costly, involving a
matrix-matrix multiplication, Eq. 12a. Also, for sparse problems, the fill-up of
matrix Q̂ may become significant. These drawbacks suggest there might be a
trade-off in the reduction step, and hence an optimal reduction strategy, as
pointed out in Remark 2.

2.2 Symmetrization

Linear systems with a symmetric matrix can be solved more efficiently, in terms
of time and memory. In order to get a symmetric matrix out of (11), it would
suffice to left-multiply the rows associated with inequality constraints, namely
with zre, by the inverse of −Sre. As discussed above, it is Ire ⊆ I0sy, hence the
matrix Sre is nonsingular, by construction; moreover, its inversion is straightfor-
ward, since it is diagonal. Then, the reduced symmetric linear system V̂ d̂ = r̂
reads: Q̂ A> C>re

A

Cre −S−1re T re

 x
y
zre

 =

 f̂
g

−S−1re hre

 (13)

The matrix V̂ is symmetric and smaller than V ; the vector d̂ collects the un-
knowns corresponding to optimization variables (x), equality constraints’ mul-
tipliers (y) and not-reduced inequality constraints’ multipliers (zre).

Remark 4. In (12)–(13), the matrix-matrix products T−1re Sre, S
−1
re T re and the

matrix-vector products T−1re hre, S
−1
re hre can be evaluated as entry-wise vector-

vector products. In fact, this is possible because matrices Sre, Sre, T re and T re

are diagonal. Furthermore, one can exploit this feature by choosing a specific
multiplication ordering, aiming at the lowest possible computational complexity.

3 Numerical results

This Section reports and discusses the results obtained from a MATLAB [17]
implementation of Algorithm 1, considering Remark 4. The plain code (as well
as a Julia 1.0 and a Python 3.6 implementation) are publicly available [3].

We are interested in comparing the computation time for solving problem (1),
through direct methods, with and without the proposed structure exploitation
method, see Fig. 1 above. Also, we investigate how it is affected by the problem
size N := nx + na + nc and the relative number of equality and inequality
constraints, α := na/nx and γ := nc/nx, respectively.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_32

https://dx.doi.org/10.1007/978-3-030-22744-9_32

Algorithm 1 Abstract structure-exploiting linear solver.

Input: Q, A, C, s, t, f , g, h; ε
Output: x, y, z
Ire ← s, t, ε; // reduction strategy, Eq. 7
Cre, sre, tre,hre,Cre, sre, tre,hre ← C, s, t,h, Ire; // partitioning

Q̂← Q,Cre, tre, sre ; // Eq. 12a

f̂ ← f ,Cre, tre,hre ; // Eq. 12b

V̂ ← Q̂,A,Cre, sre, tre ; // Eq. 13

r̂ ← f̂ , g, sre,hre ; // Eq. 13

x,y,zre ← V̂ , r̂ ; // linear system
zre ← Cre, sre, tre,hre,x ; // recovering, Eq. 10
z ← zre,zre, Ire; // assembling

A problem instance consists of matrices Q, A, C and vectors s, t (the diag-
onal of S and T , respectively), f , g and h. In the case of full matrices, starting
from given values of N , α and γ, an instance is generated as follows:

nx =

[
N

1 + α+ γ

]
na = [αnx]

nc = N − nx − na
Q̄ij ∼ N (0, 1) i = 1, . . . , nx , j = 1, . . . , nx

Q =
1

2

(
Q̄+ Q̄

>
)

Aij ∼ N (0, 1) i = 1, . . . , na , j = 1, . . . , nx

Cij ∼ N (0, 1) i = 1, . . . , nc , j = 1, . . . , nx

ρi ∼
√
U(0, 1) i = 1, . . . , nc

θi ∼ U(0, 2π) i = 1, . . . , nc

si = 1 + ρi cos θi i = 1, . . . , nc

ti = 1 + ρi sin θi i = 1, . . . , nc

fi ∼ N (0, 1) i = 1, . . . , nx

gi ∼ N (0, 1) i = 1, . . . , na

hi ∼ N (0, 1) i = 1, . . . , nc

whereN (µ, σ) denotes the normal continuous probability distribution with mean
value µ and standard deviation σ, and U(a, b) the uniform distribution with sup-
port in [a, b]. Entries of S and T are pairwise coupled in that they are sampled
from a disk in the s-t plane, centered in (1, 1) with unitary radius, with uniform
probability distribution. This setting is motivated by and mimics the general-
ized differential of the Fischer-Burmeister function [8]. Both, the direct and the
structure-exploiting methods setup the linear system starting from these inputs.
Notice that the reduced approach does not build V nor r, but their reduced

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_32

https://dx.doi.org/10.1007/978-3-030-22744-9_32

101 102 103 104

10−4

10−2

100

N [-]

t
[s
]

direct
reduced

Fig. 3. Execution time: direct approach (tdir, dot) and reduced approach (tred, cross)
with reduction set Itre; full matrices. Median value.

and symmetric counterpart V̂ and r̂. In our implementation, the direct method
builds V and r and then adopts the mldivide routine to solve V d = r. Instead,
for the reduced approach (with full matrices), the linsolve routine is adopted

and explicitly informed that matrix V̂ is symmetric. The problem size N varies
between 10 and 104 for full and between 103 and 2 · 104 for sparse matrices.
For each problem size, a set of 100 problem instances are generated (only 10 if
N > 104), checked for ill-conditioning and eventually solved. The composition
of constraints is chosen to be (α, γ) ∈ {(0, 1), (0, 1.5), (0.5, 1), (0.5, 1.5)} (colored
in blue, red, green and violet, respectively). The index sets defined in (7) are
adopted and compared, with the tolerance ε = 10−3. Sparse matrices are gener-
ated in such a way that they approximately have 10 entries for each row; this
makes the number of nonzero entries to increase linearly and not quadratically
with the problem size N .

The computation time for the direct and reduced case are depicted in Fig. 3,
considering full matrices and the (large) index set Itre. This gives an idea about
the adopted implementation and computing hardware; also, one can guess the
computational complexity of the underlying algorithm for solving a linear sys-
tem. As expected in Section 2, the overhead due to partitioning, reducing and
recovering, introduces a break-even point, at around N = 60 (for Itre and Itsre ,
but not for Isre); hence, the reduced approach is not beneficial only for small-
sized problems. This and other considerations can be drawn based on Fig. 4,
where it is depicted the (median value of the) ratio of the execution time with
the reduced approach, tred, with the different reduction strategies, over the di-
rect one, tdir. Therein, the break-even point corresponds to the unitary ratio;
also, the additional computational burden is significant for low values of N . For
large N , instead, the ratio decreases to approximately one-half for Itre and Itsre ,
while for Isre it stays around the unit. As one could expect, the reduction set
Isre is not as effective as Itre and Itsre because it does not benefit very much from
the reduction step, in that it eliminates only few variables. The relative number

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_32

https://dx.doi.org/10.1007/978-3-030-22744-9_32

101 102 103 104
0

0.5

1

2

3

N [-]

t r
e
d
/
t d

ir
[-
]

101 102 103 104
0

0.5

1

2

3

N [-]

t r
e
d
/t

d
ir
[-
]

101 102 103 104
0

0.5

1

2

3

N [-]

t r
e
d
/t

d
ir
[-
]

Fig. 4. Ratio of execution time: Itre (top), Itsre (bottom left), Isre (bottom right); full
matrices. Median value (line) and 9%-91% quantiles (filled area).

of constraints has an impact on the execution time but it does not drastically
affect the overall behaviour (for both, full and sparse case). In fact, all else be-
ing equal, either decreasing the number of equalities and increasing the number
of inequalities reduces the execution time ratio, meaning that the reduced ap-
proach is more effective and worthy for (large) problems with many inequality
constraints. For what concerns the case of sparse matrices, similar observations
are valid, see Fig. 5. In order to show the distribution of the results obtained
from the executed tests, along with the median value, the 9% and 91% quantiles
are also reported. For full matrices, Fig. 4, the distribution is relatively narrow,
while for sparse matrices, Fig. 5, the results are relatively scattered. Thus, we
argue the sparsity pattern greatly affects the computation time. Nevertheless,
for relatively large sparse matrices, the ratio tred/tdir approaches one-half and
promisingly decreases.

These numerical results suggest the set Itre defined in (7a) to be the most
effective reduction strategy among those tested. In fact, it generates the small-
est linear system and then post-solves the most variables. However, as argued

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_32

https://dx.doi.org/10.1007/978-3-030-22744-9_32

103 104
0

0.5

1

N [-]

t r
e
d
/t

d
ir
[-
]

103 104
0

0.5

1

N [-]

t r
e
d
/t

d
ir
[-
]

Fig. 5. Ratio of execution time: Itre (top) and Itsre (bottom); sparse matrices. Median
value (line) and 9%-91% quantiles (filled area).

in Section 2.1, we claim it might be not the case for (much) larger problem
instances, because of the required overhead for the reduction step.

4 Conclusions

This paper proposed and studied a structure-exploiting approach for solving
linear systems arising in the context of nonsmooth Newton’s method. The ap-
plicability of this method was established under well-posedness of the original
problem. Numerical examples showed that the developed approach reduces the
computational time, with both, full and sparse linear systems. Some of the tested
reduction strategies resulted in halving the execution time.

Analogous ideas apply when an iterative linear solver is of choice, e.g., for very
large systems; tailored preconditioners are subject of future research. It remains
to assess the effectiveness and the drawbacks of the method when embedded into
larger routines for numerical optimization. Moreover, it would be interesting to
investigate an optimal reduction strategy, possibly computationally aware.

Acknowledgements

A.D.M. heartily thanks his marafiki for the unforgettable memories and wishes
them a happy marriage.

References

1. Chen, B., Chen, X., Kanzow, C.: A penalized Fischer-Burmeister
NCP-function. Mathematical Programming 88(1), 211–216 (Jun 2000).
https://doi.org/10.1007/PL00011375

2. Clarke, F.H.: Optimization and Nonsmooth Analysis. John Wiley & Sons, New
York (1983)

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_32

https://doi.org/10.1007/PL00011375
https://dx.doi.org/10.1007/978-3-030-22744-9_32

3. De Marchi, A.: Code supporting “Nonsmooth Newton’s method: some structure
exploitation” (Nov 2018). https://doi.org/10.5281/zenodo.1486064

4. Duff, I.S., Reid, J.K.: MA48 — a Fortran code for direct solution of sparse unsym-
metric linear systems of equations. Tech. Rep. RAL-93-072, Rutherford Appleton
Laboratory (Oct 1993)

5. Facchinei, F., Fischer, A., Kanzow, C.: On the accurate identification
of active constraints. SIAM Journal on Optimization 9(1), 14–32 (1998).
https://doi.org/10.1137/S1052623496305882

6. Facchinei, F., Kanzow, C.: A nonsmooth inexact Newton method for the solution
of large-scale nonlinear complementarity problems. Mathematical Programming
76(3), 493–512 (Mar 1997). https://doi.org/10.1007/BF02614395

7. Fischer, A.: A special Newton-type optimization method. Optimization 24, 269–
284 (1992). https://doi.org/10.1080/02331939208843795

8. Gerdts, M., Kunkel, M.: A nonsmooth Newton’s method for discretized
optimal control problems with state and control constraints. Jour-
nal of Industrial & Management Optimization 4(2), 247–270 (2008).
https://doi.org/10.3934/jimo.2008.4.247

9. Gerdts, M., Kunkel, M.: A globally convergent semi-smooth Newton
method for control-state constrained DAE optimal control problems. Com-
putational Optimization and Applications 48(3), 601–633 (Apr 2011).
https://doi.org/10.1007/s10589-009-9275-0

10. Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as
a semismooth Newton method. SIAM Journal on Optimization 13(3), 865–888
(2002). https://doi.org/10.1137/S1052623401383558

11. Jiang, H.: Global convergence analysis of the generalized Newton and Gauß-
Newton methods of the Fischer-Burmeister equation for the complementarity prob-
lem. Mathematics of Operations Research 24(3), 529–543 (1999), http://www.
jstor.org/stable/3690647

12. Laiu, M.P., Tits, A.L.: A constraint-reduced MPC algorithm for convex quadratic
programming, with a modified active set identification scheme. Computational
Optimization and Applications (Mar 2019). https://doi.org/10.1007/s10589-019-
00058-0

13. Li, X.S.: An overview of SuperLU: Algorithms, implementation, and user interface.
ACM Transactions on Mathematical Software 31(3), 302–325 (Sep 2005)

14. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Mathematical Program-
ming 58(1), 353–367 (Jan 1993). https://doi.org/10.1007/BF01581275

15. Schenk, O., Gärtner, K.: Solving unsymmetric sparse systems of linear equations
with PARDISO. Future Generation Computer Systems 20(3), 475–487 (2004).
https://doi.org/https://doi.org/10.1016/j.future.2003.07.011

16. Sun, D., Qi, L.: On NCP-functions. Computational Optimization and Applications
13(1), 201–220 (Apr 1999). https://doi.org/10.1023/A:1008669226453

17. The MathWorks, Inc.: MATLAB Release 2017b, Natick, Massachusetts, United
States

18. Ulbrich, M.: Nonsmooth Newton-like Methods for Variational Inequalities and
Constrained Optimization Problems in Function Spaces. Ph.D. thesis, Technische
Universität München (Feb 2002)

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22744-9_32

https://doi.org/10.5281/zenodo.1486064
https://doi.org/10.1137/S1052623496305882
https://doi.org/10.1007/BF02614395
https://doi.org/10.1080/02331939208843795
https://doi.org/10.3934/jimo.2008.4.247
https://doi.org/10.1007/s10589-009-9275-0
https://doi.org/10.1137/S1052623401383558
http://www.jstor.org/stable/3690647
http://www.jstor.org/stable/3690647
https://doi.org/10.1007/s10589-019-00058-0
https://doi.org/10.1007/s10589-019-00058-0
https://doi.org/10.1007/BF01581275
https://doi.org/https://doi.org/10.1016/j.future.2003.07.011
https://doi.org/10.1023/A:1008669226453
https://dx.doi.org/10.1007/978-3-030-22744-9_32

